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A Spatially-adjusted Bayesian Additive

Regression Tree Model to Merge Two Datasets

Song Zhang,∗ Ya-Chen Tina Shih† and Peter Müller‡

Abstract. Scientific hypotheses of interest often involve variables that are not
available in a single survey. This is a common problem for researchers working
with survey data. We propose a model-based approach to provide information
about the missing variable. We use a spatial extension of the BART (Bayesian
additive regression tree) model. The imputation of the missing variables and infer-
ence about the relationship between two variables are obtained simultaneously as
posterior inference under the proposed model. The uncertainty due to imputation
is automatically accounted for. A simulation analysis and an application to data
on self-perceived health status and income are presented.
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1 Introduction

We consider the problem of inference about the relationship of two variables reported in
two different datasets. This is a common problem for researchers working with survey
data. Scientific hypotheses of interest often involve variables that are not available in a
single survey. Specifically, we are interested in inference on how a variable z is affected
by another variable y, when there is no such dataset that collects z and y simultaneously.
Instead, z is only reported in dataset D1 and y is only collected in dataset D2.

Many model-based methods have been developed to deal with missing data prob-
lems, including maximum likelihood (ML) methods, multiple imputation (MI) methods,
weighted estimating equations (WEE), and fully Bayesian (FB) methods. See Little
(1992), Horton and Laird (1999), Schafer and Graham (2002), Ibrahim et al. (2005) and
the references therein for detailed discussions. There are some assumptions associated
with each of these methods. Many ML methods assume a large sample size so that
the ML estimates are approximately unbiased and normally distributed. The likelihood
function is assumed to arise from a parametric model of the complete data. Finally,
ML methods usually require the missing at random (MAR) assumption (Rubin 1976).
MI methods also rely on large-sample approximation and assume a parametric form
for the joint model of the observed and missing data. They require some assumption
about the distribution of missingness, although not limited to MAR. WEE methods are
extensions of generalized estimating equations (GEE). Two models need to be specifed:
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One regression model for the data, and the other describing the missingness mecha-
nism. WEE methods are considered to be doubly robust because the estimates of the
regression parameters remain consistent as long as one of the two models is correctly
specified. The MAR assumption and a large sample size are required. FB methods
do not require a large sample size. Specifying a joint probability model, however, they
require assumptions about the sampling model for the data and about the missingness
mechanism. In summary, all the above methods regard missingness as a probabilistic
phenomenon. In contrast, in the following discussion, missingness is not random. The
variable y is missing for all records in D1.

The most commonly applied method to borrow information from one dataset (i.e.,
y in D2) to provide information not collected in another dataset (i.e., D1) is the use of
census-based socioeconomic status (SES) characteristics to supplement individual-level
data, such as medical records, claims or registries
(Gornick et al. 1996; Geronimus and Bound 1998; Devesa and Diamond 1983). The
census-based approach obtains aggregate statistics of SES variables at certain geographic
levels (e.g., census track, county, or zip code) and uses these aggregate numbers as proxy
measures of SES in individual-level data. It has been used extensively in studies of health
disparities. For more examples, see Mandelblatt et al. (1991), Kraus et al. (1986) and
Byrne et al. (1994).

Geronimus and Bound (1998) cautioned that although the census-based approach
is easy to execute, these aggregate measures should not be interpreted as if they were
micro-level variables. The approach has several limitations. It requires detailed residen-
tial information to be collected in D1. If due to privacy concerns this information is not
collected or is not detailed enough (for example, only state code is available), then the
method breaks down. The method only makes use of geographic information. Other
individual-level covariates are ignored. For example, if we are interested in imputing
missing income in D1, then information such as age, gender, education, occupation
could be very informative. Finally, the true value of the missing variable in D1 may not
match the neighborhood profile. This uncertainty is usually ignored.

In this paper we propose to approach the problem in the framework of Bayesian
hierarchical modeling. A spatially adjusted Bayesian additive regression tree (SBART)
is defined to impute the missing variable in D1 based on individual-level covariates as
well as geographic information. SBART is an extension of the BART model. The idea
of BART is to model an unknown function as a mixture of tree models. Each tree is
a priori constrained to have a simple structure. It only contributes a small portion to
the overall model. Chipman, George and McCulloch (2006a) demonstrated that the
sum over all trees provides a sufficiently rich model to incorporate both direct effects
and interaction effects of different orders. SBART extends BART by incorporating
spatial random effects. Correlation among neighboring areas is utilized to improve
inference. Our method implements a full probability model with likelihood and priors.
The imputation of the missing variable and the inference about the relationship between
the two variables are obtained simultaneously as posterior inference under the model,
and the uncertainty due to imputation is accounted for automatically. Unrelated to the
problem of merging datasets that we consider here, a similar spatial extension of the
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BART model has been developed independently in current work by Chipman, George,
McCulloch and Musio (2006b).

The outline of the paper is as follows. Section 2 introduces notation and presents
the Bayesian hierarchical model. A simulation study is conducted in Section 3. We
illustrate our method with a data analysis example in Section 4. Finally, Section 5
discusses some limitations of our method as well as some possible extension.

2 A Spatial BART Model

Let I be the number of spatial units at the finest level of detail recorded in both datasets.
This could be, for example, census tract, zip code area or county.

