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We consider a general model of a disordered copolymer with adsorption.
This includes, as particular cases, a generalization of the copolymer at a se-
lective interface introduced by Garel et al. [Europhys. Lett. 8 (1989) 9-13],
pinning and wetting models in various dimensions, and the Poland—Scheraga
model of DNA denaturation. We prove a new variational upper bound for the
free energy via an estimation of noninteger moments of the partition func-
tion. As an application, we show that for strong disorder the quenched critical
point differs from the annealed one, for example, if the disorder distribution is
Gaussian. In particular, for pinning models with loop exponent 0 < « < 1/2
this implies the existence of a transition from weak to strong disorder. For the
copolymer model, under a (restrictive) condition on the law of the underly-
ing renewal, we show that the critical point coincides with the one predicted
via renormalization group arguments in the theoretical physics literature. A
stronger result holds for a “reduced wetting model” introduced by Bodineau
and Giacomin [J. Statist. Phys. 117 (2004) 801-818]: without restrictions on
the law of the underlying renewal, the critical point coincides with the corre-
sponding renormalization group prediction.

1. Introduction. We consider a rather general class of directed polymers in-
teracting with a one-dimensional defect through a quenched disordered potential.
This includes various models motivated by (bio)-physics: among others, wetting
models in (1 4+ 1) dimensions [12, 14], pinning of (1 + d)-dimensional directed
polymers on columnar defects [27], copolymers at selective interfaces [16, 25] and
the Poland—Scheraga (PS) model of DNA denaturation [11, 24]. For further moti-
vations and references, we refer to [17], Chapter 1. One of the interesting aspects
of these models is that they present a nontrivial localization—delocalization phase
transition due to an energy—entropy competition.

Mathematically, the model is defined in terms of a renewal sequence whose
inter-arrival law has a power-like tail with exponent & 4+ 1 > 1. The model is ex-
actly solvable in absence of disorder, and it turns out that the transition can be of
any given order, from first to infinite, according to the value of «. This is therefore
an ideal testing ground for physical arguments (Harris criterion, renormalization
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group computations) and predictions concerning the effect of disorder on the crit-
ical exponents and on the location of the critical point.

The comprehension of this model has witnessed remarkable progress on the
mathematical side, as proved by the recent book [17]. In particular it has been
shown that for wetting, pinning or PS models, an arbitrary amount of disorder
modifies the free-energy critical exponent if @ > 1/2 [18], that is, disorder is rele-
vant in this case, in agreement with the predictions of the so-called Harris criterion
[23]. On the other hand, for 0 < o < 1/2 it has been proven recently [2, 29] that
if disorder is weak enough the free-energy critical exponent coincides with that
of the homogeneous (i.e., nondisordered) model, and the (quenched) critical point
coincides with the annealed one: disorder is irrelevant (again, in agreement with
the Harris criterion). These results about “irrelevance” of disorder for 0 <« < 1/2
have been later refined and complemented in [21] with results about correlation-
length critical exponents. The marginal case « = 1/2 is strongly debated in the
theoretical physics literature: Ref. [14] claims that quenched and annealed critical
points coincide for disorder weak enough, while [12] concludes the opposite and
gives a precise prediction for their difference. See [2] and [29] for rigorous results
in the marginal case, which however do not solve the controversy.

Here we attack two major open problems:

e Do quenched and annealed critical points coincide for strong disorder? The Har-
ris criterion, which is based on the analysis of the stability of the homogeneous
model to the addition of weak randomness, makes no prediction about this point
for pinning models with « < 1/2 or for the copolymer with any «. [Here and in
the following, we say for brevity “pinning models” but we actually include wet-
ting and PS models, besides pinning of (1 + d)-dimensional directed polymers
on columnar defects. Mathematically all these are variants of the same model,
cf. beginning of Section 3.1.]

e For the copolymer model, it is known that the critical point is bounded above
by the annealed one and below by an «-dependent expression found by non-
rigorous renormalization group arguments [25]. Are either of these two bounds
optimal?

In this work we prove a new upper bound on the free energy of the model which in
some cases is sufficient to answer these two questions. In particular, consequences
of our bound include the following:

1. Both for pinning and copolymer models with, say, Gaussian randomness, for
large disorder quenched and annealed critical points differ. We would like to
emphasize that, especially for the “marginal case” of the wetting model with
loop exponent o = 1/2, this question was subject to dispute even very recently
[12, 15].

2. We identify the strong-disorder behavior of the critical point both for Gaussian
pinning models and for a “reduced” wetting model introduced by Bodineau and
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Giacomin [5] (for the “reduced model,” the same result was proven recently by
Bolthausen, Caravenna and de Tiliere [6]; their proof is however based on a
very different method).

