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THE TWO-TYPE RICHARDSON MODEL WITH UNBOUNDED
INITIAL CONFIGURATIONS
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Stockholm University and Chalmers University of Technology

The two-type Richardson model describes the growth of two compet-
ing infections on Z

d and the main question is whether both infection types
can simultaneously grow to occupy infinite parts of Z

d . For bounded initial
configurations, this has been thoroughly studied. In this paper, an unbounded
initial configuration consisting of points x = (x1, . . . , xd) in the hyperplane
H = {x ∈ Z

d : x1 = 0} is considered. It is shown that, starting from a con-
figuration where all points in H\{0} are type 1 infected and the origin 0 is
type 2 infected, there is a positive probability for the type 2 infection to grow
unboundedly if and only if it has a strictly larger intensity than the type 1
infection. If, instead, the initial type 1 infection is restricted to the negative
x1-axis, it is shown that the type 2 infection at the origin can also grow un-
boundedly when the infection types have the same intensity.

1. Introduction. One of the simplest models for spatial growth and competi-
tion is the Richardson model, introduced in Richardson [13]. The original version
describes the growth of a single infectious entity on Z

d , but the mechanism can be
extended to comprise two entities, making it a model for competition on Z

d ; see
Häggström and Pemantle [7, 8]. This paper is concerned with the two-type version
of the model in d ≥ 2 dimensions, started from a configuration where one of the
entities occupies one single site in an infinite “sea” of the other entity.

The dynamics of the one-type Richardson model are such that an uninfected site
becomes infected at a rate proportional to the number of infected nearest neighbors
and, once infected, it never recovers. This is equivalent to first-passage percolation
with i.i.d. exponential passage times. The main result, dating back to Richard-
son [13] and Kesten [10], is that, for bounded initial configurations, the infection
grows linearly in time in each direction and, on the scale 1/t , the set of infected
points at time t converges almost surely to a deterministic shape; see Theorem 2.1.

In the two-type version of the model, a second infection type is introduced and
the two infections, referred to as type 1 and type 2, respectively, grow simultane-
ously on Z

d , the dynamics being that an uninfected site becomes type i infected at
a rate proportional to the number of type i infected nearest neighbors and then stays
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(type i) infected forever. The model has two parameters, denoted by λ1 and λ2, in-
dicating the intensities of the infections.

For the two-type Richardson model, the main challenge lies in deciding if it is
possible for both infection types to simultaneously grow to occupy infinite parts
of Z

d . We will denote by Gi the event that the type i infection reaches sites ar-
bitrarily far away from the origin. It has been conjectured that in the two-type
Richardson model in d ≥ 2 dimensions, started from one single site of each in-
fection type, the event G1 ∩ G2 has positive probability if and only if λ1 = λ2;
see Häggström and Pemantle [7]. The if direction of the conjecture was proved for
d = 2 by Häggström and Pemantle [7] and, in the general case, independently by
Garet and Marchand [6] and Hoffman [9].

As for the “only if” direction of the conjecture, the best result to date is that,
with one of the intensities fixed, mutual unbounded growth has probability 0 for
all but at most countably many values of the other intensity; see Häggström and
Pemantle [8]. The full result would indeed follow from this if it could be proven
that the probability of the event G1 ∩G2 is monotone, in the sense that it decreases
as the difference between the intensities increases. This monotonicity is certainly
believed to hold on the Z

d -lattice. However, it has turned out to be very hard to
prove and, in fact, there are other graphs where it actually fails; see Deijfen and
Häggström [2]. On the other hand, in Deijfen and Häggström [3], it is shown that,
as long as we restrict ourselves to bounded initial configurations on Z

d , the partic-
ular choice of initial sets is not important in deciding whether the event of mutual
unbounded growth for the two infection types has positive probability or not.

The purpose of the present paper is to study the two-type Richardson model with
unbounded initial configurations. The question is as before: can both types simul-
taneously infect infinitely many sites? With infinite initial configurations for both
types, the answer is (other than in absurd cases) obviously “yes.” We therefore re-
strict to cases where type 1 starts with infinitely many sites and type 2 with finitely
many (for concreteness, only one) and the question of coexistence then reduces to
that of whether type 2 can survive. Write (x1, . . . , xd) for the coordinates of a point
x ∈ Z

d and define H = {x :x1 = 0} and L = {x :x1 ≤ 0 and xi = 0 for all i ≥ 2}.
Writing 0 for the origin, the initial configurations that we will consider are

I (H) : all points in H\{0} are type 1 infected and
0 is type 2 infected;

I (L) : all points in L\{0} are type 1 infected and
0 is type 2 infected.

(1)

Interestingly, it turns out that the set of parameter values that allows for coexis-
tence is slightly different for these two configurations. Let P

λ1,λ2
H ,0 (resp. P

λ1,λ2
L,0 )

denote the probability measure associated with a two-type process started from
configuration I (H) (resp. I (L)) and note that, by time scaling, we may restrict
our attention to the case λ1 = 1. Our main result is as follows.
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THEOREM 1.1. For the Richardson model in d ≥ 2 dimensions, we have:

(a) P
1,λ
H ,0(G2) > 0 if and only if λ > 1;

(b) P
1,λ
L,0(G2) > 0 if and only if λ ≥ 1.

