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A Default Conjugate Prior for Variance

Components in Generalized Linear Mixed

Models (Comment on Article by Browne and

Draper)

Robert E. Kass∗ and Ranjini Natarajan†

Abstract. For a scalar random-effect variance, Browne and Draper (2005) have
found that the uniform prior works well. It would be valuable to know more about
the vector case, in which a second-stage prior on the random effects variance matrix
D is needed. We suggest consideration of an inverse Wishart prior for D where
the scale matrix is determined from the first-stage variance.
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1 Comments

There is no standard solution to the problem of choosing a prior on the random-effects
variance in random-effects models, or mixed models, or what Bayesian analysts usually
call “hierarchical models.” In the case of a scalar random effect, Browne and Draper
(2005) investigated the frequentist behavior of posterior estimates based on a uniform
prior and an inverted-gamma prior. They also compared the Bayesian methods to
likelihood and quasi-likelihood alternatives.

The main Bayesian messages we take home from Browne and Draper’s study are
that, in the case of a scalar random effect, (1) a uniform prior on the variance produces
posterior distributions with very good operating characteristics: the coverage probabil-
ities remain close to .95 for all of their simulations; and (2) the uniform prior is a bit
better than a quasi-uniform inverted-gamma prior. Though the situations for Normal
and non-Normal models seem to us different in principle, with some kind of correc-
tion seeming necessary before prior rules for non-Normal models match those for the
Normal models, the work by Browne and Draper strengthens an already strong case
for the uniform prior becoming the “standard solution.” The main general statistical
message seems to be that this Bayesian method works well. We would underscore the
additional general comment made by Browne and Draper, and many before them, that
estimates of fixed effects remain very good in the presence of modest errors in estimation
of the variance components. This is part of what makes generalized estimating equation
estimators so effective (Diggle et al., 2002).
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What happens in the vector case? As the dimensionality increases, one anticipates
degradation of performance: the choice of prior is likely to matter much more, and
one may expect trouble in estimating fixed effects, as well. It would be good to have
results like those of Browne and Draper’s so that we would know more precisely when
to worry, and it would also be very valuable if the field could settle on a reasonable
default prior for the non-worrisome and not-very-worrisome situations. The tradition
in statistical research is to report results of the form “method A (often the authors’
method) works better than method B.” This is useful, but statisticians too rarely give
practical guidance as to when a method breaks down.

Perhaps future studies of priors for random effects in the vector case will be un-
dertaken. If so, we would like to make one more suggestion: it may be worthwhile to
evaluate yet another prior, one we call a “default conjugate prior.” In the remainder of
our commentary we will describe this prior and indicate why we think it may be of use.

2 A Default Conjugate Prior

In the vector case, under the assumption of a Normal distribution for the random effects
(the second stage of the hierarchical model), the uniform prior remains a reasonable
candidate. It is also possible to use an inverted Wishart prior on the random effects
variance matrixD, which requires the specification of a scale matrix typically considered
to be a guess at the value of D. There is, however, rarely good scientific information on
which to base this guess. A frequently-applied procedure is to set the scale matrix equal
to the maximum likelihood estimator (MLE) ofD. Natarajan and Kass (2000) reported
simulations indicating that posterior distributions based on this procedure can lead to
poor estimates ofD, and we also gave a real-data example where scientific inferences are
seriously affected. In that paper we also proposed an alternative — the “approximate
uniform shrinkage” prior — and showed it to lead to better-behaved posteriors. That
prior is easy enough to use, but has not caught on. We here draw attention to yet
another alternative, namely the “default conjugate prior.” Rather than using the MLE
as the scale matrix of the inverse Wishart prior, it may be preferable to base a “guess”
at the value of D on the first-stage data variability. Although the method uses first-
stage data both for formulation of the second-stage prior and for computation of the
posterior, we note that this particular re-use of the data has asymptotically negligible
effects on the posterior.

2.1 The Two-Stage Hierarchical Model

Let us consider the following class of two-stage models:

Yi|bi ∼
ni∏

j=1

f (Yij |bi,β) , i = 1, . . . , k, j = 1, . . . , ni,

bi ∼ Nq (0, D) , (1)
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whereYi = (Yi1, Yi2, . . . , Yini
)
t
is a vector of observed responses for the ith experimental

unit (cluster), bi is a q × 1 vector of unobserved cluster-specific random effects and
f (.) is an exponential family density function with dispersion parameter φ assumed
known. The conditional mean of Yij is assumed to satisfy µ

b

ij = h
(
xt
ijβ + ztijbi

)
, where

xij (p× 1) and zij (q × 1) are design vectors corresponding to the fixed effects β and
the random effects bi respectively and h (.) is a known link function with inverse g (.).
Such models belong to the family of generalized linear mixed models (GLMMs). By
way of notation we let Xi (ni × p) and Zi (ni × q) denote full-rank matrices with rows
xt
ij and ztij , respectively.