3. For the copolymer model we prove that, as soon as a homogeneous depinning
term is present in the Hamiltonian, quenched and annealed critical points differ
for every strength of the disorder; in particular, the much-studied critical slope
at the origin (cf. Section 3.3) is in this case strictly smaller than 1.

4. Finally, again for the copolymer model we prove that, if the law of the under-
lying renewal sequence satisfies a certain explicit condition [cf. equation (3.43)
below; in particular, the condition requires the renewal to be transient], the crit-
ical point predicted by nonrigorous renormalization group arguments is indeed
the correct one. This is however believed not to be the case in general, that is,
if (3.43) does not hold.

Our basic idea is to estimate noninteger moments [EZ? of the partition function
with 1/(1 + «) <y < 1. The reason why we cannot go downto y < 1/(1 + ) is
not just technical and will become clear soon. The method of fractional moments
has been already applied successfully to the study of other quenched disordered
models: we would like to mention in particular (a) the work [1] by Aizenman and
Molchanov, where bounds on small moments (of order less than 1) of the resolvent
kernel of random Schrddinger operators are employed to prove the occurrence
of Anderson localization for strong disorder or extreme energies; (b) Ref. [8] by
Buffet, Patrick and Pulé who compute exactly the free energy of a directed polymer
in random environment on a regular tree via an estimation of EZ7 with 1 < y < 2;
and (c) Ref. [13] where Derrida and Evans, again via an estimation of EZY with
1 < y < 2, improve previously known estimates on the critical temperature of
directed polymers in random environment on finite-dimensional lattices.

We would like to conclude this introduction with two remarks. First of all, for
pinning models with 0 < o < 1/2 and Gaussian randomness our results, together
with those of [2] or [29], imply that there is a nontrivial transition from a weak- to
a strong-disorder regime, see Remark 3.3 below for a precise statement. Secondly,
Theorem 3.6 together with the numerical simulations of Ref. [9] strongly indicates
that the critical point of the copolymer depends not only on « but also on the details
of the inter-arrival law of the renewal, a possibly nonintuitive fact.

2. The model and the main result. Let 7 := {79, 71, ...} be a renewal se-
quence on the integers, with inter-arrival law K (-): 7o = 0 and {7; — 7i-1}i>1
is a sequence of IID random variables taking values in N U {+o00}, with law
P(ti =n) =: K(n). We assume that for n € N

L(n)

2.1 K(n) = Tra

with 0 < o < 0o and L(-) a function varying slowly at infinity, that is, a pos-
itive function such that lim,_,o, L(rx)/L(x) = 1 for every r > 0. In general
YaenK@m)=1—-P(r1 =+00) < 1.
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A very popular example in the literature is the one where K (-) is the law of the
first return to zero of the one-dimensional simple random walk {Si}«>0, that is,
K (n) = KS®W (n) := P(inf{k > 0: Sy = 0} = 2n|So = 0) (in which case a = 1/2,
> u>1 K(n)=1and L(-) ~ const).

In order to make a quick connection with the (bio)-physical systems presented
in the introduction, let us mention that in the case of (1 + d)-dimensional pin-
ning models one takes ¢ =d/2 — 1l ifd>2andae=1/2ifd=1,in (1 + 1)-
dimensional wetting models and copolymers at a selective interface usually o =
1/2, while & >~ 1.15 in the case of the PS model in three dimensions [24]. Actually,
for the copolymer model and the pinning model with d = 1 one usually makes the
specific choice K (-) = KSRV ().

We consider random copolymers with adsorption. The system has size N € N,
and it is characterized by the parameters 8§ > 0, A >0, h € R and h > (0. Moreover,
we let @ := {wy }nen and @ := {®y }nen be the realizations of two IID sequences of
random variables. We assume w to be independent of @. The joint law of (w, ®) is
denoted by P.

The partition function of the model is

ZNws = E|:ezrj:l=1(,3wn+h)1[ner]

In(7) 1+e_2)“2,7:-rj_1+1(5)n+ﬁ)
X 1_[ > Linen |
j=1

where Iy(t) :=|tN{l,...,N}| = ZN 1{,¢:), while the free energy is

n=1

(2.2)

~ . 1
(2.3) F(B,h,A h):= Nh_)mooﬁlog ZN .

