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Given two sequences over a finite alphabet L, the D2 statistic is the
number of m-letter word matches between the two sequences. This statis-
tic is used in bioinformatics for expressed sequence tag database searches.
Here we study a generalization of the D2 statistic in the context of DNA se-
quences, under the assumption of strand symmetric Bernoulli text. For k < m,
we look at the count of m-letter word matches with up to k mismatches. For
this statistic, we compute the expectation, give upper and lower bounds for
the variance and prove its distribution is asymptotically normal.

1. Introduction. Methods for alignment-free sequence comparison are
among the more recent tools being developed for sequence analysis in biol-
ogy [16]. A disadvantage in the classical Smith–Waterman local alignment algo-
rithm [13], as well as the popular search algorithms such as FASTA and BLAST,
is that they assume conservation of contiguity between homologous segments. In
particular, they overlook the occurrence of genetic shuffling [18]. Alignment-free
sequence comparison methods are used to compensate for this problem.

A natural alignment-free comparison of two sequences is the number of m-letter
word matches between the sequences. This statistic, called D2, can be computed
in linear time in the length of the sequences, which is also an advantage over the
nonlinear local alignment algorithms. D2 is used extensively for EST sequence
database searches (e.g., [2, 3, 11] and in the software package STACK [6]).

In [10], Lippert, Huang and Waterman started a rigorous study of D2 using
the model of independent letters in DNA sequences. A formula for the expecta-
tion was computed as well as upper and lower bounds for the variance. Limiting
distributions, as the length of the sequences, n, and the size of the word, m, get
large, were derived in some cases. The authors used Stein–Chen methods [5, 9,
14] to obtain the following results. When the underlying distribution of the alpha-
bet is nonuniform, the distribution of D2 has normal asymptotic behavior when
m/ logb n < 1/6. The logarithmic base b is defined by b = (

∑
a∈L ξ2

a )−1, where ξa
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is the probability of a letter taking the value a. Following simulations, it was noted
in [10] that the bound 1/6 above is too small. Our simulations in Section 6 suggest
that the bound should be closer to 2.

Another asymptotic regime was identified in [10] when m/ logb n ≥ 2. In this
case, the distribution of D2 has compound Poisson asymptotic behavior. However,
as pointed out in [17] and [1], the Poisson approximation is meaningful in this
region only when E(D2) is not too small. To control this degenerate case, one
needs to add the linear restriction m = 2 logb n + C.

When the underlying distribution of the alphabet is uniform, it was proved in [9]
that for m = α logb n + C with 0 < α < 2, the distribution of D2 is also asymptot-
ically normal.

A natural generalization of the D2 statistic is to count the number of approxi-
mate m-word matches. For k < m, let D

(k)
2 be the number of m-word matches with

up to k mismatches between the two sequences. This statistic can be expressed in
terms of a distance function. One can define the distance between two m-words
to be the number of mismatches. A k-neighborhood of an m-word w is then all
m-words that are at most k distance from w. The D

(k)
2 statistic is the number of

k-neighborhood matches of m-words between two sequences.
In [12], Melko and Mushegian studied the k-distance and k-neighborhood

match count between a probe of length m and a random DNA sequence, under
the assumption that the sequence is strand-symmetric Bernoulli text. They gave a
formula for the expectation of the k-distance match count and the k-neighborhood
match count. Melko and Mushegian suggested that methods of Lippert, Huang and
Waterman in [10] could be used to obtain upper and lower bounds for the variance
of D

(k)
2 and to analyze its asymptotic behavior.

In this paper we study the D
(k)
2 statistic under the strand-symmetric Bernoulli

text assumption. We extend the method of [10] to give upper and lower bounds for
the variance. We analyze the asymptotic behavior of the distribution of D

(k)
2 as n

and m increase using the method of cumulants [8] rather than Stein’s method. For
D2, the k = 0 case, this method improves the bound on m/ logb n obtained in [10]
from 1/6 to 1/2.

The organization of this paper is as follows. In Section 2 we review definitions
and introduce notation. In Section 3 we discuss the mean of D

(k)
2 . Section 4 is

devoted to the variance of D
(k)
2 . In Section 5 we prove normal asymptotic behavior

of the distribution of D
(k)
2 . Section 6 contains the results of numerical simulations,

and a concluding summary is given in Section 7. A list of notations is provided at
the end of Section 7.

2. Preliminaries. Let L = {A,G,C,T } with strand-symmetric probability
measure ξ = {ξA, ξG, ξC, ξT } and perturbation parameter η. That is, −1 ≤ η ≤ 1
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is the unique number satisfying

ξA = ξT = 1
4(1 + η),

ξC = ξG = 1
4(1 − η).

Let A = A1A2 · · ·An and B = B1B2 · · ·Bn be two random sequences of length
n over the alphabet L. We assume that A and B are Bernoulli texts, meaning, the
letters (nucleotides) are independent and identically distributed (i.i.d.). We note
that the assumption of both sequences having the same length is not essential for
what follows and its main purpose is to simplify notation. Our results can be easily
adapted to the case when the sequences are of different lengths.

