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Abstract. This discussion argues that any difficulty with DIC for missing data is
due to DIC being intrinsically a large-sample measure and relying on point esti-
mates. What is missing is not “missing data”, but rather a set of coherent prin-
ciples for DIC itself when the amount of data is not adequate to invoke quadratic
approximation for a complex model. The non-uniqueness of data augmentation
schemes for any observed-data model also argues for the importance of emphasizing
inference “focus” in applying model complexity measures such as DIC. An attempt
to bring in more Bayesian “flavor” into DIC also reveals that an insightful expla-
nation is missing: neither pure Bayesian measure nor pure likelihood/sampling
measure yield sensible results, but some hybrid ones do.
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1 No, It’s not the missing data...

A casual reader of this stimulating paper by Celeux, Forbes, Robert and Titterington

(CFRT) might walk away with the impression that a principle is greatly needed to

formulate DIC with missing data models. Surely eight variations of a single measure in

one paper is an indication that a ripe fruit is still out of reach. A more astute reader,

however, would sense that if there is a devil, it is not in the missing data, but rather in

DIC itself. Indeed, in the world of data augmentation, as illustrated by CFRT with the

introduction of the membership variable for the mixture model, the notion of missing

data models covers every model under the sun — any probabilistic model we put down

can be recast as a marginal model for infinitely many models on larger spaces.

So what is the point of making this almost tautological emphasis? The point is to

help readers to see more easily the following key points of our discussion, all of which

are inspired by CFRT.

(A) There is no need of a separate definition of DIC for missing data models, if there

are no qualms with the original DIC definition(s) of Spiegehalter, Best, Carlin and

van der Linde (SBCV; Spiegelhalter et al. (2002)).

(B) The missing-data formulation highlights the fundamental defect in DIC: its reliance

on a point estimate to assess over-fitness of an entire model fitting process.

(C) When using a DIC-like quantity with missing data, a key question to ask, is whether
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there is any change of model or inferential focus, when we embed a marginal model

into a joint one.

2 A Pandora’s box in DIC?

To understand why there can be so many variations of DIC, in CFRT and elsewhere,

it is useful to revisit SBCV’s original derivation of DIC. Briefly, SBCV started with

the “residual information” −2 log[p(y|θ)] and an estimate θ̃(y) of the “pseudotrue”

parameter θt; the use of a “pseudotrue” parameter is due to the fact that the “true”

model, if it can ever be formulated, may lie outside the posited parametric family

{p(y|θ) : θ ∈ Θ}. Under this setting, SBCV wrote

“Then the excess of the true over the estimated residual information will be

denoted

dΘ{y, θt, θ̃(y)} = −2 log[p(y|θt)] + 2 log[p(y|θ̃(y))]. (3)

This can be thought of as the reduction in surprise or uncertainty due to

estimation, or alternatively the degree of ‘overfitting’ due to θ̃(y) adapting to

the data y. We now argue that dΘ may form the basis for both classical and

Bayesian measures of model dimensionality, with each approach differing in

how it deals with the unknown true parameters in dΘ.”

There lies the source of the problem: dΘ measures the “overfitting” due to a point es-

timate θ̃(y). When the model being entertained is simple enough (e.g., with enough

built-in normality) or when the “data size” is large enough to validate normal asymp-

totic, a satisfactory choice, for the purposes of assessing the “over-fitness” of our entire

Bayesian model fitting process, of the point estimator θ̃(y) often exists. This is largely,

as far as we can see it, the theoretical underpinning of DIC as formulated by SBCV

(e.g., their sections 3 and 4). In general, once we face more complex models, such as

those investigated by CFRT, DIC appears to have a built-in Pandora’s box: the choice

of θ̃(y). The problem here is not much about how to choose θ̃, but rather whether a

single point estimate can ever adequately represent an entire model fitting process.

