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Rejoinder

G. Celeux∗, F. Forbes†, C.P. Robert‡ and D.M. Titterington§

We are grateful to all discussants for their comments and to an editor for initiating

this discussion. Rather than addressing each discussion separately, we identify several

themes of interest and contention among the discussants that we now develop separately.

1 Foundations of DIC

A theme common to all discussions is that DIC is so far more of a plausible measure of

complexity than a well-grounded criterion. We completely agree with this perspective

and even share the more radical prognosis of Meng and Vaida that DIC may simply lack

a theoretical foundation. Indeed, there are deeper concerns with DIC than just that of

a definition in the missing data case. In this regard, we do agree with Carlin that our

“casework” analysis cannot solve the problem of defining a proper DIC for missing data

and even less in general. Therefore, Carlin’s point that “authors do not refer at all to
any derivation, nor to any subsequent interpretation of model complexity” is both true

and meaningless: if DIC as originally defined is a universal way of evaluating model fit

or model complexity, it should also apply in the missing data setting and we showed

here that it clearly does not. The main conclusion of our paper is thus that DIC lacks a

natural generalisation outside exponential families or, alternatively, that it happened to

work within exponential families while lacking a true theoretical foundation. Similarly,

regarding Meng and Vaida’s criticisms about our proposal of an almost tautological

emphasis, we (obviously!) cannot agree: in the paper, we are considering models that

can be fruitfully regarded as missing data models, that is models for which there is a

many to one mapping linking the complete data and the observed data.

Some discussants attempt to provide alternatives that could establish theoretical

foundations for DIC. For instance, van der Linde focusses on DIC as an approximate

estimated loss, in the same way that BIC is an approximate log Bayes factor, even

though she is obviously less critical of DIC in exponential families. She seems to envisage

our developments as the result of various approximations. In that perspective, we could

wonder what is the whole point of producing such criteria. If the approximation (of a

posterior loss?) cannot be evaluated, we should then consider other models in which no

approximation is required and then check the appropriateness of each approximation.

Further, while using true loss functions is usually sensible (Celeux et al. 2000), it remains

to be seen which loss functions correspond to each of the DICi’s, if any. (In this regard,

DIC2 could be described in a sense as being a more robust version of the basic DIC1.)

This obviously does not relate to the hair(y) loss mentioned by Meng and Vaida!
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The very idea of loss function is nonetheless very central to the debate, since DIC

appears as a portmanteau substitute for well-defined loss functions. While debating

about DIC, we are so far forgetting a central issue, namely what we plan to do with the

output of a model comparison exercise. In fact, there is a “dark history” of Bayesian

model assessment waiting to be told, in that almost all attempts have stepped outside

Bayesian boundaries in order to evaluate the fit of a model. These attempts include

that of Robert and Rousseau (2002) and involve p-values that are not strictly Bayesian,

or that are not evaluated via a Bayesian perspective. We can therefore truly wonder

whether or not it is possible to compare or even to define model complexity within the

Bayesian paradigm. At a näıve level, an obvious answer is that we cannot, since we

cannot look at a model without standing outside this model. At another level, however,

we could answer positively, since tools like Bayes factors and even BIC are already avail-

able. But this is not really a less näıve answer! Plummer’s alternative is thus interesting

in this respect as (a) it does not depend on parameterisation and (b) it is a quantity

that can be evaluated a posteriori. Its main drawbacks are that it does not necessarily

relate to the original problem, and also that it uses the replica distribution rather than

the predictive distribution, which has been advocated in Bayesdom as paramount; see

for example van der Linde’s discussion or Robert and Rousseau (2002). Also, this only

defines a particular type of complexity (or of true dimension) but it does not allow for

the comparison of models.

2 Complexity and focus

As noted in Plummer’s discussion, an interesting point in Spiegelhalter et al. (2002) is

the concept of focus. Missing data models clearly give rise to different types of focus,

as stressed by both van der Linde and Meng and Vaida (Sections 4 and 5). This feature

makes a big difference with ordinary models since possible focusses for missing data

models are multifaceted and (much) more numerous than those of standard models,

assuming that we do not introduce an articial level of completion!

We thus appreciate the different focusses proposed by Plummer, although they only

apply in simple problems: as the hierarchy becomes more and more complex, the number

of possible focusses simply explodes. They highlight the complex nature of the notion of

complexity rather than truly solving the problem. Indeed, Plummer’s empirical results

are rather unhelpful, seeming;y not behaving satisfactorily as K increases. For instance,

in Plummer’s Figure 1, we could introduce a fourth focus where (µ, τ) would come down

at the level of Z, even if this may be a completely artificial represention.

In the case of mixtures, this has the interesting effect of reminding us of the very

different nature of p compared with both other parameters. As already stated in

Celeux et al. (2000), some natural loss functions for mixture estimation simply omit

the parameter p if for instance allocation is taken into account. There is therefore

something delicate and indefinite about p. Note that in Table 2 of Plummer the ex-

pected pD is strikingly close to 2K (excluding p then), except for K = 3, 4. The last

column of Table 1 in Plummer’s discussion is also intriguing: pD and DIC move in such
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a non-monotonic way that the argument about a simple-and-good-enough model vs. a

complex-but-better-fitting model is far from convincing.