2.2 Definition and motivation

In this section we assume the prior on β will be diffuse (in implementation, typically
a multivariate Normal with large variances), and consider the problem of specifying
the q × q scale matrix R of an inverted Wishart prior for D. Specifically, a random
positive-definite symmetric matrix D is distributed according to an inverted Wishart
distribution with ρ(> q − 1) degrees of freedom and scale matrix R if its probability

density function is proportional to det (D)
−(ρ+q+1)/2

exp
(
−ρ

2 tr
(
RD−1

))
. We denote

this inverted Wishart distribution by IW(ρ, ρR). Note that when q = 1, the inverted
Wishart reduces to an inverted gamma distribution and ρ is typically referred to as the
shape parameter. We will denote the inverted gamma by IG. Conventional wisdom
dictates that a good default specification is one for which ρ is taken to be small and R

is a “minimally informative” prior guess of D.

We now define a default Wishart prior for D with

ρ = q,

R̃ = c ·
(
1

k

k∑

i=1

Zt

i Wi (β)Zi

)−1

,

where Wi (β) (ni × ni) denotes the usual diagonal GLM weight matrix with diagonal

elements
{
φv
(
µ0

ij

) [
∂g
(
µ0

ij

)
/∂µ0

ij

]2}−1

, v (.) is the known variance function based on

the density f (.) and the superscript zeros indicate the substitution of bi with zero
in these quantities. The value of c is an inflation factor representing the amount by
which the within-cluster variability should be increased in determining R∗. In our
simulation we used c = 1. Note that the inverse of 1

k

∑k
i=1 Zt

i Wi (β)Zi exists by the

full-rank assumption on Zi. Thus, calculation of R̃ is straightforward, requiring only
a few matrix operations and knowledge of the form of the weight matrix Wi for the
particular exponential family under consideration McCullagh and Nelder (1989), pp.
30.

We now offer two heuristic justifications for R̃. The first arises from the approximate

shrinkage estimate of bi — that is, b̃i = DZt
i

(
W−1

i (β) + ZiDZt
i

)−1
(Y∗

i − h (Xiβ))
where Y∗

i is the working dependent variable Breslow and Clayton (1993). After some
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matrix manipulations, it can be shown that b̃i may be expressed as

b̃i = Si0+ (I− Si)Z
t

i Wi (β) (Y
∗
i − h (Xiβ)) ,

where I is the q× q identity matrix and Si = I−
(
D−1 + Zt

i Wi (β)Zi

)−1
. The matrix

Si controls the relative contribution of the prior mean 0 and the data to the posterior
update of bi, and thus offers a natural metric for evaluating the informativeness of a

particular prior guess for D. It ranges from I−
(
Zt
i Wi (β)Zi

)−1
when D =∞, which

corresponds to a flat prior for bi, to I when D = 0, which corresponds to a point mass

prior for bi at zero. A prior guess of
(
Zt
i Wi (β)Zi

)−1
for D would result in a weight

of I − 1
2

(
Zt
i Wi (β)Zi

)−1
, which is exactly half-way between the weights accorded by

the two extreme choices of D. Thus, this seems like a reasonable guess for D in the

absence of any other prior knowledge. However, since
(
Zt
i Wi (β)Zi

)−1
varies with i,

we suggest replacing it with its harmonic mean over clusters, which leads to our choice
of R̃.

A second justification arises from considering a maximum likelihood-based Normal
approximation to the GLMM in which the exponential family specification is replaced
with

b̂i ∼ Nq

(
bi, I

(
b̂i

))
,

where b̂i is the ML estimator of bi based on the first-stage likelihood
∏ni

j=1 f (Yij |bi,β),

and I
(
b̂i

)
is the observed information evaluated at b̂i. It can be shown that I

(
b̂i

)
=

(
Zt
i Ŵi (β)Zi

)−1

, where Ŵi (β) is the GLM weight matrixWi defined previously but

with b̂i in place of zero. However, when Ŵi (β) is close to Wi (β), the within-cluster

variance I
(
b̂i

)
will be approximated well by

(
Zt
i Wi (β)Zi

)−1
. Thus, a prior guess

of
(

1
k

∑k
i=1 Zt

i Wi (β)Zi

)−1

for D, corresponds roughly to an a priori belief that the

between-cluster variance is equal to the harmonic mean of the within-cluster variance.