We assume as usual the existence of all exponential moments of w:
2.4) M) :=E(*") <o

for every u € R, and similarly for M (u) :=E(exp(u®1)), and we set by convention
Ew% :~ECT)% = 1 and E®; = 0 (this can always be achieved via a redefinition of §,
A and h). For later convenience (cf. Section 3.2), we do not assume in general that
the w,’s are centered, although this can always be obtained via a trivial shift of 4.
Under these assumptions on P, it is well known that the limit in (2.3) exists almost
surely and in L(P), and that it is almost surely independent of (w, @). Another
well-established fact is that F' (8, h, A, l~z) > 0, which is an immediate consequence
of
ePoN+h

(2.5) INows =

K(N)

and (2.1). For a proof and a discussion of these facts, see for instance [17], Chap-
ters 1 and 4.



BEYOND ANNEALED BOUNDS 1573

It is actually one of the main questions in this context to decide when the free
energy vanishes and when it is positive. The reason is the following: One usually
defines the localized region as £ := {(B, h, A, h) F(B,h, X, h) > 0} and the delo-
calized region as D = {(B, h, A, h): FB,h, A, h) = 0}. Then it is well known
that, if (,B,h,)\,h) € L, the ratio Ey , 5(In(tr))/N converges for N — oo to
a positive limit, almost-surely independent of (w, @) (where Ey ,, 5 denotes the
disorder-dependent Gibbs average), while the same limit is zero in the interior of
D. This explains the names given to the two regions. We refer to [19] and [17],
Chapter 8, for more precise and more refined estimates on I (7) in the interior of
D, to [4], [20] and [17], Chapter 7, for path properties of T in &£ and finally to [28]
for estimates on Iy (7) at the boundary between O and L.

A very cheap way of showing that the system is delocalized for given values of
(B, h, A, h) is via the annealed upper bound on the free energy:

F(B,h, A, h)

< F"(B,h, A, h)
(2.6)

= lim l logE |:eIN(T)(h+10g M(B))
N

N—o0

In(z) (=2hA+log M(—2)))(T;—Ti_1)
14+e¢ g JTY
< [1 < 2 )hNer}}

j=1
which is simply Jensen’s inequality: Elog Z < logIEZ. If we define the delocalized
region of the annealed model as D" :={(B, k, A, E) FYY(B,h, A, Z) =0}, one
has then obviously D" C D.

The point of this work is to provide an improved upper bound on F which is
enough to conclude that D" # D. In some cases, we will even be able to identify
sharply the boundary between the two regions.

Going beyond annealing has appeared so far to be a difficult task. A natural idea
is to try Morita-type bounds [26], that is, constrained annealing. In other words,
for every function p(w, @) such that Ep(w, ®) = 0, it is easily seen that

~ 1 ~
2.7) F(Bh,3,h) < lim —logB(eX D Zy 4, 5).

This can indeed improve the upper bound (2.6) on F if p is suitably chosen but, as
shown in [10], it cannot improve the estimate D" C D, as long as p is a sum of
local functions (“finite-order Morita approximation”):

N

p(@,d) =" po(Ba(w, &),

n=1

with po(w, @) a bounded function depending only on a finite number of (w;, @;),
and 6 being the shift operator (6, (@, ®))m = (Wn+m, @p+m). We will show that the
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estimation of noninteger moments of the partition function allows to bypass this
difficulty.

In order to formulate our results we need a few auxiliary quantities. For 0 <
y <1let

(2.8) c(y):= ) (Km)” = c(l) =1—P(r; = +00),
neN

with strict inequality if y < 1. We remark that c(-) is decreasing and that c(y) < oo
if 1/(1 4+ a) <y < 1. Also, observe that

L(n)]/(1+0l)
n

c(1/A+a)=>"

neN
can be finite or infinite according to the behavior at infinity of L(-).
Define also, for n € N and y such that c¢(y) < oo,

. (Km)Y
(2.9) Ry i= =

so that ), e Iey (n) = 1 by the definition of c(y). It is important to realize that
Iey (+) is still of the form (2.1), just with « replaced by (1 +a)y — 1 > 0and L(-)
by L(-)” /c(y) (which is still slowly varying at infinity).

Finally we need the following definitions: fora, b,v e R,k e Nand0 <y <1,

aYk_ &i+bk
(2.10) fy(@.bi k) :=E[<1+e . )y}
and
Gy(v,a,b)
2.11)

= lim —logE, [e“ NiT fyla, byt — Tj—l)l{Ner}j|a
N—oo N =l

where IA’}, is the law of the (recurrent) renewal with inter-arrival law K y (). The
limit exists by superadditivity and is nonnegative.
Our main result is the following:

THEOREM 2.1. Let 1/(1 +«a) <y <1 be such that c(y) < co. Then

~ 1 ~
(2.12) F(B,h,x,h) < ;Gy(logC()/) +hy +log M(By), =21, —21h).

