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Multi-Scale and Hidden Resolution Time Series

Models

Marco A. R. Ferreira∗, Mike West†, Herbert K. H. Lee‡, and David M. Higdon§

Abstract. We introduce a class of multi-scale models for time series. The
novel framework couples standard linear models at different levels of resolution
via stochastic links across scales. Jeffrey’s rule of conditioning is used to revise the
implied distributions and ensure that the probability distributions at the different
levels are strictly compatible. This results in a new class of models for time se-
ries with three key characteristics: this class exhibits a variety of autocorrelation
structures based on a parsimonious parameterization, it has the ability to combine
information across levels of resolution, and it also has the capacity to emulate long
memory processes. The potential applications of such multi-scale models include
problems in which it is of interest to develop consistent stochastic models across
time-scales and levels of resolution, in order to coherently combine and integrate
information arising at different levels of resolution. Bayesian estimation based on
MCMC analysis and forecasting based on simulation are developed. One applica-
tion to the analysis of the flow of a river illustrates the new class of models and
its utility.

Keywords: Autoregressive models; Bayesian inference; Combination of multi-
resolution information; Jeffrey’s rule of conditioning; Multi-scale stochastic mod-
els; Multi-scale time series models.

1 Introduction

We are interested in multi-scale time series models for three main reasons: first, we
desire a method for consistent modeling of time series at different levels of resolution
(e.g., daily and monthly aggregates of financial or meteorological data); second, we may
need to combine information coherently across time scales; and third, we want to model
processes that have relevant dynamics at different resolution levels. It is important to
consider the scale of the process, because the temporal scale in which observations are
made may lead to different conclusions with respect to the dynamics of the process
under study. This concern dates back to the surprising finding of Working (1960), who
showed that if a random walk process (a process with white noise first differences) is
observed at a coarser resolution, where the coarsening is by non-overlapping averages,
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the first differences of this coarser process are correlated. Since then, several authors
have studied the impact of the analysis of observations at a coarser scale than the scale
of the definition of the process of interest (e.g. Telser 1967; Amemiya and Wu 1972;
Palm and Nijman 1984; Drost and Nijman 1993; Schmidt and Gamerman 1997; Hwang
2000; Bollerslev and Wright 2000). Those processes may be defined on continuous or
discrete time and the coarser observations may be obtained by subsampling or by non-
overlapping averages. While this approach may lead to consistent modeling across time
resolutions and the coherent combination of multi-scale information, it does assume that
the only relevant dynamics are at the fine scale of resolution. As a point of departure
from this previous body of work, we propose a new class of multi-scale time series models
built from coarse to fine scales of resolution. While maintaining the capacity of consis-
tent modeling of time series at different levels of resolution and of coherent combination
of multi-scale information, our new approach allows the existence of relevant dynamics
at multiple resolution levels. This approach results in a novel class of models for time
series that exhibits a variety of autocorrelation structures at the fine level based on a
very parsimonious parameterization and, in particular, has the capacity to emulate long
memory processes.

There are two main manners to relate long memory and levels of aggregation/resolu-
tion of time series. One of them is due to Granger (1980), who has shown that the sum
of many autoregressive processes of order one with Beta distributed coefficients may be
fractionally integrated. This result has been used by Ding and Granger (1996) and by
Byers et al. (1997) in order to motivate long memory models for volatility of speculative
returns and for opinion poll series, respectively. The other manner, shown by Wornell
(1990), is the construction of approximate long memory processes through the use of an
inverse discrete wavelet transform (Mallat 1999; Vidakovic 1999; Müller and Vidakovic
1999). Variations of this construction have been used by several authors in order to
perform fast simulations of long memory processes (Wornell 1993; McCoy and Walden
1996; Percival and Walden 2000; Craigmile 2003, 2005). The latter manner is related
to the multi-scale class of models presented in this paper; we build our models in a
cascade way from coarse to fine levels of resolution. In contrast to that previous work,
we explicitly address cases when data can be observed at several different time scales,
and at each scale there is a progressive correlated stochastic process. Thus, unlike
current wavelet based time series modeling, our multi-scale class of models can be used
in extrapolation and forecasting.

There are at least three types of problems that can be modeled within a multi-scale
framework. In the first type of problem, data are observed at different scales and a
multi-scale time series model (MSTSM) is used to integrate the information from the
different scales. In the second case, data are observed only at the finest scale and the
multi-scale model is used to induce a particular process at this finest scale, resulting in
what we call Hidden Resolution Models (HRM). Finally, the multi-scale model can be
used as a prior for an underlying multi-scale process, as in Ferreira et al. (2003). In this
paper, we focus mainly on problems of the first two types.

Section 2 presents a motivating example for the construction of MSTSMs and HRMs.
In Section 3.1 we introduce the general framework for MSTSMs and HRMs with one
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coarse level and one fine level. Section 3.2 presents an example of a MSTSM and the
corresponding HRMwith autoregressive processes of order one as building blocks. In
Section 3.3 we derive, for the general case, the implied distribution at the fine level—
that is, the Hidden Resolution Model. In Section 4 we present several properties of
HRMs. Section 5 describes extensions to incorporate periodicities into the multi-scale
framework, relevant for certain applications. In Section 6 we discuss issues of inference
and prediction. Section 7 provides an application of HRMs to the analysis of the flow
of the Fraser River in Canada. We conclude and point to future directions in Section 8.