In dataset D1, let mi denote the number of subjects from area i (i = 1, · · · , I). The

sample size of D1 is m =
∑I

i=1 mi. For the jth subject from area i, we are interested
in the relationship between variables zij and yij , where zij but not yij is recorded in
dataset D1. We use vij to denote a vector of other individual-level covariates reported
in D1.

The variable yij that is missing in D1 is recorded on a different set of individuals
in dataset D2. For notational ease, we use the variable name xij rather than yij ,
to distinguish the fact that these variable values are recorded in D2 rather than D1.
Similarly, for the vector of variables vij , we use wij rather than vij for those variables
recorded in D2. We assume wij and vij to be consistent, i.e., they record the same
variables and use the same coding for the values. Because it would be unusual for all
covariates recorded in D1 and D2 to be consistent, we only assume that after suitable
pre-processing a subset of the covariates can be considered consistent across the two
datasets. Let ni be the number of subjects from area i, so j = 1, . . . , ni in D2. Then
n =

∑I
i=1 ni is the sample size of D2.

We define Z = {zij , i = 1, · · · , I, j = 1, · · · , mi}. Similarly we use Y , V , X and W

to denote the vector of all yij , vij , xij and wij , respectively.

We describe in words how the proposed approach facilitates learning about the
relationship between Z and Y with Y missing. We assume that (Y , V ) (in D1) and
(X, W ) (in D2) arise from the same model M . We use the posterior for the parameters
in M , obtained conditional on (X , W ) to impute the missing Y conditional on V .
Finally, the regression of Z on the imputed Y approximates the relationship between
Z and Y . By integrating with respect to Y , the marginal posterior distribution of the
regression parameter β accounts for the variability induced by the imputation. The
described learning process is complicated by the need to specify a joint probability
model for (Z, Y , X | V , W ). Details are described later.

For the learning process to work we make the key assumption that (X, W ) and
(Y , V ) are independent samples from the same model. This assumption ensures that we
can apply what we have learned from (X, W ) to (Y , V ). For example, this assumption
is satisfied if both D1 and D2 are representative samples from the U.S. population.
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2.1 The Sampling Model

The proposed approach is model-based. We start the model construction with assumed
sampling models for Z, X and Y . In the following description, we use N(m, s2) to
denote a normal distribution with moments m and s2. We assume that a sampling
model p(zij | yij , vij , Φ) is available for zij , conditional on vij and assumed values for
yij , and indexed by a set of parameters Φ. For example, if zij is continuous, we can
assume a linear regression model with zij being the dependent variable, yij and vij

defining the design matrix, and Φ including the regression coefficients and variance
parameter. If zij is ordinal, an ordinal probit model may be used. Specific examples of
p(zij | yij , vij , Φ) are used in the simulation study and the case study.

The model p(xij | wij , f, θ, σ2) describes the relationship between xij and wij .
Specifically, we assume

xij | wij , f, θ, σ2 ∼ N
(
f(wij) + θi, σ

2
)
, (1)

where θ = (θ1, · · · , θI)
′ is a vector of random spatial effects, f(wij) is an unknown

function associating xij with wij , and σ2 is the residual variance. We represent the
mean function f(wij) as a BART model. Since the additional random effects θi introduce
the desired spatial correlation among neighboring areas, we refer to model (1) as the
spatially-adjusted Bayesian additive regression tree (SBART) model.

For reference, and to introduce notation for later use, we give a brief review of the
BART model. See Chipman et al. (2006a) for details. We begin with the notation for
a single tree model. Let T denote a tree. Its nodes can be divided into two categories,
interior nodes and terminal nodes. A splitting rule is defined at each interior node. We
limit splitting rules to binary splits. Each rule consists of a splitting variable and a
splitting value. The splitting value is a threshold on the splitting variable that defines
the splitting rule. Starting from the root, an individual with covariates wij selects
branches in the tree according to the splitting rules until it is assigned to a terminal
node. Suppose that there are K terminal nodes. We define µ = (µ1, · · · , µK)′, with µk

being assigned to the kth terminal node. The tree maps each covariate vector wij into
one element of µ. A single tree model is denoted by the pair (T, µ), and the association
between µk and wij through a tree T is written as µk = g(wij , T, µ).

The BART model defines a summation of such tree models, as

f(wij) = g(wij , T1, µ1) + g(wij , T2, µ2) + · · · + g(wij , TL, µL),

where L is the total number of trees that form the BART. We usually assign a large
value for L (e.g., L = 200) to encourage flexibility. On the other hand, to avoid over-
fitting, the BART model includes a strong prior on each tree to keep its effect small,
effectively making each tree into a “weak learner”. But overall, the sum of trees pro-
vides a sufficiently rich model to fit a variety of functions. For example, µk represents
an interaction effect if its assignment involves more than one component of wij (i.e.,
more than one splitting variable). Furthermore, because f(wij) can be based on trees
of different sizes, the BART model can incorporate both direct effects and interaction
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effects of different orders. SBART extends BART by incorporating an additional spatial
effect into the conditional mean of xij given wij .