Some interesting consequences of this result are worked out in Section 3.

PROOF OF THEOREM 2.1. We have the elementary:
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LEMMA 2.2 ([22], Chapter 2.1). Let O <y < 1. IfneNand a; >0, ...,
a, > 0, then

(2.13) (ar+-+ay)? <al +---+al.

We need also the identity

ZN,w,cT)

£ £
(2.14) =y > (]‘[ K(ij —i,_1)> exp(ﬁza)ij +he>
1

0=10=ig<ij<--<ig=N \j= Jj=1

C o ldexpl—2A X, (@, +h)]
(R SO T

j=l1 2

which is just a way of rewriting the expectation in (2.2) as a sum over all possible
configurations of t N {1, ..., N}. As a consequence of Lemma 2.2,

N 14
E(ZN,w,cT))y = E[Z Z (1—[ K(ij — ij_l)y>

t=10=ip<i<--<ig=N \j=1
¢
(2.15) X exp (,3)/ Z wi; + hyZ)
j=1

¢ <1 +expl—2A X, 1 (@ + E)])v]
X .
2

j=1
Performing the disorder average, one sees that the right-hand side of (2.15) equals

N ¢
> > (H Ky (ij— ij—l))em"gM(VﬁHhVﬂogC(yﬂ

0=10=ig<ij<-<ig=N \j=1
(2.16) ,
x [ fy (=2, =2xh5i5—ij—y).
j=1
Therefore,
1
limsup —log E(Zn 0».5)"
N—oo N
2.17)

< Gy (loge(y) +hy +log M(By), =21, —21h).
On the other hand for y > 0 we have via Jensen’s inequality:

~ 1 1
(2.18) F(B,h,A,h)= lim —ElogZy 4.5 <limsup — logE(ZN o».5)"
N—oo N ” Ny o

N—o0

which concludes the proof of Theorem 2.1. [J
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3. Applications to disordered pinning models and copolymers.

3.1. Random pinning model. In this section we assume that A = 0,
Ew; = 0 and we call for simplicity the free energy F (8, h). Since . = 0 the ran-
dom variables @, do not play any role, and for simplicity we write Zy ,, instead
of Zy ... for the partition function.

The model thus obtained is then the one considered for instance in [2, 12, 14,
18, 29]. According to the law P and, especially, to the value of «, the model is
interpreted in the physics literature as a pinning, or wetting, or Poland—Scheraga
model in different spatial dimensions.

We observe that F (8, -) is nondecreasing and we denote as usual by h.(8) the
(quenched) critical point of the pinning model:

(3.1) he(B) :=inf{h e R: F(B, h) > 0},

while the function 8 — h.(8) will be referred to as the critical curve. When g8 =0

(homogeneous pinning model) it is a standard fact that 4.(0) = —logP(7; < +00)

(cf., for instance, [17], Chapter 2): F (0, h) is positive for & > h.(0) and zero oth-

erwise (for the detailed behavior of F (0, h) for h \( h.(0), cf. [17], Theorem 2.1).

It is also known (see [3] and [17], Chapter 5.2) that h.(8) < h.(0) for every 8 > 0.
The annealed bound (2.6) applied to this case shows that

he(B) = h™(B) := —log M(B) —log P(r1 < +00)
= —logM(B) —logc(l).

On the other hand, since f, (0, 0; k) = 1, Theorem 2.1 implies immediately

(3.2)

THEOREM 3.1. For every B > 0 one has

A 1
(3.3) he(B) = he(B) = sup  ——log[M(yB)c(y)].
1/(1+a)<y<1 VY

Of course, fzc(-) depends on K (-) because c(y) does.
The important point is that the bound provided by Theorem 3.1 is in various
cases strictly better than the annealed one. For instance:

COROLLARY 3.2. Assume that log M(B) e aB® for some p > 1 and
a > 0 [where A(x) "< B(x) means limy_ o0 A(x)/B(x) = 1].

Then, there exists Bo < 00 such that for every B > Bo

(3.4) he(B) > h™ (B).
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This applies for instance to the centered Gaussian case w; ~ N (0, 1) where
log M (B) = B*/2.

PROOF OF COROLLARY 3.2. Choose a value of y € (1/(1 4+ «), 1). One has
for 8 — oo:

1
(3.5) — loglM(yB)e(y)] ~ —ay”'g*

while A% (B) ~ —ap”, and the statement is obvious from the conditions p > 1
andy <1. O

One can easily extract from Theorem 3.1 a sufficient condition which guarantees
that h.(B) > h&"'(B) for a given B > 0, that is,

< 0.
y=1

1
(3.6) 5, (—; log[M(Vﬁ)c(y)])

For instance, in the case of Gaussian disorder and recurrent renewal [i.e., c(1) = 1],
this condition can be re-expressed in the simple form:
B

(3.7) - > —n; K (n)log K (n).