2 Motivating example

We present here a preliminary analysis of the flow of the Fraser River in Canada as a
motivating example for the construction of multi-scale time series models.
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Figure 1: Fraser River. (a) Log of the mean monthly flows (dotted) and annual averages
(solid). (b) Monthly residuals after extracting the seasonality and the mean.

Figure 1a presents the plot of the log of the mean monthly flows of the Fraser River
from January of 1913 to December of 1990, as well as the series of annual averages.
From the figure we note the presence of seasonality in the monthly series. Moreover, it
is evident from Figure 1a that there is strong dependence between the annual averages.
Thus, a simple ARMA process with seasonality for the monthly series would be inap-
propriate. In particular, such a model would probably give poor medium term (12 to
36 months ahead) forecasts.

An exploratory analysis found that the seasonality can be well explained by the first,
fourth and fifth harmonics. Figure 1b shows the plot of the monthly residuals after
extracting the overall mean and the seasonality. Figure 2 shows the autocorrelation and
partial autocorrelation functions of the monthly residuals, suggesting a long memory
type process. In contrast, Figure 3 shows the autocorrelation and partial autocorrelation
functions of the annual series, strongly suggesting an AR(1) process for the annual level



950 Multi-Scale and Hidden Resolution Time Series

Lag

AC
F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : residuals

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

 Series : residuals

(a) (b)

Figure 2: Fraser River. (a) Autocorrelation and (b) partial autocorrelation functions of
monthly residuals, suggesting a long memory process.

of aggregation. Thus, it seems that there is a strong annual level dynamic that is
reasonably well explained by an AR(1) process and that leads to a long memory type
of behavior at the monthly level. This is probably the result of large time scale climate
dynamics that impact water and snow precipitation and, thus, the flow of the rivers.
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Figure 3: Fraser River. (a) Autocorrelation and (b) partial autocorrelation functions of
the annual series.

In order to accommodate relevant dynamics at several time resolution levels, we
construct in the following sections multi-scale time series models from coarser to finer
resolution levels.
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3 Model construction

3.1 General framework

We begin with a univariate time series xt, t = 1, 2, . . . , following a specified model.
Writing x1:nx

= (x1, . . . , xnx
) for any integer nx > 0, we denote by p(x1:nx

) the density
of the joint distribution of x1:nx

. For example, we may assume that xt follows a standard
linear stationary time series model, such as an AR(1) process; in that case, p(x1:nx

) is
the implied joint stationary distribution. In other examples, p(x1:nx

) may be a posterior
predictive distribution arising from a dynamic model conditioned on past observations
(as in West and Harrison 1997). We will refer to xt as the fine level process.

For a specified positive integer m, which we call the coarsening window, define the
coarse level aggregate process ys on indices s = 1, 2, . . . by ys = m−1

∑m
i=1 x(s−1)m+i +

us, where the us, s = 1, 2, . . ., are mutually uncorrelated zero-mean, normally dis-
tributed noise terms with us ∼ N(us|0, τ) for some between-level variance τ . The y
values are the averages of non-overlapping groups of m consecutive x values, such as
weekly averages (m = 7) of daily data or annual averages (m = 12) of monthly data,
subject to the addition of noise or error terms u. Thus, the marginal distribution of
y1:ny

is p(y1:ny
) =

∫

p(y1:ny
|x1:nx

)p(x1:nx
)dx1:nx

. As a result of these assumptions,
the implied distribution of the process at the coarse level is more complex than the
distribution of the process at the fine level.

The main idea underlying our multi-scale construction is to impose a simple pro-
cess at the coarse level. This is interpreted as a new piece of information G, received
after p(x1:nx

) and p(y1:ny
|x1:nx

) are defined, that supersedes the prior information on
which p(x1:nx

) and p(y1:ny
|x1:nx

) are based. To be specific, suppose that the addi-
tional information G relevant to y has, as a consequence, the revision of the distribu-
tion of y1:ny

to q(y1:ny
). This update can be seen as thinking of p(y) as the prior,

q(y) = q(y|G) as the posterior, and l(y1:ny
|G) as an implicit likelihood function de-

fined as l(y1:ny
|G) ∝ q(y1:ny

)/p(y1:ny
). It is extremely important to note that p(x1:nx

),
q(y1:ny

) and p(y1:ny
|x1:nx

) may be, and generally will be, inconsistent. We restore con-
sistency by the use of Jeffrey’s rule of conditioning to revise the fine scale model p(x1:nx

)
and thus make the model consistent across the different levels of resolution. The use
of Jeffrey’s rule assumes that conditional on y1:ny

, the fine level x1:nx
is independent of

the new piece of information G. Diaconis and Zabell (1982) discuss the use and roles of
Jeffrey’s rule in Bayesian analysis. Loschi et al. (2002) use Jeffrey’s rule for inference
in the context of financial time series. Good references on Jeffrey’s rule of conditioning
are Jeffrey (1992), Diaconis and Zabell (1982), and Shafer (1981). In our case, Jef-
frey’s rule of conditioning tells us to update the fine level distribution by the formula:
q(x1:nx

) =
∫

p(x1:nx
|y1:ny

)q(y1:ny
)dy1:ny

.