Indeed, SBCV acknowledged this problem. Their definition of the effective dimen-

sion pD is the posterior mean of dΘ, which can also be written as

pD = D −D(θ̃), (1)

where

D(θ) = −2 log p(y|θ) + 2 log h(y), (2)

h(y) is a standardizing term, and the notation A denotes the posterior mean of A with

respect to p(θ|y). As for the choice of θ̃ in (1), SBCV wrote
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“In our examples we shall generally take θ̃(y) = E(θ|y) = θ̄, the posterior

mean of the parameters. However, we note that it is not strictly necessary

to use the posterior mean as an estimator of either dΘ or θ, and the mode

or median could be justified.”

The trouble is that the issue appears to be much more complicated than merely “strictly

necessary”. Minimally, we should worry about the impossibility in assessing the over-

fitness of an entire Bayesian modelling process via a single point estimator, however

it is chosen. Indeed, a key feature of Bayesian inference, in contrast to classic modes

of inference (however defined or perceived), is its ability of focusing on estimands by

directly accessing their entire posterior distributions, not on any particular point or

even interval estimators. We are therefore in full agreement with the opening message

Dawid (2002) conveyed in his discussion of SBCV:

“This paper should have been titled ‘Measures of Bayesian model complex-

ity and fit’, for it is the models, not the measures, that are Bayesian. Once

the ingredients of a problem have been specified, any relevant question has

a unique Bayesian answer. Bayesian methodology should focus on specifica-

tion issues or on ways of calculating or approximating the answer. Nothing

else is required.”

3 History waiting to be repeated?

Indeed, one key reason that we have so many variations of DIC, and therefore violating

the “uniqueness” of Bayesian answer as Dawid emphasized, is because DIC is funda-

mentally a “classic” measure for comparing models, despite its “Bayesian looks” from

the use of posterior mean or mode or median. A good analogue for this is the posterior
predictive p-value (ppp) (Meng 1994), which is fundamentally a frequentist measure,

despite its B-looks. Indeed, the derivation of ppp followed almost the identical route as

SBCV’s DIC: start with a classic measure, which depends on some unknown parameter

(in the ppp case, any parameter that is not specified by the null hypothesis), followed

by posterior averaging. We mention this analogy to emphasize that we have nothing

against blending classic and Bayesian methods. Indeed, like many others, we have ad-

vocated such blending especially in the context of model diagnostics and assessment

(Gelman et al. (1996); Gelman and Meng (1995)). Nor do we believe that there is an

all-encompassing and practical Bayesian solution to the problems that SBCV and CFRT

(and many others) want to address. Rather, the purpose of our revisit to SBCV is to

make it crystal clear that the difficulty here is not the missing data. All the problems

CFRT revealed are problems with DIC for complex models even for “complete data”,

because of facing the same type of choices as any method that focuses on estimators,

not on estimand. The latter is unique as soon as we specify our focus of our inference
or model, a point we shall discuss in the next section.

Furthermore, this revisit suggests that we can call upon our knowledge and expe-

rience with non-Bayesian point estimators in making DIC to yield sensible results, as
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well as in our quest for a more unified principle. The CFRT’s investigation reminded us

that we are somewhat still in a “pre-EM” era regarding DIC or other similar measures.

By “pre-EM”, we refer to the era before Dempster et al. (1977) (DLR) EM formulation,

when there was a great need to deal with each missing-data estimation problem sepa-

rately by formulating estimators specifically for each case in order to accommodate the

varying incomplete-data structures. The unification brought by DLR’s EM algorithm

prevented a tremendous amount of duplicated efforts. It also opened the door for deal-

ing with many more, both in terms of number and complexity, missing-data problems.

That is, many specific algorithms scattered in the literature turned out to be special

cases or disguised versions of the EM algorithm, or rather “the EM principle” because

it provides a general recipe for constructing algorithms. What is needed for DIC is a

similar general recipe.

One key difference between EM and DIC formulations is that the former is just a

computational unification, for the estimation principle underlies it, namely the maxi-

mum likelihood estimation, is the same regardless of whether one faces missing data or

not. For DIC, the unification needed is more fundamental, as the question is how to

assess the fitness and complexity of a model when relying on point estimators is simply

inadequate. Perhaps the best analogy here is the replacement of maximum likelihood

estimation by Bayesian estimation – both work for large-sample with essentially equiv-

alent results, but the latter has a better chance of yielding scientifically more useful

answers for smaller samples.