In the recent work [15] it is claimed, on the basis of numerical simulations,
that in the case of the (1 + 1)-dimensional wetting model [which corresponds
toa =1/2, L(-) ~ const and c(1) = 1/2] with w, taking only two values with
equal probability, quenched and annealed critical points coincide even for strong
disorder. Theorem 3.1 does not disprove this assertion because for symmetric two-

valued w,’s it turns out that equation (3.3) does not improve the annealed bound,
but in our opinion it makes the scenario suggested by [15] rather unlikely.

REMARK 3.3. Corollary 3.2 is particularly interesting when 0 <« < 1/2 and
disorder is Gaussian. Indeed, together with the results of [2] or [29], it implies that
there exist 0 < 8; < B2 < oo such that /.(8) coincides with the annealed critical
point for 8 < B; and differs from it for 8 > B,. In this sense, one can say that a
transition from a weak disorder regime to a strong disorder regime occurs.

3.1.1. Strong-disorder asymptotics of the critical point. 1t is clear that, under
the assumption of Corollary 3.2 on M (f), for B very large the supremum in (3.3)
is realized by some y very close to 1/(1 4+ «). This observation, together with a
generalization of ideas from [5], allows to identify the strong-disorder asymptotic
behavior of the critical point. For instance, in the Gaussian case one has:

2
(3.8) he(B) P> —ﬁ
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and it is easy to obtain an analogous statement in the case log M (8) 2 ap’.

PROOF OF EQUATION (3.8). It is immediate to see from (3.3) that

(3.9) liminf <?) > — L

B—00 ﬁz 2(1 + @)
As for the opposite bound, it is based on a straightforward generalization of
the rare stretch strategy of [5] (for this reason, we just sketch the main steps
of the proof). Let £ € N, assume that N is an integer multiple of £ and di-
vide {1,2,..., N} into blocks I} := {(k — D€ + 1, (k — D)€ + 2,...,k¢}, with
k=1,2,...,(N/£). Given g > 0 and the disorder realization w, let

(3.10) Lo = :1 <JSIN/O:Y o ZZq} U{N/¢)}.

nEIj
One obtains a lower bound on the partition function as follows:

INw> E[er,v:l(ﬂwn+h)l(na};
(3.11)
Lk CtVkeldy,tNly=aVk ¢ dy,, k< (N/O].

In other words, we have constrained t to visit each point in the last block and
in each of the blocks where the empirical average of the w,’s is larger than ¢,
and to skip all the others. We can now take the logarithm, divide by N and let
N — oo at £ fixed in (3.11) to get a lower bound on the free energy. We do not
detail this step, since an essentially identical computation appears in the proofs of
[5], Proposition 3.1, [18], Theorem 3.1 and [17], Theorem 6.5. The net result is
that for every € > 0

2
(3.12) F(B.h) = p(ﬁ)[ﬂq +h+logK(1) — (1 +a+ 8)% + 05(1)],

where

1/
(3.13) p(£) ::IP’(Z wn z@)
n=1
and o,¢(1) is a quantity which vanishes for £ — oco. The term log K (1) is due to
P(I; Cc 1) =K ()"
From (3.12) and the definition of the critical point one deduces that
2

(3.14) he(B) < —Ba+ (1 +a+e) L —log K (D).
Optimizing over g and using the arbitrariness of & > 0,

,82
3.15 h <———— —logK(
(3.15) c(B) = R (D

which, together with (3.9), proves equation (3.8).
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3.1.2. About the size of Zn , in the delocalized phase. For the homogeneous
model, it is known [17], Theorem 2.2, that if 4 < h.(0) then

(3.16) Zy = B[O 1y ] VR ck (V)

where C > 0 depends on % and on P(7; < 00). It is natural to ask whether a sim-
ilar statement holds for the disordered model inside the delocalized phase. In this
respect, the ideas developed in this work allow to go much beyond the statement
of Theorem 3.1 that the infinite-volume free energy vanishes for 47 < ﬁc(,B), and
prove the following: if h < fzc(,B) there exists 1/(1 + «) <y <1 and a constant
C :=C(h, K(-)) < oo such that

(3.17) P(Zy,w = uK(N)) < Cu™"

for every u > 0. The upper bound (3.17) on the partition function should be read
together with the lower bound (2.5): both are of order K (N), just like the estimate
(3.16) which holds for the pure model.