This construction leads to two possible models, depending on whether y1:ny
is ob-

served or not. If the two levels of resolution x1:nx
and y1:ny

are observable, the main
interest is to coherently combine and integrate information arising at different levels
of resolution. In this case, we call the joint model p(x1:nx

|y1:ny
)q(y1:ny

) a Multi-scale
Time Series Model (MSTSM). Conversely, if the coarse level y1:ny

is an unobservable
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latent process then the main interest is to induce rich processes at the fine level. In this
case, the implied process at the fine level q(x1:nx

) is what we call a Hidden Resolution
Model(HRM).

In Section 3.2 we present an example using autoregressive processes of order 1 as
building blocks for the construction of MSTSMs and HRMs.

3.2 Example – AR(1) building blocks

Suppose that the initial fine level model is a standard stationary linear AR(1) model

xt = φxxt−1 + εt, (1)

where εt, t = 1, 2, . . . , is a sequence of mutually uncorrelated zero-mean, normally
distributed innovations with εt ∼ N(0, σ2

x) for some variance σ2
x. Thus, for all nx > 0,

p(x1:nx
) is the implied nx−dimensional stationary distribution

p(x1:nx
) = N(x1:nx

|0, Vx), (2)

where 0 is the vector of nx zeroes and Vx is the nx−square variance matrix with element

(i, j) equal to σ2
xφ

|i−j|
x /(1 − φ2

x).

The link between levels is described by y1:ny
|x1:nx

∼ N(Ax1:nx
, U), where nx = nym,

and A is a coarsening ny × nx matrix. For example, if the coarsening operation is by
non-overlapping arithmetic averages then A is a sparse matrix whose non-zero elements
are all 1/m; in row i, the non-zero elements are those in columns (i − 1)m + 1 to im.
Moreover, if the ys are conditionally independent with constant variance τ then the link
equation is:

p(y1:ny
|x1:nx

) =

ny
∏

s=1

N(ys|m
−1

m
∑

i=1

x(s−1)m+i, τ) = N(y1:ny
|Ax1:nx

, U), (3)

where U = τI with I as the ny-square identity matrix and between-levels variance τ . It
is useful to parameterize τ as a function of AVxA′. Here, we use the parameterization
τ = λ(AVxA′)11. The parameter λ has a natural interpretation in terms of the relative
increase in uncertainty at the coarse level due to the lack of agreement with the fine
level; thus, it is much easier to establish a prior for λ than for τ .

Assume that we receive a new piece of information G about the coarse level y1:ny
—

information that partially supersedes the information contained in p(x1:nx
) and p(y1:ny

|
x1:nx

). More specifically, assume that this new piece of information substitutes the im-
plied coarse level model p(y1:ny

) =
∫

p(x1:nx
)p(y1:ny

|x1:nx
)dx1:nx

) by the revised model
q(y1:ny

). Moreover, assume that this revised model is a simple standard stationary
linear AR(1) process

ys = φyys−1 + ηs, (4)

where ηs, s = 1, 2, . . . , is a sequence of mutually uncorrelated zero-mean, normally
distributed innovations with variance σ2

y. Thus, for all ny > 0, q(y1:ny
) is the implied
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ny−dimensional stationary distribution

q(y1:ny
) = N(y1:ny

|0, Qy), (5)

where 0 is the ny-vector of zeroes and Qy is the ny−square variance matrix with element

(i, j) equal to σ2
yφ

|i−j|
y /(1 − φ2

y).

Obviously, the densities p(y1:ny
) and q(y1:ny

) are not compatible. However, viewing
the information G as superseding the information on which the model p(x1:nx

) is based,
we must adopt (5) and update p(x1:nx

) accordingly. This is done using Jeffrey’s rule of
conditioning to revise the distribution of x1:nx

. The application of Jeffrey’s rule implies
the assumption that the revised conditional distribution of x1:nx

given y1:ny
, denoted

by q(x1:nx
|y1:ny

), is equal to the conditional distribution of x1:nx
given y1:ny

implied
by Equations (2) and (3), denoted by p(x1:nx

|y1:ny
). This condition means that given

y1:ny
, x1:nx

is independent of the new information G that led to the revision of beliefs
about y1:ny

.

In Section 3.3 we show that the resulting distribution q(x1:nx
)—the Hidden Resolu-

tion Model—is also zero-mean normal q(x1:nx
) = N(x1:nx

|0, Qx) with covariance matrix
Qx = Vx − B(W − Qy)B

′, where W = AVxA′ + U and B = VxA′W−1.

3.3 Implied fine level distribution

We derive in this section the revised distribution at the fine level, that is, the Hidden
Resolution Model. We start by using Bayes Theorem in order to obtain the conditional
distribution of x1:nx

given y1:ny
:

p(x1:nx
|y1:ny

) ∝ p(x1:nx
)p(y1:ny

|x1:nx
)

= N(x1:nx
|0, Vx) N(y1:ny

|Ax1:nx
, U).

Therefore, by linear regression: x1:nx
|y1:ny

∼ N(By1:ny
, Vx − BWB′), where B =

VxA′W−1 and W = AVxA′ + U . As the distribution p(x1:nx
) has mean zero, the ex-

pected value of x1:nx
given y1:ny

is shrunk from the corresponding value of y1:ny
towards

the zero vector.