In words, when the type 2 infection is strictly stronger than the type 1 infection,
there is a positive probability for the type 2 infection to grow unboundedly in
both configurations. Intuitively, the type 2 infection can use its higher intensity to
rush away along the x1-axis and achieve an unsurpassable lead over the type 1
infection. When the infection types have the same intensity, the type 2 infection
can grow unboundedly from the configuration I (L), but not from I (H), where
the initial disadvantage for the type 2 infection turns out to be too severe.

Before proceeding, we mention the following question, which has been pointed
out to us by Itai Benjamini as well as an anonymous referee: Consider the case
when the infections have the same intensity (i.e., λ = 1) and assume that the type 1
infection occupies not only the negative x1-axis (as in I (L)), but a cone around it.
What is the critical slope of the cone for which there is a positive probability for the
type 2 infection at the origin to grow unboundedly? It seems likely, as suggested to
us by Itai Benjamini, that the critical case is when the cone fills the whole left half-
space. That the type 2 infection cannot survive when the type 1 infection occupies
the whole left half-space follows from Theorem 1.1(a). That infinite type 2 growth
has positive probability for any smaller type 1 cone remains to be proven and goes
beyond the scope of this paper.

The rest of the paper is organized as follows. In Section 2, some results are
described for a one-type process started with the entire hyperplane H infected at
time 0. These results are then used in Sections 3, 4 and 5 to prove the claims in
Theorem 1.1 for λ > 1, λ = 1 and λ < 1 respectively; these cases will be referred to
as supercritical, critical and subcritical. Finally, some concluding remarks appear
in Section 6.

2. The one-type process started from H . In this section, we recall from the
literature the results needed to deduce that the asymptotic speed along the x1-axis
of the growth in a one-type process started with all sites in H infected at time 0
is the same as the asymptotic speed along the axes in a one-type process started
from the origin. We also state a result on the rate of convergence of the speed,
originating with Kesten [11], and introduce a hampered version of the process
where only edges in a certain part of Z

d can be used.
First, consider a one-type process with intensity λ started from the origin. In

such a process, each edge e of the Z
d -lattice has an exponential random variable

τ(e) with parameter λ associated with it. The travel time of a path � is defined as

T (�) := ∑
e∈�

τ(e)
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and, for x ∈ Z
d , the time when the point x is infected is given by

T 0(x) := inf{T (�) :� is a path from 0 to x}.
Write n = (n,0, . . . ,0). A basic result then, obtained from the subadditive ergodic
theorem, is the existence of a constant µλ > 0 such that T 0(n)/n → µλ almost
surely and in L1 as n → ∞; see, for example, Kingman [12]. Defining µ = µ1, it
follows from a simple time-scaling argument that µλ = µλ−1, hence we have

lim
n→∞

T 0(n)

n
= µλ−1 a.s. and in L1.(2)

More generally, for any x ∈ Z
d with x �= 0, there is a constant µ(x) > 0 such

that T 0(nx)/n → µ(x)λ−1 as n → ∞. Hence, the infection grows linearly in each
fixed direction and the asymptotic speed of growth is an almost sure constant. That
this is also true when all directions are considered simultaneously is stated in the
shape theorem, which is the main result for the model. To formulate it, write ξ0(t)

for the set of infected points at time t in a process started from the origin and let
ξ̄0(t) ⊂ R

d be a continuum version of ξ0(t) obtained by replacing each x ∈ ξ0(t)

by a unit cube centered at x.

THEOREM 2.1. There exists a compact convex set A such that, for any ε > 0,
almost surely

(1 − ε)λA ⊂ ξ̄0(t)

t
⊂ (1 + ε)λA

for large t .

An “in probability” version of this result was established by Richardson [13]
and strengthened to the present form by Kesten [13]. Note that A is the unit ball in
the norm defined by µ(x), that is, A = {x :µ(x) ≤ 1}.

Now, consider the Richardson model started with all sites in the hyperplane H
infected. We will show that the asymptotic speed of growth in the direction of the
x1-axis in such a process is, in fact, the same as the speed of growth along the axes
in a process started with only the origin infected. To this end, write T H (x) for the
time when the point x ∈ Z

d is infected in a process started from H .

PROPOSITION 2.2. In the unit rate one-type process, we have, as n → ∞,
that T H (n)/n → µ in L1.