4 Stay focused or else...

Whereas we consider DIC’s reliance on the choice of θ̃(y) an intrinsic problem, we view

“(T)he diversity of the numerical answers associated with different focusses” a desirable

feature of DIC, rather than a “real difficulty”, as CFRT stated. As SBCV correctly

emphasizes, any useful model fitness or complexity measure should be sensitive to what

we use the model for, namely, to the “focus” of our models or more generally inference

procedures. We surmise that CFRT were concerned with the same dilemma as those

of us who provide statistical consultations to investigators with minimum training or

interest in statistical methods. They demand the methods we advise only require a

few simple lines in SAS or alike, with minimum “tuning parameters”, but are most

efficient/powerful for their specific problems.

There is nothing wrong with such a “consumer attitude” – we all carry it. And

it is indeed very useful for those of us who work in methodological or computational

statistics to always keep this attitude/demand in mind when conducting research. Nev-

ertheless, we cannot push simplicity at the expense of functionality or validity. The

examples in SBCV and CFRT clearly demonstrate that there cannot be any meaningful

“focus-free” fitness or complexity measure, just as there cannot be a “model-free” EM

implementation (as much as we have been repeatedly asked to develop one over the

years!).

Although this is rather a trivial point, the data augmentation formulation should
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make this dependence on the purpose of inference even clearer. Since any “observed-

data” model can be embedded into infinitely many “larger” models by introducing

different kinds of latent variables (or other unobservable structures), it is evident that

if our interests include learning about these unknowns, then our fitness or complexity

measure is useless if it is invariant to the embedding. Surely useful answers cannot be

robust to questions being asked. On the other hand, if the questions of interest concern

only the observed data, then the measure should be invariant to which of the many

possible data augmentation schemes is used, i.e. it should not depend on the missing

data/latent variables which we don’t care about. In this sense, DIC4,5,6 of CFRT are

not designed for dealing with this latter situation.

In a nutshell, our key emphasis here is the point (B) in Section 1 – when faced with

missing data, ask if the focus has changed when moving from the observed data model

to the augmented data model. If there is no such change of focus, and if we had no

trouble to adopt SBCV’s DIC for the “complete data”, then logically we have no choice

but to stick to the same definition, for the generic notation −2 log[p(y|θ)] in SBCV,

or −2 log[f(y|θ)] in CFRT’s notation, makes no reference to whether y is complete or

not. The only requirement here is that the f(·|θ) function captures all data selection

mechanisms that are responsible for generating the y we actually observe. That is, y
can even be a result of a non-ignorable missing-data mechanism operated on {y, z}, as

long as the f(·|θ) has included in its formulation this mechanism.

Evidently, this “logical coherence” requirement would immediately exclude CFRT’s

D4,5,6,7,8 as possible “DIC” measures because each of them uses a different f function

than the one that actually generates our observed y. This leaves D1,2,3 as the possible

choices, with the differences among them precisely the differences of choosing θ̃, at least

for D1 and D2, namely, posterior mean versus posterior mode. As CFRT, we find D3

quite sensible, as it is an attempt to move away from seeking a point estimate θ̃ and

then plug it in f(y|θ). Rather, it replaces f(y|θ) by an estimate of the entire f density

function.