Note that our specification for the prior on D depends on β through µb

ij , which
appears inWi (β), and is thus a specification of the conditional distribution of D given
β. A consequence of this appearance of β is that the full conditional distribution
of β given the data and all other parameters will no longer be free of D. Although
this presents no substantial difficulties, the simplicity of the standard assumption of
independence of β and D (together with a uniform or Normal prior on β) enables
particularly straightforward MCMC implementation via Gibbs sampling (Zeger and
Karim, 1991). Thus, we propose a slight modification to the prior given above: we
replace the family of conditional distributions of D given β by the single conditional
distribution of D given β̂, where β̂ is an estimate of the regression coefficients from the
GLM model obtained by pooling all the data and setting bi = 0, for all i. That is, we
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specify the default inverted Wishart by ρ = q, and

R∗ = c ·
(
1

k

k∑

i=1

Zt

i Wi

(
β̂
)
Zi

)−1

. (2)

Note thatWi

(
β̂
)
is a Op

(
k−1/2

)
consistent estimator ofWi (β), and that the estimate

β̂ may be obtained in a simple pre-calculation.

2.3 Asymptotic irrelevance of the data-dependence in the modified
prior

Our modified default prior now depends on the data through the replacement of the

conditional prior π (D|β) with π
(
D|β̂

)
. It is possible for such a data-dependent sub-

stitution to yield very misleading inferences. For example, in the one-sample Normal
problem using the conjugate family of prior distributions on the mean µ and variance
σ2: π

(
µ|σ2

)
= N

(
µ0, λ0σ

2
)
, π
(
σ2
)
= IG (α0, β0), one might take σ̂ to be the standard

error of the sample mean and substitute it for σ in the Normal prior π
(
µ|σ2

)
. This

results in a prior whose informativeness is derived from the data; indeed, it would count
the data twice, and is clearly an unreasonable procedure. The substitution we have
made, however, is quite different: it does not carry the same amount of information as
the full data set, but in fact carries less information than does a single observation (that
is, a single cluster).

More formally, let λ = (β,D), πdef (λ) and πmod (λ) be the original default conju-
gate prior and its modification, and q (λ) be any alternative non-data-dependent prior.
Also, let G (λ) be a function to be estimated and let E (G (λ) |Y, πdef ) be the posterior
expectation of G (λ) based on πdef (λ), and similarly for the other two priors. Then, as
k →∞, we have

E (G (λ) |Y, πdef ) = E (G (λ) |Y, q)
(
1 +Op(k

−1)
)
, (3)

which is one way of saying that, in large samples, the effect of changing the prior is
roughly that of changing a single observation. If an informative data-dependent prior
were used (analogous to that mentioned for the one-sample Normal) in place of q (λ),
Equation (3) would no longer hold. Our modified prior produces

E (G (λ) |Y, πdef ) = E (G (λ) |Y, πmod)
(
1 +Op(k

−1)
)
. (4)

This result may be obtained from asymptotic expansions, as in Kass and Steffey (1989),
Equation (3.14), using the MLE-based version mentioned just after that equation). The
essential observation is that for any λ within an order O(k−1/2) neighborhood of the true
value (toward which a

√
k-consistent estimator will converge) the ratio of the original

to modified priors satifies πdef (λ) /πmod (λ) = 1 +Op

(
k−1/2

)
.

Kass and Steffey (1989) pointed out that when the empirical Bayes substitution of
an MLE of λ is made, the resulting posterior variance of a random effect is too small,



540 Default Conjugate Prior

and no longer approximates to order Op(k
−1) the correct posterior variance. This is

another example of the use of data-dependent priors that may have strong, undesirable
effects on inference. It is worth noting, again by way of contrast, that an expression
analogous to (4) holds for posterior variances:

var (G (λ) |Y, πdef ) = var (G (λ) |Y, πmod)
(
1 +Op(k

−1)
)
.

2.4 Simulation study

We ran three simulations, with generally similar results, and report the most dramatic
of them here. Unfortunately, while this illustrates the potential value of the default
conjugate prior, it is yet again a scalar example.

We compared the performance of the default conjugate prior with three other priors:
an inverted Wishart with ρ = q and R given by the MLE of D, an “ideal” inverted
Wishart with ρ = q and R given by the true value of D, and the approximate uniform
shrinkage prior πus (Natarajan and Kass, 2000). The ideal prior provides an unattain-
able target for the other Wishart priors.