BART is closely related to ensemble methods that combine a set of tree models.
Examples of ensemble methods include boosting, bagging and random forests. Boost-
ing (Freund and Schapire 1997; Friedman 2001) fits a sequence of trees. Each tree is
fit conditional on data variation that is not explained by the other trees. Bagging
(Breiman 1996; Clyde and Lee 2001) and random forests (Breiman 2001) construct a
large number of independent trees through data randomization and stochastic search.
The methods then use an average of the trees to improve prediction. Ensemble methods
are not derived as coherent inference under a probability model. In contrast, BART is
a model-based approach that reports inference as the summary of a full probabilistic
description of all relevant uncertainties. Bayesian single tree models have been devel-
oped by Chipman et al. (1998) and Denison et al. (1998). Compared with single tree
models, the sum-of-trees models provide vastly more flexibility by easily incorporat-
ing additive effects. Chipman et al. (2006a) provided a posterior Markov chain Monte
Carlo (MCMC) simulation scheme for the BART model. They demonstrated that the
proposed MCMC simulation has good mixing properties.

The third part of the top-level sampling model is an assumed model for yij con-
ditional on the observed covariate vector vij . We assume the same model as for the
regression of xij on wij :

yij | vij , f, θ, σ2 ∼ N
(
f(vij) + θi, σ

2
)
,

with f(·) defined by the SBART model as before.

2.2 The Prior Model

We complete the Bayesian hierarchical model with priors p(Φ), p(f), p(θ) and p(σ2),
for Φ, f , θ and σ2, respectively. We assume a priori independence.

The choice of p(Φ) depends on the particular form of p(zij | yij , vij , Φ). For example,
in a linear regression model, conjugate priors are technically convenient choices. That
is, normal priors for the regression coefficients and an inverse Gamma prior for the
residual variance.

The BART model in (1) is indexed by {(Tl, µl), l = 1, · · · , L}. We use

p(f) =

L∏

l=1

p(Tl, µl) =

L∏

l=1

{
p(Tl) · p(µl | Tl)

}
.

Following Chipman et al. (2006a), we define p(Tl) by three factors, corresponding to a
node being non-terminal, the selection of the splitting variable for a non-terminal node,
and the choice of the splitting value conditional on a chosen splitting variable. The
probability that a node at depth d is nonterminal, is assumed to be

α(1 + d)−γ ,
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where α ∈ (0, 1) and γ ∈ [0,∞) are two hyper-parameters reflecting our prior belief
about the tree. For example, if we believe that the depth of the tree should be small, we
can assign a big value for γ, so that the probability decays fast with d. Chipman et al.
(2006a) proposed α = 0.95 and γ = 2 as default values, which implies that with prior
probability 0.05, 0.55, 0.28, 0.09 and 0.03, the tree has 1, 2, 3, 4, and ≥ 5 terminal nodes,
respectively. A natural choice for the selection of the splitting variable, conditional on
a node being non-terminal, is a uniform prior over all available variables. A default
choice for the distribution of the splitting value is a uniform distribution over the set of
available splitting values. Finally, we define a prior for µl. Let µlk be the kth element
of µl. Conditional on Tl, we assume i.i.d. normal priors for µlk . The mean and variance
of the normal prior are specified in such a way that each tree is constrained to be a
weak learner, and it plays a small role in the overall fit. More details can be found in
Chipman et al. (2006a), Section 3.2.

For the spatial random effects θ we use a conditionally autoregressive (CAR) prior.
The key idea of the CAR model is simple. It formalizes the notion that each area is
similar to its neighbors. Specifically, we define p(θ) by the set of conditional distributions

p(θi | θ(−i), ρ, δ2) = N
( ρ

hi

∑

j 6=i

cijθj ,
1

hi

δ2
)
, i = 1, · · · , I, (2)

where θ(−i) denotes all the elements of θ except θi; ρ is a parameter with range (−1, 1);
δ2 is the variance component; cij = 1 (i 6= j) if area i and area j are neighbors, and

cij = 0 otherwise, including cii = 0; and hi =
∑I

j=1 cij is the total number of neighbors
for area i. The joint distribution p(θ) implied by (2) is

p(θ | ρ, δ2) = N
(
0, δ2(H − ρC)−1

)
, (3)

where C = (cij) is an I × I adjacency matrix, and H is an I × I diagonal matrix with
hi being the diagonal elements. Model (2) specifies that given random effects from all
the other areas, the distribution of θi only depends on its neighbors. When ρ = 0, the
variance matrix in (3) is diagonal, implying that θi are independent. When ρ = 1, the
conditional mean of θi in (2) equals the average of its neighbors. However, ρ = 1 implies
that H − ρC is singular. That is, the covariance matrix of θ does not exist. Sun et al.
(1999) specified −1 < ρ < 1 as a smoothing or spatial correlation parameter. It can be
thought of as a measure of spatial association. For more discussion of CAR models, see
Cressie (1993) page 407, Besag et al. (1991), Clayton and Kaldor (1987) and Whittle
(1954).

We complete the prior model with probability models for the hyper-parameters σ2, ρ
and δ2. Chipman et al. (2006a) assumed p(σ2) to be an inverse chi-square distribution
σ2 ∼ νλ/χ2

ν , where ν is the degree of freedom. This is a special case of the inverse
Gamma distribution. The key idea to specify the hyper-parameters ν and λ is to first
obtain a preliminary estimate σ̂2 by exploratory data analysis (for example, through
linear regression of xij and wij), and then specify ν and λ such that σ̂2 matches the
qth quantile of p(σ2). The default setting recommended by Chipman et al. (2006a) is
(ν, q) = (3, 0.90). Finally, we define prior distributions for the parameters ρ and δ2 in
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the CAR model. It is natural to assume that the spatial effects are positively correlated.
We therefore assume ρ to be uniform between 0 and 1, i.e., U(0, 1). We assume p(δ2)
to be an inverse Gamma distribution, denoted by IG(aδ , bδ), with density function

p(δ2) ∝
1

(δ2)aδ+1
exp(−

bδ

δ2
).