DEFINITION 2.1. Let x and y be two words of length m. We define the dis-
tance between x and y to be

δ(x,y) = number of character mismatches between x and y.

For k ≤ m, we say that x is a k-distance match of y if δ(x,y) = k. When δ(x,y) ≤
k, then x is said to be a k-neighbor of y.

Following the terminology and notation of [12], we have the following defini-
tion.

DEFINITION 2.2. In the above setup, define the perturbed binomial distribu-
tion with perturbation parameter η by

gk(m,η, c) = h(m,η, c)uk(m,η, c),

where 0 ≤ c, k ≤ m are integers and

h(m,η, c) = 1

4m
(1 − η)c(1 + η)m−c,

uk(m,η, c) =
m−k∑
i=0

(
c

i

)(
m − c

m − k − i

)
vk(i, η, c),

vk(i, η, c) =
(

3 + η

1 − η

)c−i(3 − η

1 + η

)k−c+i

.

For an m-word w with GC-count cw, h(m,η, cw) is Pr(w), the probability of seeing
w. In the definition of uk(m,η, c), and in similar situations throughout the paper,
we follow a general convention that

(n
a

) = 0 if a < 0 or a > n.

Note that when η = 0, the perturbed binomial distribution is the binomial dis-
tribution with gk(m,0, c) = bk(m,1/4), where

bk(m,ρ) =
(

m

k

)
ρm−k(1 − ρ)k.
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As observed in [12], if T is a strand-symmetric Bernoulli text of length m and
q is a (known) query text (=word) of length m, then the probability distribution of
the distance δ(T,q) is a perturbed binomial distribution:

Pr
(
δ(T,q) = k

) = gk(m,η, c),

where c is the GC-count in q and η is the perturbation parameter of T. Let

Gk(m,η, c) =
k∑

r=0

gr(m,η, c) = Pr
(
δ(T,q) ≤ k

)

be the cumulative distribution function of the distance.

2.1. k-neighborhood matches. Let A and B be two DNA sequences of length
n. Assume the sequences are strand-symmetric Bernoulli text with perturbation
parameter η. Let 0 ≤ k ≤ m < n be integers.

DEFINITION 2.3. Define the statistic D
(k)
2 = D(k,m,n) to be the number of

k-neighborhood m-word matches between the sequences A and B, including over-
laps. Note that D

(0)
2 is the D2 statistic of [10].

The D
(k)
2 statistic may be computed as follows.

NOTATION. For 1 ≤ s ≤ t ≤ n, write A[s, t] for the subsequence AsAs+1 . . .

At .

DEFINITION 2.4. Let Y
(k)
ij be the k-neighborhood match indicator (starting)

at position (i, j) (position i in sequence A and j in B). That is,

Y
(k)
ij =

{
1, if δ(A[i, i + m − 1],B[j, j + m − 1]) ≤ k,
0, otherwise.

Then the D
(k)
2 statistic can be computed via

D
(k)
2 = ∑

(i,j)∈I

Y
(k)
ij ,

where the index set I is

I = {(i, j) ∈ N × N : 1 ≤ i ≤ n − m + 1, and 1 ≤ j ≤ n − m + 1}.
For convenience, we write n̄ for n − m + 1.
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3. The mean of D
(k)
2 . In this section we give a general formula for the mean

of D
(k)
2 in terms of the perturbed binomial distribution and obtain estimates for it.

The estimates will be used in later sections in order to prove normal asymptotic
behavior of D

(k)
2 .

First we compute the mean of Y
(k)
ij :

E
[
Y

(k)
ij

] = Pr
(
Y

(k)
ij = 1

)
= ∑

w∈Lm

Pr
(
δ(A[i, i + m − 1],w) ≤ k

)
Pr(B[j, j + m − 1] = w)

= ∑
w∈Lm

Gk(m,η, cw)Pr(w),

where cw is the GC-count of w.
From this we get formulas for the expectation of D

(k)
2 :

E
[
D

(k)
2

] = ∑
(i,j)∈I

E
[
Y

(k)
ij

]

= n̄2
∑

w∈Lm

Pr(w)Gk(m,η, cw).

REMARK 3.1. When k = 0, we have Gk(m,η, cw) = Pr(w) and

E
[
Y

(0)
ij

] = ∑
w∈Lm

(Pr(w))2 =
(∑

a∈L

ξ2
a

)m

.

This agrees with the formula given in Lippert, Huang and Waterman [10],
E[Yij ] = pm

2 , where p2 = ∑
a∈L ξ2

a .

DEFINITION 3.2. For t > 1, let

pt = ∑
a∈L

ξ t
a.

REMARK 3.3. Note that pt = E[(ξX)t−1]. Hence, by the Cauchy–Schwarz
inequality,

p3 ≥ p2
2,

where equality holds if and only if the distribution is uniform: ξa = 1/|L|.