5 But it does get fuzzy once out of focus...

The issues do become more complicated once the focus changes, i.e. the questions

of interest concern not only the original θ, but also part of the missing data z. The

complication comes from the fact that in SBCV’s original definition there are only two

ingredients: the observed data y and parameter θ. When the focus is on θ, the aug-

mented data z, however useful, say, for computation or even for the modelling exercise

itself, gets integrated out in our final model f(y|θ).
But once z itself is of interest (“in focus”), in what way can SBCV’s DIC accommo-

date z? By virtue of z being in focus, it becomes part of the estimand by definition – we

prefer to use estimand than parameter to avoid the unnecessary but thorny distinction

between “parameter” and “latent variables” in Bayesian formulation. In other words,

the estimand changes from θ to θN = (θ, z). What shall we do then?
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In principle all we need to do is to just replace θ by θN , which results in

pD = −2E[log[f(y|θ, z)|y] + 2 log[f(y|θ̂, ẑ)]. (3)

The trouble is, as before, what should be used as ẑ? Even if the size of y is large

enough to render an approximate validity of using a single θ̂ for DIC purposes, the size

of y cannot possibly be large enough to rend the same for z in general, for z can be of

arbitrary dimension and size as we please, because it is an artificial model construction,

at least in theory. And it is known in general that maximizing over missing data or

latent variable is a rather dangerous practice, even though occasionally it might provide

an acceptable answer (Little and Rubin (1983)).

So the “solution”, if it can ever be precisely defined, must depend on the specific

construction of z. A simple example may illustrate this point. Consider the following

hierarchical model, similar to (2) in SBCV,

yij = xijβ + bi + εij , bi ∼ N(0, τ2), εij ∼ N(0, σ2), (4)

where j = 1, . . . , Ji, i = 1, . . . , I . In a “marginal” interpretation the focus is on the

population parameters, θ = (β, τ 2, σ2), and b = {bi; i = 1 . . . I} is treated as missing

data. In contrast, in a “conditional” interpretation, b is part of the estimand, that is,

θN = (θ, b). In the latter case DIC has a frequentist equivalent in the conditional AIC

of Vaida and Blanchard (2005).

Since DIC has asymptotic justification, it will work for θN as long as there is a

corresponding asymptotic scenario under which the dimensionality in θN does not grow

indefinitely with the sample size; in the current case this means that the correct asymp-

totics need to assume growing Ji, but fixed I . Otherwise we run the risk of overfitting,

as in the well-known Neyman-Scott problem, and the DIC breaks down. The situation

needs to be assessed on a case-by-case basis.

In the mixture model of CFRT, in a search for an “overall” criterion for the model

we are not interested in the number of components of the mixture, nor the parameters

of each component, but rather in the predictive distribution. This specific focus is

addressed by CFRT’s DIC3. If, on the other hand, the parameters of the mixture are

relevant (e.g., they have a substantive interpretation which is under study), then this

“missing data” is “in focus” and is part of the parameter θN . In this situation, CFRT’s

DIC7 is a more appropriate choice.

6 One curiosity leads to another...

An astute reader may have already noted that in Section 4 we have argued that if we

accept SBCV’s definition of dΘ of their (3), as quoted in Section 2, then its first term

−2 log[p(y|θ)] is not subject to any modification. Only the second term 2 log[p(y|θ̃)]

is, because of the unsettling nature of θ̃. However, since our goal is to assess Bayesian
model fitness or complexity, we at least wonder if the use of log-posterior instead of

log-likelihood could lead to more sensible measures. After all, prior is an integrated
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part of a Bayesian model, and theoretically we cannot exclude point-mass prior, which

clearly will reduce the number of “free parameters” in the model. That is, in a Bayesian

model, the number of parameters, however measured, cannot be invariant to the prior.

An added benefit is that

pB
D ≡ −2E[log{p(θ|y)}|y] + 2 log[p(θ̂|y)], (5)

where θ̂ is the posterior mode, will be non-negative regardless of the choice of prior,

as long as θ̂ is the (global) posterior mode. In this sense, pB
D, where the superscript

B signifies its Bayesian nature (at least when compared to SBCV’s pD), is the more

general version of CFRT’s D2, which was guaranteed to be non-negative only when the

prior is constant (in which case of course our pB
D is the same as SBCV’s pD with θ̃ being

the MLE).