As q > 0 and p > 0, we can use the generalized Jeffrey’s rule (Diaconis and Zabell
1982) to derive the Hidden Resolution Model:

q(x1:nx
) =

∫

p(x1:nx
|y1:ny

)q(y1:ny
)dy1:ny

∝

∫

N(x1:nx
|By1:ny

, Vx − BWB′)

N(y1:ny
|0, Qy)dy1:ny

. (6)

Therefore, the resulting distribution is

q(x1:nx
) = N(x1:nx

|0, Qx) (7)



954 Multi-Scale and Hidden Resolution Time Series

with variance matrix
Qx = Vx − B(W − Qy)B

′, (8)

where W = AVxA′ + U and B = VxA′W−1.

We call the marginal model at the fine level q(x1:nx
) a Hidden Resolution Model and

the joint model at both levels p(x1:nx
|y1:ny

)q(y1:ny
) a Multi-scale Time Series Model.

In general, an HRM does not represent any recognizable model in univariate form,
but in the particular case when the HRM is built with AR(1) blocks, link equation given
by (3) and φx = 0 then it is easy to show that:

V ar(xt) = σ2
x +

m−2σ4
x

(m−1σ2
x + τ)2

σ2
y

1 − φ2
y

−
m−2σ4

x

m−1σ2
x + τ

,

Cov(xt, xt+j) =
m−2σ4

x

(m−1σ2
x + τ)2

σ2
y

1 − φ2
y

−
m−2σ4

x

m−1σ2
x + τ

, j = 1, . . . , m − 1,

Cov(xt, xt+j) =
m−2σ4

x

(m−1σ2
x + τ)2

σ2
y

1 − φ2
y

φ[j/m]
y , j = m, m + 1, . . . ,

where [z] denotes the integer part of z. Therefore, φx = 0 implies a step function for
the autocorrelations, with step size equal to m.

From a general viewpoint, the construction of MSTSMs and HRMs has three ingre-
dients: the initial process at the fine level, the link equation, and the revised process
at the coarse level. With these three ingredients, Jeffrey’s rule can be used to derive
the Hidden Resolution Model. Therefore, the construction put forward in this section
is quite general and can be used with any well-behaved types of processes as building
blocks. Here, “well-behaved” means processes with well defined conditional mean vec-
tors and positive definite covariance matrices in the time frame of interest. This includes
stationary processes and also some nonstationary processes—for example nonstationary
Markovian processes with known expected value and variance in the beginning of the
time frame. Conversely, nonstationary Markovian processes with unknown initial condi-
tions cannot be used because, in this case, the mean vector and covariance matrix in the
time frame of interest are not well defined and (7) and (8) cannot be computed. When
dealing with stationary processes, a natural choice for building blocks are stationary
and invertible ARMA processes. In Section 4 we study properties of HRMs with AR(1)
building blocks; properties of HRMs constructed with more general building blocks can
be studied in the same lines of Section 4 and will not be considered here. Readers
interested in multi-scale models with more than two levels of resolution are referred to
Ferreira (2002).

4 Properties of the Hidden Resolution Model

We discuss here several properties of HRMs with AR(1) building blocks by analyzing
plots of several possible autocorrelation functions. As a byproduct of the study of the
autocorrelation functions, the parameters of HRMs are given suitable interpretations.
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Figure 4: AR(1) building blocks. Autocorrelation functions varying φy (the autore-
gressive coefficient on the coarse scale). Parameters kept constant: φx = 0.9, σ2

x = 1,
σ2

y = 1, λ = 0.1 and m = 12. HRM (dashed line); AR(1) (dotted line).

An interesting feature of HRMs is the emulation of long memory processes (for ref-
erence on long memory processes, see Beran, 1994 and Brockwell and Davis, 1991). As
can be seen in Figure 4, the parameter φy controls the rate of decay of the autocor-
relation function, which shows some persistence when the value of φy increases. The
main advantage of HRMs over actual long memory models is interpretability—the long
memory type of behavior is explicitly modeled as a result of high autocorrelation in the
hidden coarse level of the hierarchy.
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Figure 5: AR(1) building blocks. Autocorrelation functions varying λ (the lack of
agreement between coarse and fine levels). Parameters kept constant: φx = 0.9, σ2

x = 1,
φy = 0.9, σ2

y = 1 and m = 12. HRM (dashed line); AR(1) (dotted line).

The parameter λ controls how much the coarse level influences the fine level. In
that respect, it can be shown that the limit of the autocorrelation function when λ
approaches infinity is the autocorrelation function of the original autoregressive pro-
cess. Figure 5 illustrates this, the autocorrelation functions of the HRM and of the
original autoregressive process being very close when λ = 10. When λ gets smaller, the
model departs progressively more from the AR(1) model, as we can observe from the
autocorrelation functions for λ = 1 and λ = 0.01.

As λ approaches infinity, the likelihood function approaches a constant equal to the
likelihood function of an AR(1) process; thus, the use of an improper prior for λ would
lead to an improper posterior distribution. Nonetheless, the autocorrelation function
when λ = 10 is very close to the autocorrelation function when λ → ∞. Thus, in
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order to guarantee posterior propriety we propose the use of prior distributions for λ
truncated to the interval (0, 10).
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Figure 6: AR(1) building blocks. Autocorrelation functions varying φx (the autoregres-
sive coefficient on the fine scale). Parameters kept constant: σ2

x = 1, φy = 0.9, σ2
y = 1,

λ = 0.1 and m = 12. HRM (dashed line); AR(1) (dotted line).