3.1. Estimates. The purpose of these estimates is to explain the asymptotic be-
havior of D

(k)
2 , rather than to provide a computational tool. Hence, these estimates

are by no means optimal.
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First we estimate the function gk(m,η, cw). Without loss of generality, assume
η > 0. From Definition 2.2, we have upper bounds:

vk(i, η, c) ≤
(

3 + η

1 − η

)k

,

uk(m,η, c) ≤
(

3 + η

1 − η

)k m−k∑
i=0

(
c

i

)(
m − c

m − k − i

)
=

(
3 + η

1 − η

)k (
m

k

)
.

Remembering that h(m,η, cw) = Pr(w) and using similar estimates for the lower
bound we get

Pr(w)

(
m

k

)(
3 − η

1 + η

)k

≤ gk(m,η, cw) ≤ Pr(w)

(
m

k

)(
3 + η

1 − η

)k

and

Pr(w)

k∑
r=0

(
m

r

)(
3 − η

1 + η

)r

≤ Gk(m,η, cw)

(1)

≤ Pr(w)

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

.

Hence, for E[Y (k)
ij ] = ∑

w∈Lm Pr(w)Gk(m,η, cw), we have

pm
2

k∑
r=0

(
m

r

)(
3 − η

1 + η

)r

≤ E
[
Y

(k)
ij

] ≤ pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

.(2)

Finally, since E[D(k)
2 ] = ∑n̄

i,j=1 E[Y (k)
ij ], we have

n̄2pm
2

k∑
r=0

(
m

r

)(
3 − η

1 + η

)r

≤ E
[
D

(k)
2

] ≤ n̄2pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

.(3)

REMARK 3.4. For k = 0 (the exact matches case), (3) gives E[D(0)
2 ] = n̄2pm

2 ,
which agrees with the expectation computed in [10].

REMARK 3.5. When η = 0 (the uniform case), p2 = 1
4 and the upper and

lower bounds in (3) are equal. Hence,

E
[
D

(k)
2

] = n̄2 1

4m

k∑
r=0

(
m

r

)
3r

= n̄2
k∑

r=0

(
m

r

)(
3

4

)r(1

4

)m−r
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= n̄2
k∑

r=0

br(m,1/4).

4. The variance. In this section we give a lower and upper bound for the
variance of D

(k)
2 . The lower bound is used later to prove asymptotic normality of

D
(k)
2 . The upper bound is not optimal, but is comparable with that given in [10] for

the k = 0 case. We start this section by stating the main results in Propositions 4.1
and 4.2. We then prove several technical lemmas and finish with the proofs of
Propositions 4.1 and 4.2.

PROPOSITION 4.1. Var(D(k)
2 ) ≥ � = �(n,m, k), where

� = n̄2
[
(2n̄ − 4m + 2) (m − 1 ) k2

(
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)]

+ O(n2mk+2pm
2 ).

PROPOSITION 4.2.

Var
(
D

(k)
2

) ≤ n̄2(2n̄ − 4m + 2)m2k

(
3 + η

1 − η

)2k[
2p3

(
1 − pm

3

1 − p3

)
− pm

3

]

−n̄2(2n̄ − 4m + 2)

[
2p2

2

(
1 − p2m

2

1 − p2
2

)
− p2m

2

]
(4)

+n̄2(2m − 1)2pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

.

To compute the variance of D
(k)
2 = ∑

(i,j)∈I Y
(k)
ij , we need to compute the co-

variances Cov(Y
(k)
ij , Y

(k)
i′j ′). For this, we use techniques from [17]. To shorten the

indices’ notation, let u = (i, j) and v = (i ′, j ′).
In the following definition we use notation and terminology from [17], Chap-

ter 11.

DEFINITION 4.3. Let Ju = {v = (i ′, j ′) : |i ′ − i| < m or |j ′ − j | < m}. Then
Ju is the dependency neighborhood of Y

(k)
u in the sense that if v /∈ Ju, then Y

(k)
u

and Y
(k)
v are independent. The dependency neighborhood can be decomposed into

two parts, accordion and crabgrass, Ju = J a
u ∪ J c

u , where

J a
u = {v = (i′, j ′) ∈ Ju : |i′ − i| < m and |j ′ − j | < m} and J c

u = Ju \ J a
u .

Let u ∈ I . When v /∈ Ju, Cov(Y
(k)
u , Y

(k)
v ) = 0. To estimate Cov(Y

(k)
u , Y

(k)
v ) when

v ∈ Ju, we look at the two cases: v ∈ J c
u (crabgrass) and v ∈ J a

u (accordion). We
will see that crabgrasses contribute the dominant term of Var(D(k)

2 ) in the cases
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we are interested in, that is, for m = O(logn). Hence for accordions we only give
a crude approximation of Cov(Y

(k)
u , Y

(k)
v ). We start by proving the following posi-

tivity lemma.

LEMMA 4.4. (i) For v ∈ J c
u , Y

(k)
u and Y

(k)
v are nonnegatively correlated.

That is,

Cov
(
Y (k)

u , Y (k)
v

) ≥ 0.

(ii) For v in the main diagonal of J a
u , Cov(Y

(k)
u , Y

(k)
v ) ≥ 0.