Here aδ and bδ are fixed hyperparameters.

For reference, we state the joint probability model on the data Z, Y , X and the
parameters:

p(Z | Y , V , Φ) · p(X | W , f, θ, σ2) · p(Y | V , f, θ, σ2)

· p(Φ) · p(f) · p(θ | ρ, δ2) · p(σ2) · p(ρ) · p(δ2), (4)

where

p(Z | Y , V , Φ) =
I∏

i=1

mi∏

j=1

p(zij | yij , vij , Φ),

p(X | W , f, θ, σ2) =

I∏

i=1

ni∏

j=1

p(xij | wij , f, θ, σ2),

p(Y | V , f, θ, σ2) =
I∏

i=1

mi∏

j=1

p(yij | vij , f, θ, σ2).

We are interested in the inference on Φ given all observations, namely p(Φ | Z, X, V , W ).
Carrying out the desired inference requires integration with respect to Y and the other
parameters. This integration does not have a closed form solution. We set up MCMC
simulation and obtain inference based on random samples from the posterior distribu-
tion of Φ. Details of the sampling scheme can be found in the Appendix. By integrating
out Y , p(Φ | Z, X, V , W ) automatically accounts for the variability induced by the im-
putation. A byproduct of this process is the imputation of the missing variable Y , which
can be obtained as random samples from p(Y | Z, X, V , W ).

3 A Simulation Study

We conduct a simulation study to examine the performance of the proposed approach.
We define I = 99 spatial areas, with an assumed spatial structure (adjacency matrix
C) equal to that of the 99 counties in the state of Iowa. We also assume ni = 4 and
mi = 2 for i = 1, · · · , I . Thus we have sample size n = 396 and m = 198.

The simulated data are generated as follows. We assume covariate vectors wij and
vij to be of dimension 10. Each of the 10 elements is generated from independent U(0, 1)
distribution. We generate the simulation truth for the spatial random effects θ from a
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N(0, δ2(H − ρC)−1) distribution, using ρ = 0.3 and δ = 1. The mean function f(u) is
evaluated as

f(u) = 10 sin(πu1u2) + 20(u3 − 0.5)2 + 10u4 + 5u5, (5)

where ui is the ith element of u = (u1, · · · , u10)
′. The same function was used in sim-

ulation in Friedman (1991) and Chipman et al. (2006a). The added variables together
with the interactions and nonlinearities make it difficult to fit the model by standard
parametric methods. Conditional on the covariates wij , we generate xij by

xij | wij , f, θ, σ2 ∼ N(f(wij) + θi, σ
2),

using σ = 0.2. Similarly, we generate yij conditional on vij ,

yij | vij , f, θ, σ2 ∼ N(f(vij) + θi, σ
2).

Thus xij and yij only depend on the first 5 elements of wij and vij , respectively.

Finally, zij is generated by

zij | yij , vij , β, τ2 ∼ N(h(vij , yij , β), τ2), (6)

where we assume τ = 0.2, β = (β0, · · · , β6)
′ = (3,−3,−2.5,−1, 1.5, 2, 1)′, and

h(vij , yij , β) = β0 + vij4β1 + vij5β2 + vij6β3 + vij7β4 + vij8β5 + yijβ6.

Here vijk denotes the kth element of vij . The simulation model for zij is a linear
regression model. We assume that part of the covariates (vij4, vij5) are involved in
the generation of yij and others (vij6, vij7, vij8) are not. Matching the earlier notation
p(zij | yij , vij , Φ), we have Φ = (β, τ2), where β is the vector of regression coefficients
and τ2 is the variance parameter.

Conditional on the simulated data (Z, X, W , V ), but pretending that Y is missing,
we generate a Monte Carlo sample from the posterior distribution p(β | Z, X, V , W )
under model (4). See the Appendix for details of the posterior simulation.

We repeat the described simulation K = 100 times. For the kth simulation, we

save the simulation truth Y (k) and β, the imputed values Ŷ
(k)

, and the estimated

effects β̂
(k)

. We obtain Ŷ
(k)

and β̂
(k)

as marginal posterior expectations under p(Y |
Z, X, V , W ) and p(β | Z, X, V , W ), respectively. The mean squared error (MSE) for
Y is defined as

MSEY =
1

Km

K∑

k=1





∑

i,j

(ŷ
(k)
ij − y

(k)
ij )2




 .

Similarly, for β we define

MSEβp
=

1

K

K∑

k=1

{
(β̂(k)

p − βp)
2
}

, p = 0, 1, · · · , 6.

For comparison we record results under two different models.
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Table 1: MSE from Simulation to Compare SBART and BART

(a) (b)
β0 0.0055 0.0062
β1 0.0078 0.0154
β2 0.0017 0.0045
β3 0.0029 0.0030
β4 0.0048 0.0048
β5 0.0079 0.0090
β6 0.0136 0.0321
Y 0.596 3.864

Column (a) under SBART; Column (b) under BART.

M1: Model (4) with a U(0, 1) prior for ρ, an IG(0.001, 0.001) prior for δ2, and a CAR
prior for θ. This is the proposed SBART model.