All priors were used in conjunction with a uniform prior for β. The conditions under
which this gives a proper posterior for GLMMs has been derived by Natarajan and Kass
(2000), and were verified for the data here. Inferences for the four priors were based on
2,000 samples generated from their posterior distributions for each data set. Posterior
sampling was performed using the Gibbs sampler and followed the implementation de-
scribed by Zeger and Karim (1991) for the inverted Wishart priors, and Natarajan and
Kass for πus.

Breslow (1984) presented mutagenicity assay data on the number of revertant colonies
of TA98 Salmonella (Y ) at six doses of quinoline (x = 0, 10, 33, 100, 333, 1000). Three
plates were processed at each of the six dose levels resulting in a total of 18 observations.
He considered the following Poisson GLMM for these data:

Yi|bi ∼ Poisson
(
µbi
)
, i = 1, . . . , 18,

bi ∼ N(0, θ) , (5)

with µbi = exp (β0 + β1 ln (xi + 10) + β2xi + bi). The single variance component θ cap-
tures the overdispersion due to plate-to-plate variability. The default conjugate prior is

IG (1, R∗) where R∗ = 18/
∑18

i=1 wi, wi = exp
(
β̂0 + β̂1 ln(xi + 10) + β̂2xi

)
and we esti-

mated β̂ from the first-stage Poisson likelihood function with bi = 0. The approximate
uniform shrinkage prior is πus (θ) ∝ 1/ (1 + θ/R∗)

2
.

We generated 1,000 data sets from (5) with β0 = 2.203, β1 = .311, β2 = −.001 and
θ = .040. These values were chosen because they are close to the estimates obtained
for the salmonella data. The estimators of β and θ from the four priors were evaluated
according to posterior risk and noncoverage probabilities for 95% posterior intervals
(the noncoverage probabilities would, ideally, equal .05). The posterior risk was calcu-

lated under the squared-error loss function L
(
β̂,β

)
=
(
β̂ − β

)′ (
β̂ − β

)
for β, and
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the entropy loss function L
(
θ̂, θ
)
=
(
θ̂/θ − ln |θ̂/θ| − 1

)
for θ. The Bayes estimators

corresponding to these loss functions are the posterior mean and harmonic mean re-
spectively. Note that the entropy loss function penalizes underestimation more severely
than overestimation in cases when the true value of θ is close to zero. Thus, we would
expect the prior πus to have a slightly worse risk than the other priors since it places
non-zero mass at zero.

Operating Char-
acteristics

IW (1, θ) IW
(
1, θ̂
)

IW (1, R∗) πus

Risk
β .01 ± .00 .01 ± .00 .01 ± .00 .01 ± .00
θ .09 ± .00 .89 ± .05 .12 ± .00 .62 ± .02

Noncoverage
β0 .046 ± .007 .076 ± .008 .056 ± .007 .070 ± .008
β1 .054 ± .007 .086 ± .009 .059 ± .007 .067 ± .008
β2 .051 ± .007 .081 ± .009 .060 ± .007 .075 ± .008
θ .011 ± .003 .194 ± .012 .007 ± .003 .037 ± .006

Table 1: Simulation results: risk and noncoverage probability. IW (1, θ) denotes the
ideal diffuse conjugate prior based on the unknown true value θ = .04. Note that in
this one-dimensional case the inverse-Wishart becomes an inverse-gamma. IW (1, θ̂)

denotes the diffuse conjugate prior based on the MLE θ̂. IW (1, R∗) denotes the diffuse
conjugate prior based on Equation (2), with c = 1. The average value of MLE, across

the 1,000 data sets, was θ̂ = .027 while the average value of R∗ was R∗ = .033.

Table 1 displays these results for β and θ under the four priors. An examination of
the results shows that the inverted Wishart prior (here, an inverted gamma) centered

at the MLE θ̂ is dominated by the other priors, both in terms of risk and coverage
probabilities. The poor risk of this prior is a consequence of the tendency of the MLE to
underestimate the true value, while the worse coverage probabilities are due to its failure
to account for the extra variability induced by plugging in θ̂. The default conjugate prior
is fairly competitive with the ideal prior and offers slightly better inferences than πus
for the regression coefficients.

2.5 Conclusions

There is not much knowledge about the performance of posteriors based on alternative
priors for the matrix D in models of the form (1). The very limited results we have
managed to present here are intended to offer the default conjugate prior in (2) as a
plausible choice, and we would expect good results for this prior when c is chosen well.
Possibly c could be estimated from the data. We hope the future will bring practical
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guidance as to when posteriors based on priors for D, including the uniform prior,
the default conjugate prior, or other interesting choices such as that recommended by
Gelman (2005), are likely to have good frequentist operating characteristics.
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