PROOF. Let Hn be the hyperplane at x1-coordinate n, that is, Hn = {x ∈
Z

d :x1 = n}. (In this notation, we have H = H0.) The first important observa-
tion is that, in the first-passage percolation representation of the model that is used
in this paper, the time when the point n is infected in a process started from H is
the same as the time when the first (in time) point belonging to H is infected in
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a process started from n. Furthermore, the minimal travel time from n to H has
the same distribution as the minimal travel time from the origin to Hn, which we
denote by T 0(Hn). Hence, we have that

T H (n)

n

d= T 0(Hn)

n
,(3)

where d= denotes equality in distribution. Just as in establishing (2), the subad-
ditive ergodic theorem can be applied to show that T 0(Hn)/n converges in L1
(and almost surely) to a constant c. Using (3), the proposition follows if we can
show that c = µ. Clearly, since n ∈ Hn, we have T 0(Hn) ≤ T 0(n), which gives
c ≤ limn T 0(n)/n = µ. The reverse inequality follows from the fact that the as-
ymptotic shape of a process started from the origin is convex. Indeed, having
c < µ would contradict the convexity of the asymptotic shape A stipulated in The-
orem 2.1. Hence, c = µ, as desired. �

Next, we state a result on the convergence rate in (2). The result originates with
Kesten [11] and is formulated here for the time T 0(Hn) when the hyperplane Hn

is reached by the infection. In the original formulation, the estimate concerns the
time T 0(n) when the single point n is infected, but it is pointed out that the bound
also applies to passage times to hyperplanes. Kesten [11] also contains results on
the convergence rate in the shape theorem; related results, improving some of the
bounds of Kesten, can be found in Alexander [1].

THEOREM 2.3 (Kesten [11]). There exist constants c1, c2 and c3 such that

P
(∣∣∣∣T 0(Hn) − E[T 0(Hn)]√

n

∣∣∣∣ ≥ x

)
≤ c1e

−c2x for x ≤ c3n.

Combining this estimate with Proposition 2.2 gives the following lemma, which
will be useful in controlling the type 1 infection in a two-type process started
according to I (H).

LEMMA 2.4. In a unit rate one-type process, for any ε > 0, there exist con-
stants c and c′ such that

P
(
T H (n) ≤ (1 − ε)nµ

) ≤ ce−c′√n(4)

for large n.

PROOF. Trivially, we have

P
(
T H (n) ≤ (1 − ε)nµ

) ≤ P
(|T H (n) − nµ| ≥ εnµ

)
.

To obtain |T H (n) − nµ| ≥ εnµ, by the triangle inequality, at least one of the
quantities |T H (n) − E[T H (n)]| and |E[T H (n)] − nµ| must exceed εnµ/2. By
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Proposition 2.2, we will, indeed, not have |E[T H (n)] − nµ| ≥ εnµ/2 when n is
large, hence

P
(|T H (n) − nµ| ≥ εnµ

) ≤ P
(
|T H (n) − E[T H (n)]| ≥ εnµ

2

)
for large n. As observed in the proof of Proposition 2.2, the passage time T H (n)

has the same distribution as T 0(Hn). Choosing x = √
nεµ/2 (which is clearly

smaller than c3n when n is large) in Theorem 2.3, we hence obtain

P
(
|T H (n) − E[T H (n)]| ≥ εnµ

2

)
≤ c1e

−√
nεµc2/2

and the lemma follows. �

Using Lemma 2.4, it turns out that we can establish that the convergence in
Proposition 2.2 also holds in the almost sure sense.

PROPOSITION 2.5. As n → ∞, we have that T H (n)/n → µ almost surely.

PROOF. We need to show that for any ε > 0,

lim sup
n→∞

T H (n)

n
≤ (1 + ε)µ(5)

almost surely and that

lim inf
n→∞

T H (n)

n
≥ (1 − ε)µ(6)

almost surely. First, note that (2) implies that (5) holds with T 0(n) in place of
T H (n). But, obviously, T H (n) ≤ T 0(n), so (5) is established.

Next, in order to show (6), fix N < ∞ in such a way that (4) holds for all n ≥ N .
From Lemma 2.4, we then have that the expected number of n ≥ 0 for which the
event {T H (n) ≤ (1 − ε)nµ} happens is at most

N +
∞∑

n=N

ce−c′√n,

which is finite. Hence, by the Borel–Cantelli lemma, (6) is established. �

The last consideration before moving on to the two-type process is to show
that the growth of a one-type process restricted to a “tube” around the x1-axis be-
haves approximately as an unrestricted process when the tube is large. This will
be needed to control the type 2 infection at the origin in a two-type process started
from the configuration I (H). To formulate the result, we introduce a new, ham-
pered version of the one-type process by placing “walls” in Z

d restricting the
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growth in all directions except one. More precisely, we consider a process with
the same dynamics as the original one, but where only sites in the set

�b := {x ∈ Z
d : |xi | ≤ b for all i �= 1}(7)

are susceptible to the infection. We write ξb∗(t) for the set of infected points at time
t in such a process, started with a single infection at the origin 0. The following
lemma says that �b is filled with infection linearly in time.

LEMMA 2.6. Consider a hampered one-type process with rate λ. For any di-
mension d , there is a real number µλ,b > 0 such that, for any ε ∈ (0,µ−1

λ,b), almost
surely

{x ∈ �b : |x1| ≤ (1 − ε)tµ−1
λ,b} ⊂ ξb∗(t) ⊂ {x ∈ �b : |x1| ≤ (1 + ε)tµ−1

λ,b}
for all sufficiently large t .

Being a completely standard adaptation of the proof of the shape theorem, the
proof of this lemma is omitted.