M0: Model (4) with θ = 0. This is a BART model without spatial adjustment. Under
the BART model, the priors p(θ | ρ, δ2), p(ρ) and p(δ2) are not needed.

The remaining prior choices include a normal prior for β, p(β) = N(0, 100I6), and an
inverse Gamma prior for τ2, p(τ2) = IG(0.001, 0.001). Here 0 is a vector of 0′s and I6

is an identity matrix of dimension 6. For the hyper-parameters in p(f) and p(σ2), we
use the default setting recommended by Chipman et al. (2006a).

Table 1 compares the MSE from models M1 and M0. The results suggest that
when spatial correlation is present, incorporating spatial effects improves the estimation
of regression coefficients. This is particularly true for β6, the coefficient of the missing
variable, which is of primary interest. In the simulation, the MSE of β6 is reduced
from 0.0321 to 0.0136. A byproduct of the proposed approach is the inference about
the missing variable, which might be of interest to researchers by itself. Monte Carlo
sample averages evaluate posterior means and provide point estimates of the missing
variables. Other summaries characterize the uncertainty of the imputation. Table 1
shows that incorporating spatial effects greatly improves the imputation of the missing
variable. The MSE for Y is reduced from 3.864 to 0.596. This improvement can also

be seen in Figure 1, where we plot Y (k) versus Ŷ
(k)

from one simulation.

The estimated spatial correlation parameter ρ̂(k) has a mean 0.414 and a standard
deviation 0.091, suggesting a slight overestimation of ρ. The histogram of ρ̂(k) is plot-

ted in Figure 2. We also plot θ(k) against θ̂
(k)

, the true and estimated values of θ,
respectively, from one simulation in Figure 3. The fact that the points fall around the
45 degree line suggests that the method successfully recovers the spatial pattern.
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Figure 1: Simulation example. The imputation of Y under M1 and M0 (under one
simulation). M1 uses the SBART model. M0 uses the BART model without spatial
random-effects.
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Figure 2: Simulation example. Histogram of p(ρ̂(k) | data).
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Figure 3: Simulation example. Simulation truth and imputed values of θ.
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4 Joint Inference with the CPS and SIPP Surveys

We evaluate the proposed approach with real survey data. In this evaluation, we ap-
ply our method to explore the relationship between self-perceived health status and
income using two different surveys. One survey includes data on health status, income,
and other variables (Z, Y , V ). The second survey reports income and other variables
(X, W ).

We implement inference through the proposed approach without using the observed
values of income Y in the first survey. That is, we carry out the analysis pretending
that we did not have income (Y ) information in the first survey.

For comparison, we also implement inference with the observed Y values. Using
data from the first survey only, we implement posterior simulation in the model

p(Z | Y , V , Φ) · p(Φ), (7)

and summmarize p(Φ | Z, Y , V ). By comparing the inference with Y missing versus
inference conditional on Y , we will validate the proposed model.

4.1 The Datasets

We let D1 be a dataset extracted from the 2001 Current Population Survey (CPS),
March Supplement. The variable Z is self-perceived health status with values 1 to
5, where 1 denotes the best health status and 5 denotes the poorest health status.
The variable Y is defined to be total personal income. We are interested in the rela-
tionship between Z and Y . The set of individual-level covariates are denoted by V ,
which include age, race, gender, education, health insurance coverage, marital status,
employment, industry and occupation. The dataset D2 comes from the 2001 Survey
of Income and Program Participation(SIPP), where total personal income X and the
other covariates W are collected. Both CPS and SIPP report income, denoted as Y in
CPS and X in SIPP. We pretend, however that Y is missing in D1 to illustrate and
validate the proposed method. CPS and SIPP are two independent surveys that each
collects information from a representative sample of the U.S. civilian noninstitutional
population. It is therefore reasonable to assume that (Y , V ) and (X, W ) arise from
the same model.

CPS reports annual income while SIPP collects the information of monthly income.
To make the income variables consistent between two datasets, we scale them to a
common range of 0 to 1. Furthermore, personal income is known to be heavily skewed
to the right, which makes the normal assumption in (1) inappropriate. We carry out a
square root transformation to mitigate the problem. Thus eventually Y and X denote
the square root of the scaled personal income.

The finest available spatial area in both datasets is metropolitan statistical area
(MSA), which is defined as a core area that contains a substantial population nucleus,
together with adjacent communities having a high degree of social and economic inte-
gration with that core. MSAs comprise one or more entire counties. In D1 and D2 there
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are altogether I = 239 MSAs. The original datasets from CPS and SIPP have more
than 90,000 and 260,000 records, respectively. For this illustrative analysis, we obtain
D1 and D2 by randomly sampling 10,000 observations from each of the two original
datasets.

4.2 Model Specification

Health status Z is an ordinal categorical variable. We construct an ordinal probit model
p(Z | Y , V , Φ). We define the probit model by introducing a latent normal random
variable

ηij | β, τ2 ∼ N(β0 + vij1β1 + vij2β2 + vij3β3 + yijβ4, τ
2).