PROOF OF EQUATION (3.17). Since h < fzc(ﬂ), there exists 1/(1 + a) <
y <1 such that

A= —log[M(By)c(y)] —hy > 0.
Then, it follows from the proof of Theorem 2.1 [cf. in particular equations (2.15)
and (2.16) taken for A = 0] and from (3.16) that
Y <o [o—InDA 0 ¢ y
(3.18) E(Zy,w)! <E,[e V' yer] <CK,(N) = T}/)K(N) ,

for some C := C(h, K(-)). Equation (3.17) is then an immediate consequence of
Markov’s inequality. [J

Let us remark also that one can extract from the proof of (3.17) the follow-
ing almost sure statement: if 1 < —(1/y)log[M (By)c(y)] for some 1/(1 + @) <
y <1, then

ZN,w N—o0
— 0,
K (N)~

P(dw)-almost surely, for every u <1 —1/(y (1 + @)).

(3.19)

3.2. “Reduced” wetting model. This model, introduced in [5], Section 4 as
a toy version of the copolymer model discussed in the next section, is obtained
from (2.2) putting A = h = 0 and assuming that P(w1 =1)=p =1 —P(w; =0),
for some p € (0, 1). Moreover, one assumes here that the renewal is transient,
c(1) < 1, otherwise the model is uninteresting in that no phase transition occurs.
As we will see, the actual value of c¢(1) is irrelevant in the strong-disorder regime
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we are going to consider, as long as it is strictly smaller than 1. Changing conven-
tions with respect to the previous section, we denote the free energy as F (8, p) in
this case.

It is known that for every 8 > 0 there exists p.(8) € (0, 1) such that the free en-
ergy F (B, p) is zero for p < p.(B) and positive for p > p.(B). The main question
is to compute (if it exists) the limit

1
(3.20) me:=— lim —log p.(B).
B—o00 IB
It was proven in [5] that for o =1/2
1 1
(3.21) 2/3 < —limsup — log p.(8) < —liminf — log p.(B) < 1.
B—00 B p—oo B

This result can be easily generalized to any @ > 0 and in this case the lower bound
in (3.21) is replaced by 1/(1 + ).
Here we prove the following:

THEOREM 3.4. The limit in (3.20) exists and equals 1/(1 + o).

Recently a proof of Theorem 3.4, based on entirely different ideas, was given
in [6]. While our approach is much simpler, the method of Bolthausen, Caravenna
and de Tiliere is more natural from a renormalization group point of view.

PROOF OF THEOREM 3.4. We start by remarking that if we apply Theo-
rem 2.1 to the reduced model we obtain immediately

1
(3.22) —liminf — log p.(B) < 1,
B—oo fB

but not the sharper statement of Theorem 3.4. To go beyond (3.22), somehow we
have to use the information that, if p < p.(B8), the sites where w, = 1 are very
sparse for f large (their density p is indeed exponentially small in 8), and that
between two such sites 7 has typically just a finite number of points, since it is a
transient renewal under the law P.

Let1/(14+a) <y <1and C > 1 such that

<)
Cy

The renewal t with inter-arrival law K (-) being transient, that is, c(1) < 1, it is
known (cf., for instance, [17], Theorem A.4) that

(3.23) <1.

n—oo 1

(324) P(n € 'L') ~ mK(l’l),



BEYOND ANNEALED BOUNDS 1581

and therefore there exists C’ := C’(y, C) < oo such that

K
(3.25) Pner)< C/%
for every n € N.
We let now Y, :={1 <n < N:w, =1} U{N} and we decompose the partition
function according to the configuration of A(t) :=tNY,.If |A(7)|=£4(= 1), we

write A(t) = {a1,az, ..., ae} with a; < a;41 and, by convention, we set ap := 0.
Then,
N 0
(326)  Znw<)y. Y. [[P@j—-aj-1eD)
=1 ACY,: j=1
|Al=C,ap=N

- weche 1q K@ — a0
(3.27) SZ Z o(PF10gCh) H%

=1 ACY,: j=1
|A|=€,a;=N

N
< elg+10g c’ Z Z e(/3+10gcl) Z_ijl waj
€=10=ag<a;<--<ay=N
(3.28) ,
K(aj—aj_1)
X —7
] e

j=1
where in the first inequality we used the fact that

P(ai et,tNYpN{ai-1+1,...,a; —1}=D|a;_ € T)
(3.29)
<P(a —aj_1€7),

in the second one we used (3.25) and the third one is obvious since we have just
added extra positive terms to the sum. On the other hand the right-hand side of
(3.28), apart from the global factor exp(8 + log C’) which is anyway irrelevant for
the computation of the infinite-volume limit of the free energy, is just the partition
function of the model where 8 is replaced by (8 + logC’) and K (n) by K (n)/C
for every n € N [cf. equation (2.14) taken for A = 0]. Following step by step the
proof of Theorem 2.1, one finds therefore that