The constant µλ,b is the analog of µλ−1 in the unhampered process. That is, if
T b∗(x) denotes the time when the point x is infected in a hampered process, then
we have µλ,b = limn T b∗(n)/n. When b is large, it is reasonable to expect that the
speed of growth in the hampered process is close to the speed of an unhampered
process and hence that µλ,b is close to µλ−1 for large b. This intuition is confirmed
by the next lemma.

LEMMA 2.7. As b → ∞, we have that µλ,b → µλ−1.

The proof of this lemma is again a straightforward adaptation, this time of the
proof of Lemma 4.4 in Deijfen, Häggström and Bagley [4], where the same result
is established for a continuum counterpart of the Richardson model. It is therefore
omitted.

3. The supercritical case. Our main task in this section is to prove coexis-
tence when λ > 1.

PROPOSITION 3.1. For any λ > 1 and any d ≥ 2, we have

P
1,λ
H ,0(G2) > 0.

Here and later, we will make use of the following convenient way of construct-
ing the two-type Richardson model: attach to each edge e in the edge set EZd

of the Z
d -lattice independently two independent exponential variables τ1(e) and

τ2(e) with mean 1 (resp. λ−1), indicating the time it takes for the type 1 (resp.
type 2) infection to traverse the edge.
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PROOF OF PROPOSITION 3.1. Fix λ > 1. For a hampered one-type process
in a region �b, as in (7), Lemma 2.7 tells us that limb→∞ µλ,b → µλ−1 and, since
µλ−1 < µ, we have µλ,b < µ when b is sufficiently large. Fix such a b and define

�+
b = {x ∈ �b :x1 ≥ 1}.

For x ∈ Z
d , define S1,H\{0}(x) as inf�

∑
e∈� τ1(e), where the infimum is over all

paths starting at H \ {0} and ending at x. Furthermore, for x ∈ �+
b , define S

2,0
b (x)

as inf�
∑

e∈� τ2(e), where, this time, the infimum is over all paths starting at 0 and
passing through vertices in �b only.

The point of these definitions is the following observation, which is easy to see
and which turns out to be instrumental in proving Proposition 3.1.

Suppose that at least one vertex in �+
b is eventually infected by type 1

and let x be the first (in time) vertex in �+
b for which this happens. We

then have

S1,H\{0}(x) ≤ S
2,0
b (x).

So, if we can show that

P
(
S1,H\{0}(x) > S

2,0
b (x) for all x ∈ �+

b

)
> 0,(8)

then we know that, with positive probability, all x ∈ �+
b eventually become in-

fected by type 2, and the proposition follows.
To do this, define µ∗ = µ+µλ,b

2 so that µλ,b < µ∗ < µ and note that, by Propo-
sition 2.5, we have the existence of some (random) M1 < ∞ such that

S1,H\{0}(x) > µ∗x1 for all x ∈ �+
b with x1 > M1.

Likewise, Lemma 2.6 guarantees the existence of some (again random) M2 < ∞
such that

S
2,0
b (x) < µ∗x1 for all x ∈ �+

b with x1 > M2.

Taking M = max{M1,M2} yields

S1,H\{0}(x) > S
2,0
b (x) for all x ∈ �+

b with x1 > M,

which is very close to proving (8). To rigorously get from here to (8), we employ
the following conditioning argument. Choose an m such that

P
(
S1,H\{0}(x) > S

2,0
b (x) for all x ∈ �+

b with x1 > m
)
> 0(9)

and define E
+,m
b as the set of edges 〈x, y〉 ∈ EZd such that either

x = 0 and y = 1 = (1,0, . . . ,0)

or

x, y ∈ �+
b , x1 ≤ m,y1 ≤ m + 1.



THE TWO-TYPE RICHARDSON MODEL 1647

We write Dm for the event in (9). We will condition on the τ1(e) variables for all
edges e ∈ EZd , together with the τ2(e) variables for all edges e ∈ EZd \ E

+,m
b . Let

A be the event that

P
(
Dm|{τ1(e)}e∈E

Zd
, {τ2(e)}e∈E

Zd \E+,m
b

)
> 0(10)

and note that since P(Dm) > 0, we must also have P(A) > 0. On the event A,
there exists a random γ > 0 (depending on {τ1(e)}e∈E

Zd
and {τ2(e)}e∈E

Zd \E+,m
b

)

such that if τ2(e) < γ for all e ∈ E
+,m
b , then Dm occurs. By further decreasing

γ > 0, we can also ensure (due to the fact that S1,H\{0}(x) > 0 for all x almost
surely) that if τ2(e) < γ for all e ∈ E

+,m
b , then we also have

S1,H\{0}(x) > S
2,0
b (x) for all x ∈ �+

b with x1 ≤ m.

Finally, note that on the event A—that is, under the conditioning in (10)—the prob-
ability that τ2(e) < γ for all e ∈ E

+,m
b is strictly positive; this is simply because

the edge set E
+,m
b is finite and γ > 0. Hence,

P
(
S1,H\{0}(x) > S

2,0
b (x) for all x ∈ �+

b |A)
> 0.

Since P(A) > 0, (8) follows and the proof is complete. �

The other result concerning the supercritical case that we need to prove is the
following.