PROOF. We will use the following notation. For r ≥ 0 define

Y
(k)
ij (r) = the k-neighbor match indicator between two r-words at (i, j).

�1(r) = δ(A[i, i + r − 1],B[j, j + r − 1])
= number of mismatches in an r-word match at (i, j).

�2(r) = δ(A[i ′ + m − r, i ′ + m − 1],B[j ′ + m − r, j ′ + m − 1])
= number of mismatches in an r-word match

at (i ′ + m − r, j ′ + m − r).

To prove part (i), let u = (i, j), v = (i ′, j ′) ∈ J c
u . Write t = i′ − i and s = j ′ − j .

By symmetry, we may assume v is in the first quadrant of J c
u , that is, 0 ≤ t ≤

m − 1, and m ≤ s. We have

E
[
Y (k)

u Y (k)
v

]
= Pr

(
Y (k)

u = 1, Y (k)
v = 1

)
=

t∑
l1,l2=0

Pr
(
�1(t) = l1

)
Pr

(
�2(t) = l2

)

× Pr
(
Y

(k−l1)
(i′,j+t)(m − t) = 1, Y

(k−l2)
(i′,j ′) (m − t) = 1

)
(5)

=
t∑

l1,l2=0

Pr
(
�1(t) = l1

)
Pr

(
�2(t) = l2

)

×
[ ∑

w∈Lm−t

Pr(w)Gk−l1(m − t, η, cw)Gk−l2(m − t, η, cw)

]

= ∑
w∈Lm−t

Pr(w)

[∑
l1

Pr
(
�1(t) = l1

)
Gk−l1(m − t, η, cw)

]

×
[∑

l2

Pr
(
�2(t) = l2

)
Gk−l2(m − t, η, cw)

]
.
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For w ∈ Lm−t , let

ft (w) = ∑
l

Pr
(
�(t) = l

)
Gk−l(m − t, η, cw),(6)

where �(t) is the distance between two random t-words. Then (5) says that

E
[
Y (k)

u Y (k)
v

] = E[(ft (W))2].
Similarly we get

E
[
Y (k)

u

]
E

[
Y (k)

v

] = E[ft (W)]2.

Hence,

Cov
(
Y (k)

u , Y (k)
v

) = Var(ft (W)) ≥ 0.(7)

For part (ii), let u = (i, j) and v = (i ′, j ′) ∈ J a
u ’s main diagonal, that is, v = (i +

t, j + t) with |t | ≤ m − 1. By symmetry, we may assume 0 ≤ t . As before, let
�1(t) be the number of mismatches in a t-word match at (i, j), and let �2(t) be
the number of mismatches at (i + m,j + m). Then

E
[
Y (k)

u Y (k)
v

] =
t∑

l1,l2=0

Pr
(
�1(t) = l1

)
Pr

(
�2(t) = l2

)

× Pr
(
Y (k−l1)

v (m − t) = 1, Y (k−l2)
v (m − t) = 1

)
=

t∑
l1,l2=0

Pr
(
�1(t) = l1

)
Pr

(
�2(t) = l2

)

× Pr
(
Y (min{k−l1,k−l2})

v (m − t) = 1
)

and

E
[
Y (k)

u

]
E

[
Y (k)

v

] =
t∑

l1,l2=0

Pr
(
�1(t) = l1

)
Pr

(
�2(t) = l2

)

×Pr
(
Y (k−l1)

v (m − t) = 1
)

Pr
(
Y (k−l2)

v (m − t) = 1
)
.

Since

Pr
(
Y (min{k−l1,k−l2})

v (m − t) = 1
)

≥ Pr
(
Y (k−l1)

v (m − t) = 1
)

Pr
(
Y (k−l2)

v (m − t) = 1
)
,

we have that Cov(Y
(k)
u , Y

(k)
v ) ≥ 0. �

REMARK 4.5. From (7) we have that for v ∈ J c
u , Cov(Y

(k)
u , Y

(k)
v ) =

Var(ft (W)) for appropriate t . When computing ft (w) in (6), it is worth noting
the following:
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1. Pr(�(t) = l) = ∑
x∈Lt Pr(x)gl(t, η, cx) = ∑

x∈Lt Pr(x)2ul(t, η, cx). From Sec-
tion 3.1 we also have(

t

l

)(
3 − η

1 + η

)l

≤ ul(t, η, cx) ≤
(

t

l

)(
3 + η

1 − η

)l

.

Hence

pt
2

(
t

l

)(
3 − η

1 + η

)l

≤ Pr
(
�(t) = l

) ≤ pt
2

(
t

l

)(
3 + η

1 − η

)l

.

2. For k − l ≥ m − t and w ∈ Lm−t , Gk−l(m − t, η, cw) = 1.

REMARK 4.6. When k = 0 (exact matches case), and v ∈ J c
u with t as above,

we get:
For w ∈ Lm−t ,

ft (w) = Pr
(
�(t) = 0

)
G0(m − t, η, cw) = pt

2 Pr(w).

Since E[Pr(W)] = ∑
w∈Lm−t Pr(w)2 = pm−t

2 and E[Pr(W)2] =∑
w∈Lm−t Pr(w)3 = pm−t

3 , we have that

Cov
(
Y (k)

u , Y (k)
v

) = Var(ft (W)) = p2t
2 Var(Pr(w)) = p2t

2
(
pm−t

3 − p
2(m−t)
2

)
.