Another interesting feature of Hidden Resolution Models is the existence of a block-
ing effect that depends on m and φx. As discussed in Section 3.3, when φx = 0.0 the
autocorrelations are constant by blocks of length m. Additionally, as can be seen in
Figure 6, when φx increases the blocking effect is progressively reduced. Therefore, φx

can be interpreted as the parameter that controls the smoothness of the autocorrelation
function.
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Figure 7: AR(1) building blocks. Autocorrelation functions varying σ2
x (the variance

of the error on the fine scale). Parameters kept constant: φx = 0.9, φy = 0.9, σ2
y = 1,

λ = 0.1 and m = 12. HRM (dashed line); AR(1) (dotted line).

Finally, it is easy to show that the autocorrelation function depends on σ2
x and σ2

y

only through σ2
x/σ2

y. Thus, we explore the autocorrelation function keeping σ2
y constant

and varying σ2
x. Figure 7 depicts the behaviors of the autocorrelation function when

φx = 0.9, φy = 0.9, σ2
y = 1, λ = 0.1, m = 12 and σ2

x assumes values 0.01, 1 and
100. For these values of φx, φy and λ, when σ2

x/σ2
y is very small, the fine level process

closely follows the coarse level process and the HRM emulates long memory behavior.
Conversely, when σ2

x/σ2
y is large the fine level varies widely but its non-overlapping

averages are close to the coarse level; as a consequence, the autocorrelation function has
an oscillatory behavior between positive and negative values.
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5 Incorporating periodicities

Here we briefly discuss how to incorporate periodicities in MSTSMs and HRMs at the
fine level by the inclusion of regressors corresponding to harmonics with cycle length
equal to the coarsening window. As harmonics are sine and cosine functions with mean
over the cycle length equal to zero, the coarsening operation eliminates the periodic
pattern.

The construction of the model is the same as in Section 3.2, except that we substitute
Equation (2) by x1:nx

∼ N(x1:nx
|µx, Vx), where µx = Zβ is a periodic vector with period

equal to the coarsening window m, Vx is the covariance matrix of the fine level process,
and Z is a design matrix corresponding to the harmonics. Using developments analogous
to those of Section 3, it is easy to show that the updated marginal distribution of x1:nx

is

q(x1:nx
) = N(x1:nx

|Zβ, Vx − B(W − Qy)B
′),

where B = VxA′W−1 and W = AVxA′ + U are the same as in the Section 3.2.

Note that all calculations in this section are also valid in the setting of regression
analysis as long as AZ = 0, and the general case AZ 6= 0 can be accommodated with
minor modifications in the model construction.

Section 6.2 discusses estimation and forecasting in the presence of periodicities.
Section 7 presents an application of HRMs to time series in the presence of periodicities.

6 Inference and prediction

Due to nonlinearities, the posterior distribution is rather complicated and Bayesian
analysis of MSTSMs and HRMs cannot be performed analytically. In order to explore
the posterior distribution, we propose an algorithm based on Markov chain Monte Carlo
(MCMC) techniques to simulate a sample from the posterior distribution. This sample
is used to estimate summaries of the posterior distribution such as posterior means,
standard deviations and credible intervals. Moreover, as we discuss in Section 6.1, this
posterior sample may easily be used in a simulation based prediction procedure.

The MCMC algorithm used for inference and the simulation-based prediction pro-
cedure have to be tailored to the particular MSTSMs or HRMs being considered.
In order to illustrate the construction of these algorithms, we consider in this sec-
tion MSTSMs and HRMs with AR(1) building blocks and link equation given by (3).
The model parameters are the autoregressive parameters for the fine and coarse lev-
els, φy and φx, the fine and coarse process variances, σ2

y and σ2
x, and the between-

levels parameter λ. We assume independence a priori of the parameters and the
following marginal priors: φy ∼ TrN(−1,1)(mφy

, Sφy
), σ2

y ∼ IG(νσy
/2, νσy

sσy
/2),

φx ∼ TrN(−1,1)(mφx
, Sφx

), σ2
x ∼ IG(νσx

/2, νσx
sσx

/2), λ ∼ TrIG(0,10)(νλ/2, νλsλ/2),
where TrN(a,b) and TrIG(a,b) denote respectively the normal and inverse gamma dis-
tributions truncated to the interval (a, b). The priors for φy and φx are truncated to
the interval (−1, 1) to guarantee stationarity. The prior for λ is a truncated inverse
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gamma, and the analysis may be fairly sensitive to the choice of the upper limit of
the truncation interval when νλ and νλsλ are small. Thus, this upper limit has to be
carefully chosen. As discussed in Section 4, values of λ greater than 10 lead to models
practically indistinguishable from an AR(1) model. As a consequence, an upper limit
much larger than 10 simply assigns more prior probability to the AR(1) model, while
an upper limit much smaller than 10 may exclude the possibility of models close to the
AR(1) model. Moreover, the analysis is reasonably insensitive to small variations of the
upper limit around 10. Thus, we recommend a prior for λ truncated to the interval
(0, 10).