COROLLARY 3.2. For any λ > 1 and any d ≥ 2, we have

P
1,λ
L,0(G2) > 0.

One way to prove this, is to note that the proof of Proposition 3.1 can be easily
adapted to handle the corollary. Or, to be a bit more careful, we can invoke the
proposition itself, together with the following easy lemma. For disjoint subsets ξ1

and ξ2 of Z
d , write P

λ1,λ2
ξ1,ξ2

for the law of the two-type process with parameters λ1
and λ2, with all sites in ξ1 initially infected by type 1, all in ξ2 by type 2 and all
others uninfected.

LEMMA 3.3. Suppose that ξ1 and ξ2 are disjoint subsets of Z
d , and ξ ′

1 and ξ ′
2

likewise. If ξ1 ⊆ ξ ′
1 and ξ2 ⊇ ξ ′

2, then

P
λ1,λ2
ξ1,ξ2

(G2) ≥ P
λ1,λ2
ξ ′

1,ξ
′
2

(G2).

PROOF. Couple the two processes using the same τ1(e) and τ2(e) variables.
Writing (ξ1(t), ξ2(t)) for the state of the first process at time t in the obvious way
and similarly for the second process, it is straightforward to show that the relations
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ξ1(t) ⊆ ξ ′
1(t) and ξ2(t) ⊇ ξ ′

2(t) are preserved as t increases. Letting t → ∞ proves
the lemma. �

PROOF OF COROLLARY 3.2. Define L′ in the same way as L, except with
the roles of the x1- and x2-coordinates interchanged, that is, let

L′ = {x :x2 ≤ 0 and xi = 0 for all i �= 2}.
Then, by symmetry, we have P

1,λ
L′,0(G2) = P

1,λ
L,0(G2). But, since L′ ⊂ H , we can

invoke Lemma 3.3 in order to deduce that P
1,λ
L′,0(G2) ≥ P

1,λ
H ,0(G2), the latter prob-

ability being positive by Proposition 3.1. �

4. The critical case. The critical case λ = 1 is, in some ways, the most inter-
esting, particularly in view of the fact that whether or not a single type-2 infection
at the origin has a chance to survive against an infinite army of type-1 enemies
depends on whether these initially get to occupy all of H \ {0} or just L \ {0}. The
two results we need to prove in this section are the following.

PROPOSITION 4.1. For any d ≥ 2, we have P
1,1
H ,0(G2) = 0.

PROPOSITION 4.2. For any d ≥ 2, we have P
1,1
L,0(G2) > 0.

For λ = 1, it is often convenient to replace the construction following Proposi-
tion 3.1 by one that involves not two but just one travel time variable τ(e) asso-
ciated with each e ∈ EZd . Here, the τ(e)’s are taken to be i.i.d. exponentials with
mean 1 and represent the time it takes for either of the two infection types to tra-
verse the edge. We will employ this construction in the proofs of both Propositions
4.1 and 4.2. A nice feature of the construction is the following. Suppose that the
process starts at time 0 with the nodes in ξ1 ⊂ Z

d infected by type 1 and the nodes
in ξ2 ⊂ Z

d infected by type 2. We write T ξ1(x) for inf�
∑

e∈� τ(e), where the infi-
mum is over all paths starting in ξ1 and ending at x, and define T ξ2(x) analogously.
Then, x becomes infected precisely at time min{T ξ1(x), T ξ2(x)} and, furthermore,

x gets infected by type 1 if and only if T ξ1(x) < T ξ2(x).(11)

The following lemma (an easy variation of Lemma 3.3) will be useful in the
proof of Proposition 4.1.

LEMMA 4.3. Consider the (one-type) Richardson model with parameter 1 on
a bounded degree graph L with vertex set V and edge set E starting at time 0 with
the set ξ ⊂ V initially infected. Also, consider the same model with parameter 1
on another graph L′ = (V ′,E′) starting at time 0 with the set ξ ′ ⊂ V ′ initially
infected. If L is a subgraph of L′, in the sense that V ⊆ V ′ and E ⊆ E′, and,
furthermore, we have ξ ⊆ ξ ′, then, for any t > 0 and any η ⊂ E, the probability
that all vertices in η are infected at time t is no greater for the process on L than
for the process on L′.
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PROOF. Simply couple the two processes in such a way that for each e ∈ E,
they use the same τ(e) variable. �

PROOF OF PROPOSITION 4.1. We will show that

P(type 2 infects infinitely many sites in the half-space {x :x1 ≥ 1}) = 0.(12)

Once that is done, we can, by symmetry, infer the corresponding statement for the
other half-space and thus conclude that P(G2) = 0.