This agrees with the computations in [17], Section 11.5.2.

REMARK 4.7. When η = 0 (uniform case), ft (w) does not depend on w and
hence Var(ft (W)) = 0. Therefore, in this case, for v ∈ J c

u , Cov(Y
(k)
u , Y

(k)
v ) = 0.

Next we look at the following special crabgrass case.

LEMMA 4.8. Let u = (i, j) and v = (i ′, j ′) ∈ J c
u with t = |i ′ − i| = m − 1 or

(by symmetry) |j ′ − j | = m − 1. Then

Cov
(
Y (k)

u , Y (k)
v

) = [
Pr

(
�(m − 1) = k

)]2
(p3 − p2

2),

where �(m − 1) is the distance between two random (m − 1)-words.
Hence, by Remark 4.5,

[(
m − 1

k

)(
3 − η

1 + η

)k]2

p2m
2

(
p3

p2
2

− 1
)

≤ Cov
(
Y (k)

u , Y (k)
v

)

≤
[(

m − 1
k

)(
3 + η

1 − η

)k]2
p2m

2

(
p3

p2
2

− 1
)
.
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PROOF. By (7),

Cov
(
Y (k)

u , Y (k)
v

) = Var(ft (W)).

Let w ∈ L. Then, using Remark 4.5,

ft (w) =
k∑

l=0

Pr
(
�(m − 1) = l

)
Gk−l(1, η, cw)

= Pr
(
�(m − 1) = k

)
G0(1, η, cw) +

k−1∑
l=0

Pr
(
�(m − 1) = l

) · 1

= Pr
(
�(m − 1) = k

)
ξw +

k−1∑
l=0

Pr
(
�(m − 1) = l

)
.

Note that Pr(�(m − 1) = k) and
∑k−1

l=0 Pr(�(m − 1) = l) do not depend on w.
Hence,

Var(ft (W)) = Var

(
Pr

(
�(m − 1) = k

)
ξW +

k−1∑
l=0

Pr
(
�(m − 1) = l

))

= [
Pr

(
�(m − 1) = k

)]2 Var(ξW ).

As noted before (Remark 4.6, with m − t = 1), Var(ξW ) = p3 − p2
2. �

For the accordion case, we use the following crude estimate.

LEMMA 4.9. For u,v ∈ I, Cov(Y
(k)
u , Y

(k)
v ) = O(pm

2 mk).

PROOF.

∣∣Cov
(
Y (k)

u , Y (k)
v

)∣∣ ≤
√

Var
(
Y

(k)
u

)
Var

(
Y

(k)
v

)
= Var

(
Y (k)

u

) ≤ E
[(

Y (k)
u

)2] = E
[
Y (k)

u

]
(8)

≤ pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

from (2)

= O(pm
2 mk). �

4.1. Proof of Proposition 4.1. We now prove the lower bound formula for
Var(D(k)

2 ) stated in Proposition 4.1.
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PROOF OF PROPOSITION 4.1. First we split the variance into the contribu-
tions of crabgrasses and accordions:

Var
(
D

(k)
2

) = ∑
u,v∈I

Cov
(
Y (k)

u , Y (k)
v

)

= ∑
u∈I

∑
v∈J c

u

Cov
(
Y (k)

u , Y (k)
v

) + ∑
u∈I

∑
v∈J a

u

Cov
(
Y (k)

u , Y (k)
v

)
.

Next we look at the crabgrasses:∑
u∈I

∑
v∈J c

u

Cov
(
Y (k)

u , Y (k)
v

)

≥ ∑
u=(i,j)∈I

∑
v=(i′,j ′)∈J c

u

|i′−i|=m−1 or |j ′−j |=m−1

Cov
(
Y (k)

u , Y (k)
v

)
by Lemma 4.4

≥ ∑
u=(i,j)∈I

∑
v=(i′,j ′)∈J c

u

|i′−i|=m−1 or |j ′−j |=m−1

(
m − 1

k

)2 (
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)

by Lemma 4.8

= 2n̄2
[
(2n̄ − 4m + 2)

(
m − 1

k

)2 (
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)]

.

Finally we consider the contribution of the accordions to the variance:∣∣∣∣∣
∑
u∈I

∑
v∈J a

u

Cov
(
Y (k)

u , Y (k)
v

)∣∣∣∣∣ ≤ ∑
u∈I

∑
v∈J a

u

∣∣ Cov
(
Y (k)

u , Y (k)
v

)∣∣
= ∑

u∈I

∑
v∈J a

u

O(pm
2 mk) by Lemma 4.9

= n̄2(2m − 1)2O(pm
2 mk) = O(n2mk+2pm

2 ).