Since the normalizing constant for the posterior density gets cancelled in the right-

hand side of (5), pB
D can also be motivated by Moody’s (1992) “effective number of

parameters,” which was constructed via “penalized likelihood”. For a Bayesian, a pe-

nalized likelihood is essentially a disguised version of posterior, and, furthermore, it

would be natural to replace Moody’s (1992) sampling expectation by the posterior ex-

pectation. The resulting modified measure then would be exactly the pB
D in (5), barring

that Moody (1992) invoked a quadratic approximation, which is unnecessary in our

Bayesian formulation (see next section for more discussion).

Given the discussion of Moody’s (1992) method in SBCV in their Section 2.4, and

given the more or less obvious (and seemingly advantageous) modification as discussed

above, we were a bit curious why this clearly more Bayesian route was not followed up

by SBCV, nor by any of their discussants (excluding those who questioned the entire

formulation of DIC, such as Dawid (2002)). Granted, SBCV’s pD does depend on the

prior, but it is only through the posterior averaging for dealing with the unknown θt. So

surely the direct use of log-posterior in measuring “residual information” should provide

a more sensible complexity measure for Bayesian model fitting?

Indeed we were so sure that pB
D would yield more sensible results than pD, until we

actually checked with the following simple example. Consider a simple random sample

y = {X1, . . . , Xn} ∼ N(θ, 1), with a normal prior θ ∼ N(0, τ 2), where τ2 is known.

Then it is well-known that the posterior distribution for θ is N(θ̂n, σ2
n), where

θ̂n =
nX̄

n + τ−2
and σ2

n =
1

n + τ−2
. (6)

Then, using the notation in (2), we see that the difference in using the log-likelihood

and log-posterior amounts to choosing two different D functions:

D(1)(θ) = −2 log f(y|θ) + 2 log f(y|X̄) = n(θ − X̄)2, (7)

and, as long as τ2 > 0,

D(2)(θ) = −2 log p(θ|y) + 2 log p(θ̂n|y) =
(θ − θ̂n)2

σ2
n

. (8)
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It follows then,

pD = E
[
D(1)(θ) −D(1)(θ̂n)

∣∣∣ y
]

= nV (θ|y) = nσ2
n =

nτ2

nτ2 + 1
. (9)

In comparison, when τ2 > 0,

pB
D = E

[
D(2)(θ)−D(2)(θ̂n)

∣∣∣ y
]

=
V (θ|y)

σ2
n

= 1, (10)

and pB
D = 0 when τ2 = 0 because then D(2) is only defined on Θ = {θ = 0} with value

zero.

Neither result is wrong, technically. Indeed, one could even argue that pB
D gives

a better answer. Mathematically speaking, as long as τ 2 > 0, there is one unknown

parameter, θ, to be estimated. When τ 2 = 0, both measures give zero, which is also

correct for there is no unknown parameter in the model. However, from a Bayesian

model complexity point of view, the result given by pD of (9) is more appealing, because

it monotonically and continuously decreases from 1 to 0 as τ 2 decreases from ∞ to 0.

As τ approaches zero, the model complexity, in terms of its potential changes as a

functional of the unknowns, should reduce, because we have stronger and stronger prior

information. Consequently, the “effective number of parameters” for our Bayesian model

should decrease as well. In that sense, the result given by pB
D is puzzling, for it delivers

either 1 or 0. We surely expected it to be more sensitive to the value of τ 2, given it is

“purely Bayesian”. All three ingredients in forming the pB
D are Bayesian: the choice of

“log p” is log-posterior, as in (8), the choice of the point estimator is posterior mode,

as in (10), and the expectation is with respect to the posterior distribution of θ, also as

in (10). So why does pB
D give a less sensible result than pD, which only uses two out of

the three Bayesian ingredients, as (7) is based on likelihood only? Is this a case of “too

much of a good thing”?