Thus the posterior distribution is proportional to:

p(x1:nx
|y1:ny

, φx, σ2
x, λ)q(y1:ny

|φy , σ2
y)p(φy)p(σ2

y)p(φx)p(σ2
x)p(λ). (9)

A major aspect of the estimation for MSTSMs and HRMs is that, conditional on
the coarse level, the parameters corresponding to coarse and fine levels are independent.
Thus, when analyzing HRMs the inclusion of the simulation of the hidden coarse level
dramatically facilitates the implementation of a Gibbs sampler to explore the posterior
distribution.

From the joint distribution given by Equation (9), it is easy to verify that conditional
on the hidden coarse level, the simulation of the parameters corresponding to different
levels can be done separately. As the coarse level process is generally simple, it is
possible to use techniques already available in the literature to simulate the coarse level
parameters. For example, if the coarse level follows an ARMA process then the coarse
level parameters can be simulated with the procedure proposed by Chib and Greenberg
(1994).

The simulation of the parameters of the fine level and of the link equation is not so
trivial because, in general, the full conditional distributions are not available in closed
form for sampling. To overcome this problem, we simulate these parameters using
Metropolis-Hastings proposals. The following theorem simplifies and accelerates the
computations for the simulation of (φx, σ2

x, λ).

Theorem 6.1

p(φx, σ2
x, λ|x1:nx

, y1:ny
) ∝ p(φx, σ2

x)p(x1:nx
|φx, σ2

x)p(λ)
p(y1:ny

|x1:nx
, φx, σ2

x, λ)

p(y1:ny
|φx, σ2

x, λ)
,

where p(y1:ny
|φx, σ2

x, λ) = N(y1:ny
|0, A′VxA+U) and p(y1:ny

|x1:nx
, φx, σ2

x, λ) = N(y1:ny
|

Ax1:nx
, U).

Proof. See Appendix.

Note that p(x1:nx
|φx, σ2

x, λ) and p(y1:ny
|x1:nx

, φx, σ2
x, λ) are easy to compute. More-

over, as the unrevised model p(x1:nx
|φx, σ2

x, λ)p(y1:ny
|x1:nx

, φx, σ2
x, λ) can be cast within

a state space framework (for details, see Ferreira 2002), the computation of p(y1:ny
|φx,

σ2
x, λ) can be performed very efficiently by the Kalman filter (for reference on the Kalman



Ferreira, West, Lee, and Higdon 959

filter, see West and Harrison 1997). Nonetheless, it is important to note that the more
complex revised model p(x1:nx

|y1:ny
, φx, σ2

x, λ)q(y1:ny
|φy, σ2

y) can not be cast within a
state space framework.

The simulation of proposals for φx and σ2
x is performed through Metropolis-Hastings

steps. After the simulation of each proposal, Theorem 6.1 is used to compute the
proposal acceptance probability. More specifically, the proposal for σ2

x is simulated

from U(σ2
x|σ

2 (old)
x /δσx

, σ
2 (old)
x δσx

), where δσx
has to be tuned to yield a reasonable

acceptance rate.

The proposal for φx is simulated from U(φx|max(−1.0, φ
(old)
x −δφx

), min(1.0, φ
(old)
x +

δφx
)), where δφx

has to be tuned to yield a reasonable acceptance rate.

In the case of MSTSMs, the simulation of λ is easily performed. Conversely, in the
case of HRMs, the hidden coarse level y1:ny

and the parameter λ are highly correlated
a posteriori. Thus, we simulate y1:ny

and λ jointly in order to improve the mixing of

the Gibbs sampler. More specifically, we first simulate a proposal λ(prop) for λ from
U(λ|max(0, λ(old) − δλ), min(1, λ(old) + δλ)). After that, we simulate a proposal for
y1:ny

from its full conditional distribution conditional on λ(new). The joint proposal is
accepted or rejected with the appropriate Metropolis-Hastings acceptance probability.

6.1 Prediction

In order to perform forecasting, it is sufficient to obtain a sample from the predictive
distribution of the future observations at the different levels of resolution. Point forecasts
and prediction intervals can be derived from this sample. In traditional time series
analysis, depending on the decision problem at hand the analyst defines on which time
scale to analyze the time series, finds a reasonable model and performs forecasts at
that scale; in general, that model will not be reliable for performing forecasts at other
time scales. In contrast, MSTSMs and HRMs are able to forecast at all levels of time
resolution that are included in the model. As we show in the application of Section
7, the forecasts at the coarse level guide the forecasts at the fine level, reducing the
prediction error.

We use a two-stage procedure to simulate each realization of the sample from the
predictive distribution. First, we simulate a future realization of the hidden coarse level
conditional on the past. After that, we simulate a realization of the fine level conditional
on both the past and the realization of the coarse level.

The following theorem is very useful for the simulation of predictions of the coarse
level. The theorem states that the one-step ahead predictive distribution at the coarse
level depends on the whole past at the coarse level but depends only on the last obser-
vation at the fine level.

Theorem 6.2 q(yny
|y1:(ny−1), x1:(nx−m)) = q(yny

|y1:(ny−1), xnx−m).

Proof. See Appendix.
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In practice, the dependence on the past coarse level decreases fast with time lag.

The following theorems simplify forecasting at the fine level conditional on the future
coarse level:

Theorem 6.3

p(x(nx−m+1):nx
|y1:ny

, x1:(nx−m)) = p(x(nx−m+1):nx
|yny

, xnx−m).