Recall, for integer b, that Hb is the set of vertices x ∈ Z
d whose x1-coordinate

is b (so that, in particular, H0 = H ). For x ∈ Z
d and y ∈ H , we write y → x for

the event that the infimum T H (x) is obtained by a path from y to x. Beginning
with all nodes in H infected, we think of y → x as meaning that the infection
eventually hitting x descends from y. Since the τ(e)’s are independent with a
continuous distribution, we have, for fixed x, that the event y → x happens for
only one y almost surely (i.e., there are no ties). Thus,∑

y∈H

P(y → x) = 1.(13)

Fix b ≥ 1, y, y′ ∈ H and x, x′ ∈ Hb in such a way that x and y differ only in
their first coordinate, likewise for x′ and y′. Symmetry implies that

P(y → x′) = P(y′ → x)

and, in conjunction with (13), this implies that∑
x∈Hb

P(y → x) = 1(14)

for any y ∈ H . Let Xb denote the number of sites x ∈ Hb such that 0 → x. Then,
to prove (12) is the same as showing that

P

( ∞∑
b=1

Xb = ∞
)

= 0.(15)

By (14), we have E[Xb] = 1, whence P(Xb = ∞) = 0 for any b, so in order to
prove (15), it is enough to show that

P
(

lim
b→∞Xb = 0

)
= 1.(16)

Ideally, since E[Xb] = 1 for each b, we would now like to endow the sequence
(X1,X2, . . .) with a martingale structure (with respect to some filtration). Since a
nonnegative martingale converges almost surely and this one presumably could not
converge to anything other than 0, that would settle (16). But we cannot see how
to do this (it is probably not even possible) and will settle for a different solution
that, although a bit less clean, is still reminiscent of a martingale approach.
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To this end, we first define, for x ∈ Z
d with x1 ≤ b and y ∈ H , the passage time

T
y
b (x) as inf�

∑
e∈� τ(e), where the infimum is over all paths from y to x that do

not pass through any vertex z with z1 > b. Also, define

T H
b (x) = inf

y∈H
T

y
b (x)(17)

and for y′ ∈ H , let y′ b→ x denote the event that the infimum in (17) is attained for

y = y′. Finally, write X∗
b for the number of vertices in Hb such that 0

b→ x. By the
same argument as for Xb, we have, for any b ≥ 1, that

E[X∗
b] = 1.(18)

We now claim, crucially, that

{Xb ≥ 1} implies {X∗
b ≥ 1}.(19)

To see this, assume that Xb ≥ 1 and take x to be the vertex among those in Hb

satisfying 0 → x for which T 0(x) is smallest. Then, the path from 0 to x cannot
pass through any other vertex z in Hb (because if that were the case, z would
satisfy 0 → z with a smaller T 0

z ). Hence, T 0
b (x) = T 0(x). Since T

y
b (x) ≥ T y(x)

for all y ∈ H , it follows that 0
b→ x and the claim (19) is warranted.

Now, write G∗
2 for the event that lim supb→∞ X∗

b > 0. Using (19), we can show
that (16)—and thereby the proposition—follows if we can show that

P(G∗
2) = 0,(20)

so this is what we set out to prove.
Our argument will involve the filtration {Fb}∞b=0, where Fb is the σ -field gen-

erated by the τ(e)-variables for all edges e = 〈x, y〉 with x1, y1 ≤ b. Note that, for

x ∈ Hb, the event 0
b→ x and the random variables T H

b (x), T 0
b (x) and X∗

b are all
Fb-measurable. Lévy’s 0-1 law (see, e.g., Durrett [5]) tells us that

lim
b→∞ P(G∗

2|Fb) = IG∗
2

(21)

almost surely, where IG∗
2

is the indicator of the event G∗
2. The conclusion of the

argument will be to show that, with probability 1, P(G∗
2|Fb) does not converge

to 1.
Fix ε > 0 small, in such a way that n = 2

ε
is an integer. For x, y ∈ Z

d , write
dist(x, y) for the graph-theoretic distance between x and y in the Z

d lattice. We
claim that there exists a u < ∞ such that, for any b, the event Db,u has probability
at most ε

2 , where we define Db,u as the event that

X∗
b ≤ n, while, for some x, y ∈ Hb such that 0

b→ x and dist(x, y) ≤ n,
we have T H

b (y) ≥ T H
b (x) + u.
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To see this, we will invoke a comparison with the classical one-type Richardson
model on Z

d−1 with infection rate 1 and starting at time 0 with a single infection
at the origin. Since, almost surely, any finite set of sites is eventually infected in
this model, we can find a u such that the probability that all sites within distance n

from the origin are infected by time u is at least 1 − ε
2n

.
Returning to the model in Z

d , consider (for some fixed k ∈ {1, . . . , n}) the ver-

tex x that has the kth smallest value of T H
b (x) among those for which 0

b→ x

(provided at least k such vertices exist). For a fixed realization of the process up
to time T H

b (x), a stochastic domination argument now shows that the probability
that all sites in Hb within distance n from x are infected by time T H

b (x) + u is
at least 1 − ε

2n
; to see this, apply Lemma 4.3 with L equal to Hb with edges be-

tween Euclidean nearest neighbors (this graph is isomorphic to Z
d−1) and ξ = {x},

L′ equal to Z
d restricted to vertices z with z1 ≤ b and ξ ′ equal to the set of vertices

infected by time T H
b (x) in the original process.

Summing the resulting complementary probability bound ε
2n

from 1 to n gives
the desired bound

P(Db,u) ≤ ε

2
.