1
lim —ElogZ
Ngnoo N OB EN.w

1
(3.30) <limsup — log E(Zy )"
Ny

N—o0

1 N ogC’
< lim — logK, [eme1og[(c(y)/cy><pey<f‘+‘ 8¢ >+(1—p>>]1{ ven],
N—oo Ny
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which vanishes whenever

(3.31) tog[pe? #1111 — p)] +1og (T2 <0,

Thanks to the choice (3.23), it follows immediately that
1
(3.32) —liminf —log p.(B) < y.
B—o00 ﬁ
By the arbitrariness of (1 >)y > 1/(1 + «), and since we already know that

—limsupélog pe(B) = 1/(1 +a),

B—o00

we obtain the statement of the theorem. [

3.3. Copolymer model. In this section we set # = h =0 and with yet another
abuse of notation we call the free energy F'(A, k). This is just (a generalization of)
the copolymer model considered for instance in [4, 5, 7].

REMARK 3.5. The results which follow can be easily generalized to the case
h # 0. This is particularly evident for & < 0. Indeed, it is well known [and im-
mediate to check from (2.14)] that the model with 2 < 0 is equivalent to the one
with 2 =0 and K (n) replaced by K (n)exp(—|h|) for every n € N [so that c(y)
becomes c(y)exp(—y|hl|)].

We observe that in view of A > 0 the free energy is nonincreasing with respect
to h and we denote by /(L) the quenched critical point:

(3.33) he(X) :=sup{h = 0: F(x, h) > 0},

while A — %.(}) is the critical line.
It is convenient to define for 0 < y <1

~ 1 ~
3.34 Y (L) = —— log M(—2A).
(3.34) d ) 2y og M( V)

Note that fzg') (A) is increasing by Jensen’s inequality and that

(3.35) lim hgy)(k) =

N0 A
thanks to Ec?)% =1, Ew; = 0. For y = 1, this is just the annealed critical line:
Fa@,0, A, E) = 0 if and only if h > Egl)()\), as it is immediate to realize from
(2.6). On the other hand, EE]/ (]+a))(-) is sometimes referred to as the “Monthus
line.” This line was proposed as the true critical line of the copolymer model in
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the theoretical physics literature, on the basis of renormalization group arguments
[25].
In general one knows that for every A > 0,

(3.36) R+ Gy < ko) <h D).

The lower bound in (3.36) was proven in [5] in the case where K (1) = K SRW (.,
the law of the first return to zero of the one-dimensional simple random walk (cf.
Section 2), but the bound can be proven to hold for every K (-) of the form (2.1), see
[17], Chapter 6. Numerical simulations (supported by solid probabilistic estimates)
performed in the particular case K (-) = K58 (.) strongly indicate that neither of
the two bounds in (3.36) is optimal [9].

For K (-) = KSR (.), it is also known that the limit slope limy_, o /¢ (1) /A exists
[7] [and is therefore bounded between 2/3 and 1 in view of (3.36) and @ = 1/2],
that it coincides with the slope of the critical curve of a continuous copolymer
model with Brownian disorder [7] and that it is to a large extent independent of PP
[19].

Here we will show that (say, in the Gaussian case) the annealed upper bound
EC 1) < EE”(/\) can be improved for large A whatever K (-) is [within the class
(2.1)]. If the renewal is transient, ), .y K (n) < 1, then with no assumptions on
the disorder distribution annealing can be improved for every A > 0 and, in partic-
ular, the slope at the origin turns out to be strictly smaller than 1. Finally, if K (-)
satisfies condition (3.43) below, the lower bound in (3.36) is the optimal one for
every A. This condition is not satisfied for K (-) = K SRW (), in agreement with the
simulations mentioned above. By the way, our results strongly indicate that the
critical curve depends in general not only on the tail behavior of K (-) (say, on the
exponent «), as one might be tempted to guess on the basis of belief in universality,
but also on the details of the slowly-varying function L(-). Note that this is not the
case for the annealed curve, which depends only on the disorder distribution [P, nor
for the Monthus line which depends only on P and «.