Puzzled, we decided to examine all eight possibilities (not to be confused with the

CFRT’s eight variations!). That is, all three ingredients can take the Bayesian version,

as detailed above, or non-Bayesian version: (1) sampling expectation for the “over bar”

operation in D̄ instead of posterior expectation, (2) MLE for θ̃ instead of posterior

mode, and (3) log-likelihood for “log p” instead of log-posterior, resulting a 2 × 2 × 2

design as displayed in Table 1 and Table 2. In these two tables,

pijk = Ei[d
(k)
Θ (y, θ, θ̃j(y))], i, j, k = 1, 2. (11)

In particular, p222 = pB
D and p221 = pD. Here, using the notation of SBVC’s (3), as

quoted in Section 2,

d
(k)
Θ (y, θ, θ̃(y)) = D(k)(θ) −D(k)(θ̃), k = 1, 2,

where D(k)’s are as given by (7) and (8), θ̃1 is the MLE, θ̃2 is the posterior mode,

E1 is with respect to the sampling distribution of y, as in Moody (1992), and E2 is

with respect to the posterior distribution of θ, as in SBVC. Note that because the
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Table 1: “Effective number” under Sampling Expectation.
Choice of p in “log p” = Likelihood Posterior

Point Est. = MLE p111 = 1 p112 = 1− 1
nτ2

Point Est. = Post. Mode p121 = 1− 1+nθ2

(1+nτ2)2 p122 = nτ2

1+nτ2 + θ2

τ2(1+nτ2)

Table 2: “Effective number” under Posterior Expectation.
Choice of p in “log p” = Likelihood Posterior

Point Est. = MLE p211 = nτ2

1+nτ2 + nX̄2

(1+nτ2)2 p212 = 1− X̄2

τ2(1+nτ2)

Point Est. = Post. Mode p221 = nτ2

1+nτ2 p222 = 1

two expectations are on entirely different spaces, the dΘ(y, θ, θ̃(y)) notation is more

appropriate as it shows the dependence on both y and θ, whereas the D(θ) notation is

adequate only for the posterior expectation.

All the results in the two tables are exact, and are based on the assumption that

τ2 > 0. Under this assumption, we have the following observations.

1 As n → ∞, all pijk → 1, reinforcing the well-known fact that when the sample

size is getting large, the impact of the prior, as long as it is not mathematically

“dominating” (e.g., a singleton mass), becomes more and more negligible. Same

is true when τ →∞, as then the prior becomes constant and hence the likelihood

and Bayesian methods coincide. The two cases, that is, either large n or large τ ,

essentially refer to the same condition: the prior information is negligible compared

to that from the likelihood.

2 Among all pijk ’s, besides the trivial cases of p111 = 1 and p222 = 1, only p221, which

is the same as SBCV’s pD or CFRT’s D2, always stays inside the desired interval

[0, 1]. In particular, as we discussed previously, p221 has the nice property of

approaching zero as τ2 → 0, with no need of any further condition (see below).

3 Both “pure” methods give sensible answers in their own right. The pure Bayesian

measure p222, which is just pB
D, is discussed previously. The pure sampling/likelihood

measure, p111, provides the correct measure for the number of parameters in the

sampling/likelihood model, even when τ 2 = 0, for the value of τ does not enter

the picture.

4 Compared to p111 and p221 discussed above, when τ → 0, the other measures corre-

sponding to the ”Likelihood” column, that is, with k = 1, converge to zero only
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when the prior information is correct. That is, when τ → 0, if this strong prior

information is correct, then both the true θ and X̄ will also converge (almost

surely in the case of X̄) to the prior mean zero. Otherwise, either of them can

take nonsensical values because, when τ 2 → 0, p121 → −nθ2 and p211 → nX̄2.

5 Besides p222 = 1, the behavior of the measures corresponding to “Posterior” column,

that is, with k = 2, is even more troublesome when τ 2 → 0. The assumption

of “correct prior information” is no longer enough. For p112, it is simply beyond

“rescue” – it will converge to −∞ as τ 2 → 0. For p122 and p212, we need to

impose θ/τ → 0 or X̄/τ → 0 when τ → 0 in order to ensure their converging to

zero. Clearly, these assumptions would have little statistical meaning or practical

relevance.