Furthermore, Markov’s inequality applied to (18) yields P(X∗
b > n) ≤ 1

n
= ε

2 . If
we now define the event

D̃b,u = Db,u ∪ {X∗
b > n},

we obtain

P(D̃b,u) ≤ ε

2
+ ε

2
= ε.

Let ¬ denote set complement. The next crucial claim is that (given ε > 0 as above)
there exists a δ > 0 (independent of b) such that the event ¬D̃b,u implies

P(X∗
b+1 = 0|Fb) ≥ δ.(22)

To see this, assume that ¬D̃b,u occurs and consider the following event Ab,u

which, together with ¬D̃b,u, is enough to guarantee that X∗
b+1 = 0. Namely, let

Ab,u be the event that:

• for all e = 〈x, y〉 with y ∈ Hb+1, x ∈ Hb, 0
b�→ x and x within distance n from

some z ∈ Hb such that 0
b→ z, we have τ(e) ≤ 1;

• for all e = 〈x, y〉 with x, y ∈ Hb+1 within distance n + 1 from some z ∈ Hb

such that 0
b→ z, we have τ(e) ≤ 1;

• for all e = 〈x, y〉 with y ∈ Hb+1, x ∈ Hb and 0
b→ x, we have τ(e) ≥ u+n+ 1.
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The point of this definition is that if ¬D̃b,u and Ab,u occur, then none of the
vertices z ∈ Hb with 0

b→ z will have time to infect their neighbor in Hb+1 before
infection creeps in from another direction, and therefore X∗

b+1 will equal 0. These
requirements on Ab,u are guide restrictive, but note that, on the event ¬D̃b,u, there
are at most n edges e for which we require that τ(e) ≥ u + n + 1 and there are at
most nd(2n)d−1 edges e for which we require that τ(e) ≤ 1. Thus, on the event
¬D̃b,u, we have

P(Ab,u|Fb) ≥ (
e−(u+n+1))n(1 − e−1)nd(2n)d−1

,

which is a small number indeed, but strictly positive, and the whole point of this
exercise is that it does not depend on b. Thus, we have for any b on the event
¬D̃b,u that (22) holds with δ = (e−(u+n+1))n(1 − e−1)nd(2n)d−1

. Since X∗
b+1 = 0

precludes G∗
2, we also have on the event ¬D̃b,u that

P(G∗
2|Fb) ≤ 1 − δ.

So, in order for the limit limb→∞ P(G∗
2|Fb) in (21) to equal 1, we need D̃b,u

to occur for all sufficiently large b. But D̃b,u was defined in such a way as to
guarantee that P(D̃b,u) ≤ ε for any b, so we can conclude that P(G∗

2) ≤ ε. Since
ε > 0 could be taken to be arbitrarily small, we obtain P(G∗

2) = 0 and the proof is
complete. �

That was rather involved. Fortunately, the proof of Proposition 4.2 is somewhat
more straightforward.

PROOF OF PROPOSITION 4.2. Recalling the notation n = (n,0, . . . ,0), the
initial configuration in Proposition 4.2 consists of a single type-2 infection at 0,
competing against type-1 infections at −1,−2, . . . . Intuitively, the best hope for
type 2 seems to be to rush off along the positive x1-axis. Assuming this to be the
case and viewing the model in terms of the τ(e)-variables as before, we will set
out to prove that

lim inf
n→∞ P

(
T 0(n) = inf

m≤0
T m(n)

)
> 0.(23)

Note that the event in (23) is precisely the event that the vertex n becomes infected
by type 2. Hence, if we can prove (23), we can deduce that, with positive probabil-
ity, infinitely many vertices on the positive x1-axis are infected and the proposition
will follow.

Symmetry implies that for any n ≥ 1, we have

P
(
T 0(n) = inf

m≤0
T m(n)

)
= P

(
T 0(n) = inf

l≥n
T 0(l)

)
.(24)

We will work with the right-hand side of (24), the advantage of this being that it
has a useful interpretation in terms of the one-type Richardson model. Namely,
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for the one-type model starting at time 0 with a single infected site at the origin,
the event {T 0(n) = infl≥n T 0(l)} is precisely the event that the node n is infected
before any node further away on the positive x1-axis is infected.

To this end, for the one-type Richardson model, define Y(t) as the number of
nodes on the positive x1-axis that are infected by time t . Further, define Y→(t) as
the number of nodes on the positive x1-axis that are infected by time t , with the
additional property that at the time of their infection, they became the rightmost
infected node on the x1-axis.

We have, from (2), that

lim
t→∞

Y(t)

t
= µ−1

almost surely, where µ > 0 is the time constant discussed in Section 2. What about
Y→(t)

t
? At any time t , there exists a rightmost infected node on the x1-axis and this

node infects its neighbor-to-the-right at rate 1. Every time such an infection occurs,
Y→(t) increases by 1. Hence, the process {Y→(t)}t≥0 stochastically dominates a
rate-1 Poisson process, whence

lim inf
t→∞

Y→(t)

t
≥ 1(25)

almost surely. Again by (2), we have, with probability 1, that for any ε > 0, even-
tually all infected nodes on the positive x1-axis at time t have an x1-coordinate
that does not exceed (1 + ε)tµ−1, that is, the number of infected nodes on the
positive x1-axis at time t does not exceed (1 + ε)tµ−1. In conjunction with (25),
this implies that

lim inf
n→∞ n−1

n∑
j=1

I{T 0(j)=infl≥j T 0(l)} ≥ µ

almost surely. Hence, by Fatou’s lemma, we have

lim inf
n→∞ n−1

n∑
j=1

P
(
T 0(j) = inf

l≥j
T 0(l)

)
≥ µ,

implying that

lim inf
n→∞ P

(
T 0(n) = inf

l≥n
T 0(l)

)
≥ µ.