Proof. See Appendix.

Theorem 6.4

p(x(nx+1):(nx+ml)|y1:(ny+l), x1:nx
) = p(x(nx+1):(nx+ml)|y(ny+1):(ny+l), xnx

).

Proof. This follows from Theorem 6.3 by induction.

Theorem 6.4 states that conditional on the last observation xnx
at the fine level and

on the future observations y(ny+1):(ny+l) at the coarse level, the future observations at
the fine level are independent of the observations at the fine level up to time nx − 1 and
of the observations at the coarse level up to time ny.

6.2 Estimation and forecasting in the presence of periodicities

The procedures for estimation and forecasting when there are periodicities at the fine
level are analogous to the case without periodicities.

The full conditional for β is N(m∗
β , C∗

β) where C∗
β = (C−1

β + Z ′V x−1Z)−1 and

m∗
β = C∗

β(C−1
β mβ + Z ′V x−1x1:nx

).

The full conditional distributions for φy, σ2
y and λ are the same as in the case

without periodicities. The full conditionals for φx and σ2
x are analogous to the case

without periodicities, but substituting x1:nx
by x∗

1:nx
= x1:nx

− Zβ.

The forecasting procedure in the case with periodicities is analogous to the case with-
out them. More specifically, predictions are made for x∗

(nx+1):(nx+l) and the periodicities
are added to these predictions.

7 Application: Flow of the Fraser River

We return here to the analysis of the flow of the Fraser River in Canada as an example
of the application of the HRM with seasonality. First, we start a standard time series
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analysis for the monthly data using harmonics to account for the seasonality. The
analysis suggests a long range dependence behavior for the monthly data, but a simple
AR(1) process for the annual data. That gives us the motivation to perform an analysis
using the HRM with seasonality.

As introduced in Section 2, Figure 1a shows a plot of the log of the mean monthly
flows of the Fraser River from January of 1913 to December of 1990, as well as the
series of annual averages. Seasonality is clearly present in the monthly series, and
Figure 1a shows dependence between the annual averages. That leads us to conclude
that a simple ARMA process with seasonality would be inappropriate for the monthly
series, particularly for predictions 12 to 36 months out. As an alternative, we model
the river flow with the HRM.

The seasonality can be well explained by the first, fourth and fifth harmonics, which
will be included in the model as discussed in Section 5. Figure 1b shows the plot of the
monthly residuals after extracting the overall mean and the seasonality.

In looking at the monthly residuals, their autocorrelation and partial autocorrelation
functions (shown in Figure 2) suggest a long memory type process. In contrast, Figure 3
shows the autocorrelation and partial autocorrelation functions of the annual series,
strongly suggesting an AR(1) process for the annual data. In order to capture this
behavior, we use the HRM with the annual level of aggregation as the coarse level.

In the analysis of the HRM, we assumed prior hyperparameters equal to mφy
= 0,

Sφy
= 1000, νσy

= 0.0001, νσy
sσy

= 0.0001, mφx
= 0, Sφx

= 1000, νσx
= 0.0001,

νσx
sσx

= 0.0001, νλ = 12, νλsλ = 5. The Gibbs sampler described in Section 6 was
used to generate a total of 5000 iterations. The tuning parameters of the Metropolis-
Hastings proposals were set to provide reasonable acceptance probabilities, equal to
40%, 50% and 46% for φx, τ and λ respectively. Convergence was reached within 1000
iterations; the remaining 4000 iterations were used to perform the statistical analysis.

Table 1 presents posterior means and standard deviations for the parameters of
the HRM. The magnitude of the posterior mean of φy shows that the series exhibits
persistence through the years. In addition, the posterior mean of τ is small, imposing a
high degree of agreement between coarse and fine levels. Therefore, the introduction of
an underlying coarse level seems to have a big impact in the process at the fine level.

Figure 8 shows the observed monthly flow, the forecasts and 95% predictive intervals
for the years 1988, 1989 and 1990 using only the observations until 1987. As we can
see in the figure, the model performs very well in terms of predictive capacity, with a
mean square prediction error equal to 0.0469. In comparison, the AR(1) model and
the long memory ARFIMA(1,d,0) model have mean squared prediction errors equal to
0.0549 and 0.0541, respectively. This demonstrates for this example the superiority of
the Hidden Resolution Model.

It is interesting to investigate the likelihood function for the Fraser River example.
Figure 9 shows different representations of the likelihood function for τ and σ2

y when
the other parameters are kept constant at their posterior means. The behavior of the
likelihood is very interesting in two aspects. First, when τ approaches infinity and σ2

y is
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Mean Standard deviation
φy 0.6562 0.1331
σ2

y 0.0193 0.0075
φx 0.5958 0.0371
σ2

x 0.0449 0.0023
τ 0.0106 0.0049
λ 0.5365 0.2369
β1 -0.8422 0.0177
β2 -0.4612 0.0177
β3 0.3391 0.0116
β4 -0.0565 0.0114
β5 -0.1014 0.0085
β6 0.0670 0.0086

Table 1: Fraser River. Posterior summaries for the parameters of the HRM.