Observe first of all that, thanks to Lemma 2.2,

1 + ek(by+log M(ya))
2

(3.37) fy(a, by k) <2177

Therefore,

G}/(vva’ b)

(3.38) < lim i10g1§] IN@O+(1=y)log2)
T No>oo N 4

Iy(7) (by+log M(ya))(t;—1i_1)
1 elov g My JTC
< I1 ( )hNer}}-
j:l 2

Our main result for the copolymer model is the following:
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THEOREM 3.6. Define
(3.39) Ye :=inf{0 <y < 1:loge(y) < ylog2}e[l/(14+a),1).
Then, one has:

1. For every y > y. there exists C(y) < oo such that for every A > 0

(3.40) he() <RI () + @

2. If ye=1/(1 +«a) and

(3.41) 0 <loge(1/(1+a) + lj‘_a log?2 < log?2
there exists C < oo such that for every A > 0

(3.42) e <RV G) 4

3. Ifye=1/(14 ) and

(3.43) loge(1/(1 +a)) + 1ia log2 <0,
then for every A > 0

(3.44) he(h) = R/ A0 (),

In view of Remark 3.5 above, condition (3.43) is realized for instance if
c(1/(1 + o)) < oo and we add a homogeneous depinning term proportional to
—|h|, with |k| sufficiently large. In any case, we emphasize that a necessary (but
not sufficient) condition for (3.43) to hold is that T be transient under P.

REMARK 3.7. Note that in the case L(-) ~ const, for example, if K(-) =
KSRW (), one has y. > 1/(1 4+ «) since ¢(y) — oo for y \  1/(1 + «). In par-
ticular, from the explicit expression of KfW(.) one finds numerically y. ~ 0.83
in the simple random walk case. It is interesting to note that the numerical results
of [9], Section 5, are compatible with ﬁc A) = Eé’") (A) with m somewhere between
0.8 and 0.84. Understanding whether this is more than just a coincidence requires
further numerical simulations of the type [9], performed also for other choices
of K(-).

We have also the analogue of Corollary 3.2:

COROLLARY 3.8. Assume that log M(—=X) ~ arf for A — 400, for some
a > 0and p > 1. Then, there exists Ly < o0 such that for A > Ao

(3.45) he(h) < RV ).
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This is obvious from (3.40) since y, < 1.
Finally, as we mentioned, in the transient case (and without assumptions on P)
the improvement on annealing can be pushed down to A = 0:

COROLLARY 3.9. Assume that c¢(1) = P(t; < +00) < 1. Then, for every
A>0

(3.46) he) <hY ()
where
(347 y:=infly <l:logc(y)+ (1 —y)log2<0}e [1/(1 +a),1).

As a consequence of equation (3.35) we have that if P(r; < +00) < 1 (or if
h < 0, see Remark 3.5) the slope of the critical curve at the origin (if it exists) is
strictly smaller than 1.

PROOF OF THEOREM 3.6. One has from (3.38)

G, (loge(y), =21, =2A[A (1) + €])

1.
(3.48) < Jlim ~logk, [e’N@)U()gC(VHU—V)1°g2>
—o0 N

In(7) —2Aye(ti—Ti_1)
14 e retsi—ri-1
X 1_[ ( 2 )1{N€f}:|.
j=1

Let us consider first case (1). To this purpose, let y > y, and choose ¢ = C/(yA) in
(3.48). It is clear that, for every § > 0, it is possible to choose C = C(§) sufficiently
large so that

—2Ck
1+e < e—log2+6
— 5 =
for every k € N. Taking for instance

(3.49)

y log2 —logc(y)
>
2
(so that C depends on y) one finds therefore

(3.50) §=8(y) = 0

~ C
G, (logc(y), —2A, —2)\[hgy>(x) + %D
(3.51) | 4
. & r,—In (D)8
= Jim v logEy [e” NP1 yery] =0,

[The positivity of §(y) follows from y > y. and from the definition of y..] By
Theorem 2.1 one has therefore (3.40). Equation (3.42) is proven analogously.
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Finally, if condition (3.43) is verified then choosing y =1/(1 +«) and ¢ =0 in
equation (3.48) one has

1
G I
1/(1+a)( 0g€<l o

), 24, =220 <1+°’)>(x))

(3.52)

1 ~
< lim _logEl/(1+a)[eIN(t)(logc(l/(1+<x))+ot/(l+ot)logZ)I{NET}]
N—oo N

and the right-hand side is zero since it is the free energy of a homogeneous pinning
model with nonpositive pinning strength, see assumption (3.43). This shows that

fzc()») < EE““*“”(A), and the opposite bound is already in (3.36). [J

PROOF OF COROLLARY 3.9. Just take equation (3.48) for y =y and ¢ = 0.
O
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