Then

Var
(
D

(k)
2

) = ∑
u∈I

∑
v∈J c

u

Cov
(
Y (k)

u , Y (k)
v

) + O(n2mk+2pm
2 )

≥ 2n̄2
[
(2n̄ − 4m + 2)

(
m − 1

k

)2 (
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)]

+ O(n2mk+2pm
2 ). �

4.2. Proof of Proposition 4.2. The first two terms in (4) come from crab-
grasses. Let u = (i, j) ∈ I , v = (i ′, j ′) ∈ J c

u with i′ = i + t , 0 ≤ t ≤ m − 1. We
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need to bound Cov(Y
(k)
u , Y

(k)
v ) = Var(ft (W)):

E[ft (W)2] = ∑
w∈Lm−t

Pr(w)

[
m−1∑
l=0

Pr
(
�(t) = l

)
Gk−l(m − t, η, cw)

]2

≤ ∑
w∈Lm−t

Pr(w)3

[
m−1∑
l=0

Pr
(
�(t) = l

) k−l∑
r=0

(
m − t

r

)(
3 + η

1 − η

)r
]2

by (1)

≤ ∑
w∈Lm−t

Pr(w)3
[
(m − t)k

(
3 + η

1 − η

)k]2
[

m−1∑
l=0

Pr
(
�(t) = l

)]2

=
[
(m − t)k

(
3 + η

1 − η

)k]2 ∑
w∈Lm−t

Pr(w)3

=
[
(m − t)k

(
3 + η

1 − η

)k]2

pm−t
3

≤ pm−t
3 m2k

(
3 + η

1 − η

)2k

,

and similarly,

E[ft (W)]2 =
[ ∑

w∈Lm−t

Pr(w)

m−1∑
l=0

Pr
(
�(t) = l

)
Gk−l(m − t, η, cw)

]2

≥
[ ∑

w∈Lm−t

Pr(w)2
m−1∑
l=0

Pr
(
�(t) = l

) k−l∑
r=0

(
m − t

r

)(
3 − η

1 + η

)r
]2

≥
[ ∑

w∈Lm−t

Pr(w)2
m−1∑
l=0

Pr
(
�(t) = l

)]2

=
[ ∑

w∈Lm−t

Pr(w)2

]2

= [pm−t
2 ]2.

Hence,

Cov
(
Y (k)

u , Y (k)
v

) ≤ pm−t
3 m2k

(
3 + η

1 − η

)2k

− p
2(m−t)
2 .

Summing up over all u’s and v’s and using
∑
u∈I

∑
v∈J c

u

qm−t = n̄2(2n̄ − 4m + 2)

[
2q

(
1 − qm

1 − q

)
− qm

]
,
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with q = p3 and p2
2, respectively, yields

∑
u∈I

∑
v∈J c

u

Cov
(
Y (k)

u , Y (k)
v

) ≤ n̄2(2n̄ − 4m + 2)m2k

(
3 + η

1 − η

)2k[
2p3

(
1 − pm

3

1 − p3

)
−pm

3

]

− n̄2(2n̄ − 4m + 2)

[
2p2

2

(
1 − p2m

2

1 − p2
2

)
− p2m

2

]
.

The last term in (4) comes from accordions:∑
u∈I

∑
v∈J a

u

Cov
(
Y (k)

u , Y (k)
v

) ≤ ∑
u∈I

∑
v∈J a

u

∣∣ Cov
(
Y (k)

u , Y (k)
v

)∣∣

≤ ∑
u∈I

∑
v∈J a

u

pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

from (8)

= n̄2(2m − 1)2pm
2

k∑
r=0

(
m

r

)(
3 + η

1 − η

)r

.

5. Asymptotic behavior. We will need the following central limit theorem of
Janson [8] for certain sums of dependent random variables. To state it, we first
recall the definition of dependency graph.

DEFINITION 5.1. A graph 	 is a dependency graph for a family of random
variables if the following holds:

1. There is a one-to-one correspondence between the random variables and the
vertices of the graph.

2. If V1 and V2 are two disjoint sets of vertices of 	 such that there is no edge
(v1, v2) in 	 with v1 ∈ V1 and v2 ∈ V2, then the corresponding sets of random
variables are independent.

Also recall that the maximal degree of a graph is the maximal number of edges
attached to a single vertex.

THEOREM 5.2 ([8], Theorem 2). Suppose that for each n, {Wni}Nn

i=1 is a family
of bounded random variables; |Wni | ≤ Cn almost surely. Suppose further that 	n

is a dependency graph for this family and let Mn be the maximal degree of 	n

(if 	n has no edges, set Mn = 1). Let Sn = ∑Nn

i=1 Wni and σ 2
n = Var(Sn). If there

exists an integer t such that

(Nn/Mn)
1/tMnCn/σn → 0 as n → ∞,(9)

then (
Sn − E(Sn)

)
/σn

d	⇒ N (0,1) as n → ∞.
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Next we state and prove our main theorem.

THEOREM 5.3. Assume that the four letters of the alphabet L are not uni-
formly distributed. That is, the perturbation parameter η is not zero. Let μn =
E[D(k)

2 ] and σn =
√

Var(D(k)
2 ).