Using the identity (24), this implies (23), and the proof is complete. �

5. The subcritical case. For the subcritical case λ < 1, we shall see that the
following result holds, which is more general than the subcritical cases of both
part (a) and part (b) of Theorem 1.1.
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PROPOSITION 5.1. Consider the two-type Richardson model on Z
d , d ≥ 2,

with types 1 and 2 having respective intensities 1 and λ, starting with type 1 in
ξ1 ⊂ Z

d and type 2 in ξ2 ⊂ Z
d . If ξ1 is infinite, ξ2 is finite and λ < 1, then the event

G2 of unbounded survival for type 2 has probability 0.

It turns out that this result is a direct consequence of the following proposition
which was instrumental in proving the main result in Häggström and Pemantle [8]
mentioned in Section 1. Let A be the asymptotic shape for the Richardson model,
as defined by Theorem 2.1.

PROPOSITION 5.2. For any λ < 1 and any ε > 0, we have

lim
r→∞ sup

ξ1,ξ2

P
1,λ
ξ1,ξ2

(G2) = 0,

where the supremum is over all initial configurations (ξ1, ξ2) such that

ξ2 is contained in rA, while
(26)

ξ1 is not contained in (1 + ε)rA.

In fact, the proposition as stated in Häggström and Pemantle [8] dealt only with
the case where ξ1 was finite, but the generalization to infinite ξ1 follows imme-
diately from Lemma 3.3. Proposition 5.1 now follows from Proposition 5.2 upon
noting that if ξ1 is infinite and ξ2 is finite, then the pair (ξ1, ξ2) satisfies (26) for all
sufficiently large r .

6. Concluding remarks. To see that our main result, Theorem 1.1, has now
been proven is just a matter of collecting the results from the previous three sec-
tions. Theorem 1.1(a) follows from Propositions 3.1 (supercritical case), 4.1 (crit-
ical case) and 5.1 (subcritical case), while Theorem 1.1(b) follows from Corol-
lary 3.2 (supercritical case) and Propositions 4.2 (critical case) and 5.1 (subcritical
case).

We end the paper with the observation that Proposition 4.2 allows us to construct
a simple proof of the fact that infinite coexistence is possible in the critical case
λ = 1 starting from finitely many infected nodes of each type (recall the result of
Deijfen and Häggström [3] that the particular choice of finite initial configurations
does not matter, as long as type 1 does not already “strangle” type 2 or vice versa).
There already exist several proofs of this result—Häggström and Pemantle [7]
produced one for d = 2, while Garet and Marchand [6] and Hoffman [9] proved
the result for arbitrary d—but, since the result is central to the study of the two-
type Richardson model, we feel it is worth the extra effort to state a new, simple
proof.
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THEOREM 6.1. For the critical (λ = 1) two-type Richardson model on Z
d in

any dimension d ≥ 2, there exists an n such that if the model starts with a single
type-1 infection at 0 and a single type-2 infection at n, then infinite coexistence
has positive probability.

PROOF. Consider the usual edge representation of the critical model, where
each edge is assigned a τ(e) representing the time it takes either infection to tra-
verse it. Also, as usual, for ξ ⊂ Z

d and x ∈ Z
d , write T ξ (x) for the sum of the

τ(e)’s along the fastest path starting in ξ and ending at x. Define two random
sequences {Xn}∞n=−∞ and {Yn}∞n=−∞ as follows. Set

Xn =
{

1, if T n(z) < T {...,n−3,n−2,n−1}(z) for infinitely many z ∈ Z
d ,

0, otherwise,

and

Yn =
{

1, if T n(z) < T {n+1,n+2,n+3,...}(z) for infinitely many z ∈ Z
d ,

0, otherwise.

Let a = P(X0 = 1). Proposition 4.2 tells us that a > 0. The process {Xn}∞n=−∞ is
stationary, so P(Xn = 1) = a for any n. By symmetry, P(Yn = 1) = a also holds
for any n. Furthermore, {Xn}∞n=−∞ arises in a stationary way from an i.i.d. process
and is therefore ergodic, so P(Xn = 1 for some n ≥ 1) = 1. Hence, we can find an
n such that

P(Y0 = 1,Xn = 1) > 0.(27)

On the event {Y0 = 1,Xn = 1}, we have (by definition of the two processes) that
T 0(z) < T n(z) for infinitely many z ∈ Z

d and that T n(z) < T 0(z) for infinitely
many z ∈ Z

d . Thus, (27) guarantees that infinite coexistence has positive probabil-
ity for the two-type model starting at 0 and at n. �
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