For given values of ηij and a set of cut points c1, · · · , c4, we set

zij | ηij =






1, if ηij ≤ c1,

r, if cr−1 < ηij ≤ cr for r = 2, 3, 4,

5, if ηij > c4,

(8)

where β = (β0, · · · , β4)
′. See, for example, Johnson and Albert (1999) for a discussion

of Bayesian inference in ordinal regression models, including the latent variable con-
struction used here. The latent variable ηij is assumed to arise from a linear regression
model with covariates being personal income yij , health insurance coverage vij1, gender
vij2, and age vij3, and β is the corresponding coefficient vector. Income and age are
continuous; age ranges from 18 to 84; gender is binary with 0 indicating male and 1
indicating female; health insurance coverage is binary with 0 indicating covered and 1
indicating not covered. We define η to be the collection of ηij , and Φ = (η, β, τ2).
The cutpoints (c1, · · · , c4) are specified as fixed. Random cutpoints would provide more
flexibility. For example, Johnson and Albert (1999) jointly update the cutpoints and
the latent probit variable. However, the choice of the sampling model for Z | Y is not
directly related to the missing data problem. We assume fixed cutpoints to keep the
model simple and keep the discussion focused.

The models p(yij | vij , f, θ, σ2) and p(xij | wij , f, θ, σ2) are defined in (1). We
complete the model with priors for (ρ, δ2, β, τ2). We assume diffuse priors, a uniform
prior for ρ, p(ρ) = U(0, 1), an inverse Gamma prior for δ2, p(δ2) = IG(0.001, 0.001),
independent normal priors for βp, p(βp) = N(0, 100), p = 0, · · · , 4, and an inverse
Gamma prior for τ2, p(τ2) = IG(0.001, 0.001). We use default values recommended in
Chipman et al. (2006a) for the hyper-parameters of p(f) and p(σ2).

4.3 Implementation Details

Some practical issues arise in the application to real data. First, in fitting the model
p(yij | vij , f, θ, σ2), we can use the entire vector of vij . There is no need for formal
variable selection. As pointed out by Chipman et al. (2006a), the BART model is a
nonparametric Bayesian regression approach which uses dynamic random basis elements
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that are dimensionally adaptive. Variable selection is already part of the model. In
contrast, p(zij | yij , vij , Φ) is a generalized linear model and inference can be sensitive
to correlation among the covariates (yij , vij). Like any other regression analysis, the
specification of p(zij | yij , vij , Φ) requires a good understanding of the research questions
to identify the relevant covariates. Importantly, high linear correlation among (yij , vij)
complicates interpretation and should be avoided. With yij missing, we use (xij , wij)
instead to check for linear correlation among the covariates.

Another issue concerns a bias in the inference on Φ induced by the imputation
of yij . Figure 4 clearly shows a shrinkage effect. An ideal imputation would have a
scatter plot falling around the 45 degree line. In Figure 4 the range of the imputed
values is much narrower compared with that of the true values. Chipman et al. (2006a)
observed similar shrinkage in a simulation study, which they attributed to extreme
extrapolation. That is, when we make prediction outside the observed data, because
of lack of information, the prior takes over and the imputed values are shrunk towards
the center. We believe, however, that the cause of shrinkage in Figure 4 is more than
extreme extrapolation. If the shrinkage arises from extrapolation alone, then it should
have equal effect on both extremes. In Figure 4, we see more shrinkage on the higher
incomes than on the lower incomes. From this observation, we hypothesize that the
shrinkage is caused by a violation of the normality assumption in model (1). If personal
income is heavily skewed to the right, then the square root transformation does not
suffice to achieve normality, and extremely high incomes are not correctly imputed.

We propose to address the issue of shrinkage through the following two steps. First
we carry out a preliminary analysis using model (4). We compare the distribution of

imputed income Ŷ based on p(Y | Z, X, V , W ) with the observed income distribution
from D2. We use a deterministic adjustment to match some features of these two
distributions. For example, in this study we construct a linear transformation of the
imputed values, t(ŷij) = aŷij + b, such that some selected quantiles (for example, the
10th and 90th quantiles) of t(ŷij) match those of X, the incomes observed in D2. In
the second step, we replace p(zij | yij , vij , Φ) in model (4) by

p∗(zij | yij , vij , Φ) ≡ p(zij | t(yij), vij , Φ), (9)

and proceed with the final analysis. Because t(yij) is a one-to-one transformation of
yij , p(zij | yij , vij , Φ) and p∗(zij | yij , vij , Φ) define the same conditional distribution.
But the latter provides a better calibrated estimation of Φ by adjusting for the effect of
shrinkage. See Foster and Stine (2004) for more discussion about calibration.

Effectively, the proposed two steps use the SBART model to impute the rank of the
missing income variable, and use an observed distribution to set specific values. This
approach is valid because both CPS and SIPP are conducted by the US Census Bureau
to collect information from representative samples of the US population.

This adjustment can be automated in each MCMC iteration, where we readjust the

values of a and b such that the selected quantiles of t(y
(k)
ij ) match the corresponding

quantiles in the empirical distribution of X. We conducted a simple simulation study
to assess the performance of the automated adjustment. Because the shrinkage effect
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Figure 4: CPS survey: True and imputed income. Income is scaled between 0 and 1.
Note the severe shrinkage in the imputed income.
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Table 2: MSE from Simulation to Check Adjustment

(a) (b)
β6 0.0078 0.0106
Y 0.0238 0.0240

Column (a) with automated adjustment; Column (b) without adjustment.

is more obvious when the sample size is large, we set n = m = 2000. The simulation
truth is similar to the model assumed in Section 3, except that we drop the spatial
component θ to facilitate computation, and the residual effects in X and Y are assumed
to have Student t distribution with 3 degree of freedom. The MSE of the estimated
regression coefficients and imputed Y are presented in Table 2. Because Table 2 is
based on simulations with a larger sample size and a simpler model, the MSE are much
smaller than those in Table 1. Our primary interest is in β6, the regression coefficient
of Y . Without adjustment, the shrinkage effect leads to overestimation of β6. With the
automated adjustment, the MSE of β6 is reduced from 0.0106 to 0.0078.