To answer van der Linde’s question, the complexity of a predictive density is for us

the complexity of the underlying model, since the degree(s) of complexity (in the pos-

terior distribution) has been integrated out in the calculation of the predictive. (Think

for instance of model averaging which is a proper Bayes solution: the weighted sum of

predictive densities of different complexities has no well-defined complexity.) We also

fail to see how DIC has brought a “quantification of the reduction of model complexity
due to the information in a prior”, although this would suggest using instead Meng and

Vaida’s posterior version.

A question raised when reading the discussion is whether or not the nuisance pa-

rameters in a model are appropriately treated by DIC. In a sense, this is another type

of problem where the definitions of pD and DIC are unclear, the missing data taking

the place of the nuisance parameters. Section 5 of Meng and Vaida’s discussion as well

as Plummer take alternative positions on that problem, and there are possibly many

more others.

3 Plug-in estimates

Without going so far as to agree fully with Dawid’s complete dismissal of DIC in his

discussion of Spiegelhalter et al. (2002), we concede that using a plug-in estimate dis-

qualifies the technique from being properly Bayesian. In the case of mixture models,

the problem runs deeper since there is not even a clear-cut estimate without an associ-

ated loss function. (This difficulty with DIC is stressed both by Meng and Vaida and

by Plummer.) If we want to keep using DIC, it seems that the Bayes estimate of the

density is more appropriate for reasons stated in the original paper. If instead we use

the predictive then another term should replace the plug-in.

Carlin’s suggestion of replacing a plug-in degree of freedom by its posterior distri-

bution is obviously most appealing from a Bayesian point of view, even though the

implementation of this principle in a unified methodology may also be “a few years
away”.

The way Plummer defines pD is also sensible and the numerical illustrations for

the galaxy benchmark dataset are of interest. However, for focus F3, the decrease

in DIC for K ≥ 5 is hard to explain: it could be related to numerical imprecision

when deriving its pD proposal. (We take the opportunity to address here Carlin’s last

comment about MCMC convergence. While we completely agree that non-identifiable

settings are usually welcomed in terms of MCMC convergence, we are rather confident

that our sampler has converged within the number of simulations we ran and thus that

the exotic behaviour of some DICi’s is not the result of lack of convergence.)

A puzzling part of Meng and Vaida’s discussion is their Section 6, where they happily

start mixing even further Bayesian and frequentist tools and objects! The fact that

the (more convincing) posterior equivalent of pD is not working as well is indeed quite
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intriguing although Plummer somehow gives the hint of an answer in his first paragraph,

namely that there are many ways of decomposing a joint distribution into f(y|θ)f(θ),
just as the number of missing data representations are infinite. First note that using the

posterior instead of the likelihood in DIC is nominally Bayesian but not truly Bayesian

as the concept is still frequentist. (The fact that pB
D is constant in the example is not a

difficulty per se: after all this really is a one-parameter problem and it is difficult to look

at it otherwise.) There is also the issue that incorporating the prior into the complexity

measure confounds the complexity due to the model with the complexity due to the

prior and this is very confusing when different models are being compared because we

need to use one prior for each model. The final part of Meng and Vaida’s Section 6

also makes limited sense (to us at least) because of its systematic interweaving of Bayes

and non-Bayes rules and concepts. The only conclusion we could derive from this part

is that ad hoc criteria can breed even more criteria with seemingly the same validity,

which is not necessarily the conclusion expected by the authors...

4 Missing data specifics

For missing data models and in particular for the mixture model, several discussants

(Carlin, Meng and Vaida, Plummer) seem to prefer DIC7 when the focus emphasizes the

ability of the model to classify the observed data accurately into groups because, as noted

by Carlin, this criterion treats Z and θ symmetrically. However, a potential default of

DIC7 is that it treats the missing data as parameters. Thus, the number of parameters

to be estimated grows to infinity with the sample size for many models including the

mixture model. Moreover, it can be remarked that in full Bayesian approaches of the

mixture model (see Marin et al. 2005, for a recent survey) the Z are not treated as

parameters (with a prior distribution) but as missing data. In this context, our favorite

criterion remains DIC4 even though this criterion is not invariant to the choice of Z,

as noted in the paper and as stressed by Plummer. In our opinion, this problem is

essentially formal: when the focus is on imputing values for the missing data, the choice

of Z does not suffer from any ambiguity from a practical point of view.

The point of the last section of Plummer’s discussion about the missing or arbi-

trary function of the data Y was altogether missed by us, although it also replicates a

statement in Spiegelhalter et al. (2002). We indeed have trouble in understanding why

f(y, z|θ) is not defined exactly. Is this problem deeper than a mere measure-theoretic

subtlety? We would also take issue with the last paragraph of this discussion in that

we are not completely convinced that we should use any of the DIC’s we examined!

5 Conclusion

It seems to us that, if DIC is to ‘work’ in general then the basic approach, in other words

DIC1 (or arguably DIC2), should produce satisfactory results, since this is Spiegelhalter

et al.’s (2002) criterion. In this paper, we have highlighted in some detail the problems

in applying DIC beyond the exponential family case. Our goal was not to find a ‘cure-
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all’, so that the existence of a generally-applicable measure remains an open question.

In other words, the definition of a deviance information criterion, albeit immensely

desirable, remains ad hoc at this stage and is not even close to being a well-defined ideal

criterion or the solution of a well-defined optimisation problem. There is thus a need

to reappraise its properties or to start afresh with a new deviance information criterion

based on decision theoretic grounds.
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