Time in months

-2
-1

0
1

2

Jan 88 Jul 88 Jan 89 Jul 89 Jan 90 Jul 90 Jan 91

Forecast - Multiscale model

Figure 8: Fraser River. Observed flow (solid), forecast (dashed) and predictive interval
(dotted) for the years 1988, 1989 and 1990 by month.

kept constant, the likelihood of the HRM does not vanish, but becomes constant equal to
the likelihood of the original model p(x). Second, when τ and σ2

y approach infinity such
that σ2

y/τ2 is constant, the likelihood function again does not vanish, but approaches
a constant value greater than zero. As a result, the analysis may heavily depend on
the prior, and in this situation, naive vague priors lead to catastrophic results. This
reinforces the necessity for parameterizing the model in terms of λ = (AVxA′)1,1/τ ,
since it is much easier to interpret and assign a sensible prior for λ.
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Figure 9: Fraser River. Likelihood function for τ and σ2
y: (a) Log-likelihood contour

plot; (b) Log likelihood; (c) Likelihood; (d) Likelihood from another perspective.

8 Discussion and future directions

We constructed time series models with rich autocorrelation structures by coupling
processes evolving at different levels of resolution through time. Throughout this paper,
we assumed knowledge of the right scale for the underlying coarse level process. One
possible extension would be to accommodate an unknown scale of resolution for the
coarse level. The estimation procedure for such an approach would likely use reversible
jump MCMC methods (Green 1995).

Along the lines of this paper, we have been working on the construction of multi-
scale models with an arbitrary number of levels. That construction assumes arrival of



964 Multi-Scale and Hidden Resolution Time Series

information at the different resolution levels and conditional independence between the
different resolution levels in order to build multi-scale processes from coarser to finer
levels. Based on that work, we may be able to use our construction with a wavelet
basis to obtain highly complex models that take advantage of the computational power
associated with wavelets. Even though wavelets are useful for smoothing noisy data
with discontinuities, their current implementations are not good for the forecasting of
time series. We believe that by using stochastically dependent processes within each
wavelet resolution level and by coupling those processes with the type of multi-scale
framework developed here, we may obtain rich classes of stochastic processes for time
series that are also useful for forecasting.

We have used this class of multi-scale models as a prior in a hydrology applica-
tion (Ferreira et al. 2003)—more specifically, as a prior for a permeability field in the
problem of 1-D fluid flow through porous media. This allows the incorporation of infor-
mation obtained from multiple sources and available at different scales of resolution in
the inference about the permeability field. In addition, we will report elsewhere on the
extension of multi-scale models to the two dimensional case. This extension is of poten-
tial use for geologic applications (Lee et al. 2002) and climate modeling (Xie and Arkin
1996; Brandt and Zaslavsky 1997).

Appendix

Proof of Theorem 6.1

Since the conditional distribution of x1:nx
given (y1:ny

, φx, σ2
x, λ) is not revised by Jef-

frey’s rule, we have

q(x1:nx
|y1:ny

, φx, σ2
x, λ) = p(x1:nx

|y1:ny
, φx, σ2

x, λ)

=
p(x1:nx

|φx, σ2
x, λ)p(y1:ny

|x1:nx
, φx, σ2

x, λ)

p(y1:ny
|φx, σ2

x, λ)
.

The result follows on application of Bayes’ theorem.

Proof of theorem 6.2

Using the facts that q(x1:ms|y1:s) = p(x1:ms|y1:s) = p(x1:ms)p(y1:s|x1:ms)/p(y1:s) and
q(y1:s) = q(y1)

∏s
i=1 q(yi|yi−1), we have

q(ys|y1:s−1, x1:m(s−1)) ∝

∫

q(y1:s)p(x1:ms|y1:s)dx(ms−m+1):ms

∝ q(ys|ys−1)

∫

p(x1:ms)p(y1:s|x1:ms)

p(y1:s)
dx(ms−m+1):ms.
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Moreover, as p(x1:ms) = p(x1)
∏ms

t=1 p(xt|xt−1) and p(y1:s|x1:ms) =
∏s

i=1 p(yi|x(mi−m+1):mi),
we have

q(ys|y1:s−1, x1:m(s−1)) ∝
q(ys|ys−1)

p(y1:s)

∫

p(x(ms−m+1):ms|xm(s−1)) ×

p(ys|x(ms−m+1):ms)dx(ms−m+1):ms

∝
q(ys|ys−1)

p(ys|y1:(s−1))
p(ys|xm(s−1)).

Therefore, q(ys|y1:s−1, x1:m(s−1)) = q(ys|y1:s−1, xm(s−1)).

Proof of theorem 6.3

We just need to use the fact that q(x1:nx
|y1:ny

) = p(x1:nx
|y1:ny

), meaning that the
conditional distribution of the fine level given the coarse level is not revised by Jeffrey’s
rule. Thus:

q(x1:nx
|y1:ny

) = p(x1:nx
|y1:ny

) ∝ p(x1:nx
)p(y1:ny

|x1:nx
)

∝ p(x1)

[

nx
∏

i=2

p(xi|xi−1)

]





ny
∏

j=1

p(yj |x(mj−m+1):(mj))



 .

Therefore:

p(x(nx−m+1):nx
|y1:ny

, x1:(nx−m)) ∝ p(x1:nx
|y1:ny

)

∝

[

nx
∏

i=nx−m+1

p(xi|xi−1)

]

p(yny
|x(nx−m+1):nx

)

∝ p(x(nx−m+1):nx
|yny

, xnx−m).
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