The simulation indicates that the adjustment can provide better calibrated estimates
when there is some shrinkage effect induced by imputation of the missing variable.
However, we caution that such an adjustment for shrinkage is ad hoc, and it relies
heavily on the assumption that D1 and D2 are representative samples of the same
population. Researchers should carefully check this assumptions before implementing
the approach.

4.4 Results

Table 3 lists the posterior means and standard deviations of the regression coefficients
β under three inference approaches, which are implemented by MCMC simulation.
One set of inference summaries is based on true income and model (7). This serves
as the gold standard. The second set of inferences is based on missing income and
model (4). The third set is based on missing income and model (9). Both model (4)
and model (9) are SBART models, the difference being that model (9) adjusts for the
shrinkage effect while model (4) does not. Table 3 shows that if we ignore the shrinkage
effect, model (4) will lead to a conclusion that overstates the effect of income. The
posterior means based on model (7) and (9) are similar, suggesting that our method
successfully merges information from two datasets and provides a good estimate of the
relationship between self-perceived health status and income. Due to the uncertainty
induced by imputing the missing income, the standard deviations under model (9) are
slightly larger. The estimated regression coefficients suggest that subjects with higher
income tend to have a better self-perceived health status. Women generally report
better self-perceived health. Additionally, younger age and health insurance coverage
are associated with better self-perceived health status. We plot the imputed income
based on samples from p(Y | Z, X, V , W ) versus the true income in Figure 4. The
spatial correlation parameter ρ has a posterior mean 0.362 and standard deviation 0.242,
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indicating a moderate spatial correlation. A histogram of the samples from its posterior
distribution is plotted in Figure 5.

Table 3: Real Data, Posterior Mean (Standard deviation) of β

model (7) model (4) model (9)
Intercept -4.157(0.073) -3.982(0.075) -4.019(0.075)

Health insurance 0.865(0.059) 0.624(0.069) 0.619(0.069)
Sex -0.194(0.047) -0.316(0.054) -0.320(0.055)
Age 0.057(0.001) 0.052(0.001) 0.052(0.001)

Income -2.513(0.126) -3.392(0.216) -2.677(0.167)

Model (7) uses true income; Model (4) uses SBART to impute “missing” income without
adjusting for shrinkage; Model (10) uses SBART to impute “missing” income and adjusts
for shrinkage.

Den
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Figure 5: CPS and SIPP surveys. Histogram of p(ρ | data).

Besides comparing our results with those based on the complete data, we also com-
pare with results from a census-based approach, which supplements missing individual-
level variables with aggregate information based on the neighborhood socioeconomic
profile. With MSA being the finest available spatial area, we could supplement missing
yij with average personal income from MSAi. However, compared with the average by
census block or census track, the average by MSA is much coarser and would result
in a large imputation error. To achieve a fairer comparison with the proposed method
we instead proceed as follows. In the CPS dataset, about 41.5% of the records contain
county codes. To investigate the performance of census-based methods with finer area
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units, we create D∗
1 by randomly sampling 10,000 observations from those that have

county code in the original CPS dataset. We then replace the missing income with
county median income (denoted by Ỹ ) from the US census. Conditioning on (Z, Ỹ , V )
we report inference on Φ under model (7). This is the result from the census-based
method. Table 4 lists the posterior means (standard deviations) of β from three pro-
cedures: (a) based on model (7) and true income; (b) the proposed method, based on
model (9) with missing income; (c) census-based method, based on model (7) and me-
dian income at county level. Because Table 3 is based on D1 while Table 4 is based
on D∗

1 , the estimates in the two tables do not match exactly. The estimates from the
proposed method are close to those based on true incomes. This is not the case for the
estimates based on imputation by county median income. The estimated coefficients
of health insurance coverage and income are quite different from those based on true
incomes. Most strikingly, the estimated coefficient of sex switches the sign. This could
lead to very misleading conclusions. In summary, Table 4 shows that our model pro-
vides an improvement of the census-based method. This is true even though we have
improved the latter by using county median income while keeping our proposed method
at the MSA-level, a coarser spatial area.

Table 4: Comparing with Census-Based Method

(a) (b) (c)
Intercept -4.220(0.073) -4.129(0.075) -4.380(0.076)

Health insurance 0.841(0.059) 0.734(0.066) 1.116(0.057)
Sex -0.088(0.047) -0.165(0.056) 0.148(0.046)
Age 0.054(0.001) 0.052(0.002) 0.052(0.001)

Income -2.230(0.127) -2.335(0.164) -1.673(0.248)

Column (a) uses true income; column (b) uses SBART to impute missing income and
adjusts for shrinkage; column (c) uses county median income as imputation.