For m = α log1/p2
(n) + C with 0 ≤ α < 1/2 and C a constant, and fixed k such

that 0 ≤ k < m,

D
(k)
2 − μn

σn

d	⇒ N (0,1) as n → ∞.

PROOF. We apply Theorem 5.2 to the match indicator random variables Y
(k)
ij .

In this case, the dependency graph has n̄2 vertices and edges may be defined by
connecting the vertex (i, j) with (i′, j ′) if |i′ − i| < m or |j ′ − j | < m. Hence, in
the notation of Theorem 5.2, Nn = n̄2; Cn = 1; the maximal degree of 	n is the
size of a dependency neighborhood:

Mn = |Ju| = (2m − 1)(2n̄ − 2m + 1);
and Sn = D

(k)
2 .

Let m = α log1/p2
(n) + C with 0 ≤ α (and k fixed). Then for α < 1, the lower

bound, �, for σ 2
n in Proposition 4.1, has the property

� ≥ n̄2
[
(2n̄ − 4m + 2)

(
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)]

+ O(n2mk+2pm
2 )

= C1n
3−2α + O(n2−α(log(n))k+2) where C1 > 0 is a constant

∼ n3−2α since α < 1.

Therefore, in condition (9) we have

(Nn/Mn)
1/tMnCn

σn

= (n̄2/((2m − 1)(2n̄ − 2m + 1)))1/t (2m − 1)(2n̄ − 2m + 1)

σn

≤
(

n̄2

(2m − 1)(2n̄ − 2m + 1)

)1/t

(2m − 1)(2n̄ − 2m + 1)

×
({

n̄2
[
(2n̄ − 4m + 2)

(
3 − η

1 + η

)2k

p2m
2

(
p3

p2
2

− 1
)]

(10)

+ O(n2mk+2pm
2 )

}1/2)−1
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∼ (α log1/p2
(n))1−1/tn1+1/t

[n3−2α]1/2 = (α log1/p2
(n))1−1/t

n1/2−1/t−α

→ 0 as n → ∞, if 1/2 − 1/t − α > 0.

Thus, for α < 1/2, we can find t large enough such that 1/2 − 1/t − α > 0. �

In [10], Lippert, Huang and Waterman used a variation on Stein’s result ([15],
page 110), due to Dembo and Rinott ([7], Theorem 4.2), to prove the following
result, under the assumption of i.i.d. letters, for the D2 = D

(0)
2 statistic. Let L be

an alphabet set of size |L| > 1 with nonuniform probability measure ξ . Then for
m = α log1/p2

(n) + C with 0 ≤ α < 1/6,

D2(n) − μn

σn

d	⇒ N (0,1) as n → ∞.

Following simulations, it was noted in [10] that the bound 1/6 above is too small.
Our simulations in Section 6 suggest that the bound should be closer to 2.

By adjusting the proof of Theorem 5.3 to an alphabet set of any size |L| > 1,
we can improve the bound on α from 1/6 to 1/2. Thus we have the following
theorem.

THEOREM 5.4. Let L be an alphabet set of size |L| > 1 with nonuniform
probability measure ξ . Then for m = α log1/p2

(n) + C with 0 ≤ α < 1/2,

D2(n) − μn

σn

d	⇒ N (0,1) as n → ∞.

PROOF. From the lower bound for D2 in [10],

Var(D2) ≥ n̄2
[
(2m − 1)(2n̄ − 4m + 2)p2m

2 (p3/p
2
2 − 1)

+ pm
2

(
1 + p2 − 2p2

2

1 − p2
− (2m − 1)pm

2

)]

∼ α log1/p2
(n)(n3−2α) since (p3/p

2
2 − 1) > 0 by Remark 3.3.

Hence, in (10) in the proof of Theorem 5.3 we now have

(Nn/Mn)
1/tMnCn

σn

= (n̄2/((2m − 1)(2n̄ − 2m + 1)))1/t (2m − 1)(2n̄ − 2m + 1)

σn

≤
(

n̄2

(2m − 1)(2n̄ − 2m + 1)

)1/t

(2m − 1)(2n̄ − 2m + 1)
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×
(
n̄

[
(2m − 1)(2n̄ − 4m + 2)p2m

2

(
p3

p2
2

− 1
)

+ pm
2

(
1 + p2 − 2p2

2

1 − p2
− (2m − 1)pm

2

)]1/2)−1

∼ (α log1/p2
(n))1−1/tn1+1/t

[α log1/p2
(n)n3−2α]1/2 = (α log1/p2

(n))1/2−1/t

n1/2−1/t−α

→ 0 as n → ∞, if 1/2 − 1/t − α > 0.

The rest of the proof is the same as the proof of Theorem 5.3. �

REMARK 5.5. When the underlying distribution is uniform, Var(D(k)
2 ) ∼

n2p2m
2 . Hence, this method of proof fails to show normal asymptotic behavior

in the uniform case. In fact, for k = 0, the distribution of D
(0)
2 is not normal when

|L| = 2,m = 1 and n → ∞ (see [10]).