Some readers might be puzzled by the above discussion. Besides the two “pure

measures”, p111 and p222, which do seem to have good theoretical basis and indeed

deliver quite sensible results, why should anyone expect anything sensible from the

remaining six “hybrid” ones? Granted, p221 is the one that has been given a good

amount of theoretical underpinning by SBCV, and hence its good performance should

not come as a surprise. But SBCV’s theoretical justifications are essentially large-sample

ones, which could be applied to any of the rest of five hybrids. In any event, these large-

sample results provide little insight regarding how the hybrid ones work or do not work

when the prior information cannot be ignored, which are the cases, arguably, where

Bayesian modelling is most needed.

7 An even bigger puzzle...

In case a reader is not convinced that there is a puzzle here, let us bring in another

curiosity by examining the “dual” measure to p221, that is, p122. The reason we labelled

it “dual” should be clear shortly, but for now let’s just notice that the subscript of one

is the mirror reflection of the other, signifying that we have made a “trade-off” in our

Bayesian/non-Bayesian choices in the three ingredients. The reason we investigate p122

is that it is actually the very measure Moody (1992) attempted to approximate. This is

discussed in Section 2 of SBCV, who pointed out that Moody’s (1992) approximation

p∗ is identical to SBCV’s pD for a class of ANOVA models, for which our simple model

is a special case.

Specifically, the equation (4) of SBCV, in our notation and with log posterior in

place of log-likelihood, as in Moody (1992), is

p122 = E1[d
(2)
Θ (y, θ, θ̃2(y))] ≈ p∗ ≡ trace(KJ−1), (12)

where

J = −E1

[
∂2 log p(θ|y)

∂θ2

]
, and K = V1

[
∂ log p(θ|y)

∂θ

]
, (13)

and both E1 and V1 operations are with respect to the sampling distribution. Because

of the quadratic nature of the log-posterior, as given in (8), it is trivial to verify that,
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by noting (6),

J =
1

σ2
and K = V1

[
(θ̂n − θ)

σ2
n

]
= V1(nX̄) = n. (14)

Consequently,

p∗ = KJ−1 = nσ2
n = pD, (15)

a fact that was emphasized by SBCV (Section 2).

At this point we hope that at least one reader would be curious enough to notice

that although p∗ = pD, which seems quite assuring, the exact value p122 that p∗ tries

to approximate, is always larger than pD:

p122 − p∗ =
θ2

τ2(1 + nτ2)
. (16)

Although one might argue that this difference is of order n−1, and hence negligible,

one must keep in mind that this argument itself does not explain why p∗ is the “right

approximation”—indeed, the difference between any two of the pijk ’s in the tables is of

order n−1 (when τ2 > 0).

We surmise that the real reason that p∗ works better than the measure it actually

tries to approximate is because by invoking the large-sample quadratic approximations,

the sampling calculation underlying p∗ becomes closer to the posterior calculation be-

cause of the symmetry in the sampling and posterior distributions under normality.

However, this argument would suggest that we should try to be as Bayesian as possible,

which would lead to pB
D = p222, not p221, yet we have seen that p222 is not as sensible

as p221, from the Bayesian model complexity point of view.

Even more puzzling is the fact that both p∗ and p221 achieve sensible results by

giving up being Bayesian in one of the three choices, but they give up different ones.

For p∗ (and for the p122 it approximates), the log posterior is used in formulating the d
(or D) measure, but the expectation is with respect to the sampling distribution. For

p221 the opposite is the case, the log part uses the sampling density/likelihood function,

but the expectation is with respect to the posterior density. This is what we meant

by “duality”. Our simple example suggests that giving up the “purity” is necessary as

otherwise one ends up with either p111 or p222, neither of them as sensible as p122 or

p∗. But what is the fundamental principle behind such a “hybrid” method? Without

a sound principle, where is the assurance that we are not lost in the sea of ad hoc

methods, such as our “Eights” or CFRT’s “Eights”, when we do not have the luxury of

scrutinizing various measures as given in Table 1 and Table 2?

We are puzzled, very much. We hope that CFRT’s rejoinder could help to slow down

the rate at which our hairs are leaving us......
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