5 Discussion

We have developed an approach that allows researchers to borrow information across
surveys and investigate hypotheses that cannot be considered using only one dataset
alone. The proposed method is flexible and fully model-based. The key assumption is
that (Y , V ) and (X, W ) are independent samples from the same model. This assump-
tion allows researchers to apply the knowledge learned from (X, W ) to (Y , V ). This
facilitates imputation of the missing Y . By specifying a flexible SBART model, the
proposed method does not make restrictive assumptions about the specific model for
(X, W ).

In the simulation study and the data analysis example we have assumed parametric
models for the regression of Z and Y . This parametric form, however, is not a require-
ment for the proposed approach. It is unrelated to the missingness of Y . Alternatively,
a non-parametric regression model could be used. The only caveat is that the increased
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uncertainty induced by the imputation of Y might make meaningful data analysis with
a non-parametric model difficult.

The proposed imputation of the missing variable is a data-driven procedure. That
is, in each MCMC iteration, we have a large number of trees such that each contributes
a small portion of the conditional mean. Therefore it is difficult to evaluate the re-
lationship between the missing variable and individual covariates. It is not a critical
issue if the primary interest is to explore the relationship between Z and Y , instead
of Y and V . If the researchers are interested in the the marginal effect of a single
predictor, partial dependence plots might be a useful tool. See Friedman (2001) and
Chipman et al. (2006a) for details.

Appendix: MCMC Sampling Schemes

We use MCMC posterior simulation to implement inference in model (4). See, for
example, Gamerman (1997) for a review of MCMC methods. In the following discussion
we use [U | · · · ] to indicate that the random variable U is updated conditional on the
currently imputed values of all other parameters. The transition probability for the
implemented MCMC is defined by the following steps.

Step 1. Updating Φ.

[Φ | · · · ] ∝ p(Z | Y , V , Φ) · p(Φ).

The updating of Φ depends on the specific form of p(Z | Y , V , Φ), which in our
example is either a linear regression model or an ordinal probit model. There are
well established methods to update parameters in such models. For example, see
Gelman et al. (2003) and Albert and Chib (1993).

Step 2. Updating f and σ2.

[f, σ2 | · · · ] ∝ p(X | W , f, θ, σ2)p(Y | V , f, θ, σ2)p(f)p(σ2). (10)

If we define x∗
ij = xij − θi and y∗

ij = yij − θi, then (10) is equivalent to

[f, σ2 | · · · ] ∝
∏ {

p(x∗
ij | wij , f, σ2)

} ∏ {
p(y∗

ij | vij , f, σ2)
}

p(f)p(σ2), (11)

with

p(x∗
ij | wij , f, σ2) = N(f(wij), σ

2),

p(y∗
ij | vij , f, σ2) = N(f(vij), σ

2).

Note that (11) is exactly a BART model with x∗
ij and y∗

ij being the dependent
variable, and the updating algorithm can be found in Chipman et al. (2006a)
Section 4.
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Step 3. Updating θ.

[θ | · · · ] ∝ p(X | W , f, θ, σ2)p(Y | V , f, θ, σ2)p(θ | ρ, δ2).

Define eij = xij − f(wij) and sij = yij − f(vij), and use e and s to denote the
collection of eij and sij , respectively. We find

[θ | · · · ] ∝ exp
{
−

(e − Uxθ)′(e − Uxθ) + (s − U yθ)′(s − U yθ)

2σ2

}

· exp
{
−

1

2δ2
θ′(H − ρC)θ

}
,

where Ux and Uy are the design matrix of θ corresponding to X and Y , re-
spectively. We can show that [θ | · · · ] is a normal distribution with variance
[(U ′

xUx + U ′
yUy)/σ2 + (H − ρC)/δ2]−1 and mean [(U ′

xUx + U ′
yUy)/σ2 + (H −

ρC)/δ2]−1(U ′
xe + U ′

ys)/σ2.

Step 4. Updating ρ and δ2.

[ρ, δ2 | · · · ] ∝ p(θ | ρ, δ2)p(ρ)p(δ2).

CAR is a widely used spatial model and the posterior sampling of ρ and δ2 has
been discussed extensively in literature. For example, see He and Sun (2000).

Step 5. Updating Y . We update Y one element at a time, i.e.,

[yij | · · · ] ∝ p(zij | yij , vij , Φ)p(yij | vij , f, θ, σ2).

Under model (6), a linear regression model, we have

[yij | · · · ] ∝ exp
{
−

1

2τ2
(zij − h∗

ij − yijβ6)
2
}

exp
{
−

1

2σ2
(yij − f(vij) − θi)

2
}
,

where h∗
ij = β0 + vij4β1 + vij5β2 + vij6β3 + vij7β4 + vij8β5. We can show that

[yij | · · · ] is normal with variance (β2
6/τ2 + 1/σ2)−1 and mean

(β2
6

τ2
+

1

σ2

)−1( 1

τ2
β6(zij − h∗

ij) +
1

σ2
(f(vij) + θi)

)
.

Under model (8), an ordinal probit model, we have

[yij | · · · ] ∝ exp
{
−

1

2τ2
(ηij − h4

ij − yijβ4)
2
}

exp
{
−

1

2σ2
(yij − f(vij) − θi)

2
}

,

where h4
ij = β0 + vij1β1 + vij2β2 + vij3β3. Thus [yij | · · · ] is normal with variance

(β2
4/τ2 + 1/σ2)−1 and mean

(β2
4

τ2
+

1

σ2

)−1( 1

τ2
β6(zij − h4

ij ) +
1

σ2
(f(vij) + θi)

)
.
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