6. Numerical simulations. We have carried out numerical simulations of
pairs of randomly generated sequences of length n = 100 × 2i , i = 0, . . . ,4
with the nonuniform letter distribution ξA = ξT = 1

3 , ξC = ξG = 1
6 . The statis-

tic D
(k)
2 was calculated for each sequence pair using an algorithm based on that

given in [12]. Kolmogorov–Smirnov p-values [4] for the standardized statistic
(D

(k)
2 −μn)/σn compared with the standard normal distribution for sample sizes of

2500 sequence pairs are shown in Figure 1. Samples of D
(k)
2 which are a close ap-

proximation to the normal distribution will have p-values distributed uniformly on
the interval [0,1], whereas samples which are a poor approximation to the normal
distribution will have small p-values.

Entries in the tables in Figure 1 are shaded to indicate proximity of samples to
the standard normal distribution, with lighter shades signaling a better agreement.
The white diagonal line in each table is m = 2 log1/p2

n + const. The numerical
evidence strongly suggests that

D
(k)
2 − μn

σn

d	⇒ N (0,1) as n → ∞,

where the limit is taken along any line m = α log1/p2
(n) + C with 0 ≤ α < 2 for

fixed k and C.

7. Conclusions. We have studied the D
(k)
2 statistic as suggested in [12], and

defined it as the number of m-word matches with up to k mismatches between two
sequences of length n, for strand-symmetric Bernoulli texts with a nonuniform
letter distribution. We have extended methods applied in [10] to give upper and
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FIG. 1. Kolmogorov–Smirnov p-values for nonuniform D
(k)
2 with letter distribution ξA = ξT = 1

3 ,

ξC = ξG = 1
6 compared with a normal distribution. The white diagonal lines are

m = α log1/p2
n + const., with α = 2 and 1/p2 = 1/

∑
a∈{A,C,G,T } ξ2

a = 18
5 .
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lower bounds on the variance, and have also studied the asymptotic behavior as
the sequence length n and word length m tend to infinity for fixed k.

We have proved that the asymptotic distributional behavior of D
(k)
2 is normal as

n → ∞ for a pair of strand-symmetric Bernoulli texts provided the limit is taken
along any line m = α log1/p2

n + C with 0 ≤ α < 1
2 . For k = 0 this result is also

shown to hold for a pair of Bernoulli texts with any nonuniform letter distribution.
This improves the previous bound for the k = 0 case of α < 1

6 given in [10].
We have also carried out numerical simulations of strand-symmetric texts with

letter distribution ξA = ξT = 1
3 , ξC = ξG = 1

6 . These simulations strongly suggest
that the optimum restriction on asymptotic normal behavior may be as high as
α < 2. This is consistent with simulations in [10] and their result that the asymp-
totic distributional behavior of D

(0)
2 is a compound Poisson distribution for α ≥ 2.

List of notations.

D2: The number of m-letter word matches between two given sequences.
D

(k)
2 : The number of m-letter word matches with up to k mismatches (0 ≤ k ≤ m)
between two given sequences.

gk(m,η, c): The perturbed binomial distribution (Definition 2.2). Given a strand-
symmetric Bernoulli text of length m and perturbation parameter η, and an m-
word with GC-content c, this is the probability distribution of the number of
character mismatches between the text and the m-word.

Gk(m,η, c): The cumulative distribution function of the perturbed binomial dis-
tribution gk(m,η, c).

hk(m,η, c): For a given m-word with GC-content c, the probability that the word
occurs at a given site in a strand-symmetric Bernoulli string with perturbation
parameter η. (See Definition 2.2.)

Ju: The dependency neighborhood of Y
(k)
u , where u = (i, j); that is, the word

locations v = (i ′, j ′) such that either the word at i ′ overlaps the word at i in the
first sequence, or the word at j ′ overlaps the word at j in the first sequence, or
both. (See Definition 4.3.)

J a
u : The accordion, that is, the subset of Ju such that both the word at i ′ overlaps

the word at i in the first sequence, and the word at j ′ overlaps the word at j in
the first sequence.

J c
u : The crabgrass, that is, the subset of Ju such that either the word at i ′ overlaps

the word at i in the first sequence, or the word at j ′ overlaps the word at j in
the first sequence, but not both.

k: The number of mismatches.
m: The word length.
n: The length of each of the two sequences.
n̄: n − m + 1, the number of possible locations of an m-word in a sequence of

length n.
pt :

∑
a∈L ξ t

a , where the sum is taken over the alphabet L.
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uk(m,η, c), vk(i, η, c): Functions occurring in the definition of gk(m,η, c). (See
Definition 2.2.)

Y
(k)
u or Y

(k)
ij : The indicator random variable for the event that the m-word start-

ing at position i in the first sequence has no more than k mismatches with the
m-word starting at position j in the second sequence. We use the convention
u = (i, j), v = (i′, j ′) throughout.

η: The perturbation parameter for a strand-symmetric Bernoulli text. (See Sec-
tion 2.)

ξa : The probability of finding the letter a at a given location in a strand-symmetric
Bernoulli string.
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