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Model-based subspace clustering

Peter D. Hoff∗

Abstract. We discuss a model-based approach to identifying clusters of objects
based on subsets of attributes, so that the attributes that distinguish a cluster
from the rest of the population may depend on the cluster being considered. The
method is based on a Pólya urn cluster model for multivariate means and vari-
ances, resulting in a multivariate Dirichlet process mixture model. This particular
model-based approach accommodates outliers and allows for the incorporation of
application-specific data features into the clustering scheme. For example, in an
analysis of genetic CGH array data we are able to design a clustering method that
accounts for spatial dependence of chromosomal abnormalities.

Keywords: COSA, Dirichlet process, mixture model, nonparametric Bayes, Pólya
urn, unsupervised learning, variable selection

1 Introduction

In this paper we develop a model-based approach to clustering objects based on subsets
of attributes. The data we consider consist of m-dimensional attribute vectors yi mea-
sured on each member of a population of objects i = 1, . . . , n. In a typical model-based
cluster analysis, one tries to find a value K ≤ n such that the data are well approxi-
mated by a mixture of K multivariate normal distributions with means µ(1), . . . , µ(K)

(see McLachlan and Basford 1988, or Fraley and Raftery 2002 for a review). Such
procedures estimate the mean of each attribute separately for each cluster, typically
with µ̂(k),j = ȳ(k),j , the sample mean of attribute j for observations in cluster k. In
some cases this may result in overfitting: Suppose the differences between two given
clusters can be summarized by a difference in only a subset of the attribute means, with
the subset depending on the pair of clusters being compared. For example, consider
a bivariate population which is a mixture of three groups having means (µ(A1), µ(B1)),
(µ(A1), µ(B2)) and (µ(A2), µ(B2)). There is variation in both of the attributes, but two
of the three cluster pairs differ at only one attribute.

In many applications it is quite possible that only a small number of the attributes
differentiate groups of observations, and that among these attributes, only some will
differ between any two particular groups. This has lead Friedman and Meulman (2004)
to develop the notion of “clustering on subsets of attributes.” One version of their
approach iteratively generates a dissimilarity between each pair of objects based on
weighted attribute differences, where the weights are object-specific. Their clustering
criteria and computational approaches are largely driven by heuristics, and their meth-
ods do not provide estimates of the clusters memberships. More generally, procedures
that identify clusters based on potentially non-overlapping subsets of the attributes are
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called subspace clustering algorithms (see Parsons, Haque and Liu 2004 for a review).
These too are generally driven by heuristic criteria and search algorithms. In contrast,
some model-based methodology has been developed for the case of binary data. New-
ton (2002) and Hoff (2005) provide model-based subspace clustering methods for binary
data which allow the number of clusters, the cluster memberships, and the relevant at-
tributes to be jointly estimated in a unified procedure. Newton’s approach is somewhat
specific to a particular applied problem in cancer genetics, and does not allow the same
attributes to be relevant in different clusters. Hoff’s approach is more general and does
not have this restriction.

The clustering approach developed in this paper is based on finding groups which
differ from each other in terms of their means and/or variances at one or more at-
tributes. For example, in the case where differences between attribute distributions are
described by difference in means, we are looking for a value K, a cluster membership
function c : {1, . . . , n} → {1, . . . , K} and K m-dimensional means µ(1), . . . , µ(K) such
that the within-cluster residual sums of squares is small. However, we parameterize
µ(k) = µ + r(k) × δ(k), with r(k) ∈ {0, 1}m, δ(k) ∈ R

m and “×” indicating element-wise
multiplication. The vector r(k)×δ(k) is then a vector of “mean shifts” for group k, being
potentially zero at many entries. A model for such a clustering approach can be obtained
by writing yi = µ+ri ×δi +εi and modeling the distribution of {(ri, δi) : i = 1, . . . , n}
with a Pólya urn scheme. The resulting model for the yi’s is called a Dirichlet process
mixture model (Antoniak 1974, MacEachern 1994). Such a model provides estimates
of the cluster memberships and an identification of which attributes are likely to be
defining each cluster. Additionally, this model-based approach allows for an assessment
of uncertainty in the clustering and the incorporation of known data features into the
clustering algorithm, as is shown in an analysis of spatially dependent genetic array
data in Section 4.

For clarity, we begin with a detailed discussion of the approach in the simple case of
subset clustering of mean shifts. Section 2 introduces a model for this simple case, dis-
cusses parameter estimation and model behavior, and provides a small simulation study.
In this study the subset clustering approach outperforms a more standard Dirichlet mix-
ture model which assumes all attributes are relevant for each cluster. The approach also
outperforms COSA and the model-based clustering routine Mclust of Fraley and Raftery
(2002). Section 3 extends the approach to allow for clusterings based on differences in
means and variances, a goal similar to that of Friedman and Meulman’s (2004) COSA
procedure. The model-based procedure performs as well as COSA on a 10,000-attribute
simulated dataset considered in Friedman and Meulman’s article, and outperforms the
COSA algorithm on a similar dataset. In Section 4 we apply a modified version of the
model to spatially correlated genetic array data in which we try to identify groups of
tumor cells having common patterns of chromosomal abnormalities. A discussion of the
approach and some generalizations follow in Section 5.
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2 Clustering mean shifts with a Pólya urn scheme

Given an α > 0 and a distribution f0 on {0, 1}m×R
m, the clustering procedure described

in this section is as follows:

f ∼ Dirichlet(α, f0) (1)

{r1, δ1}, . . . , {rn, δn} ∼ i.i.d. f

ε1, . . . , εn ∼ i.i.d. multivariate normal(0, diag{σ2
1 , . . . , σ

2
m})

yi = µ + ri × δi + εi.

The vectors r1×δ1, . . . , rn×δn are the “mean shifts” away from µ described earlier, and
f describes their distribution. Modeling f as a Dirichlet process results in what is called
a Dirichlet process mixture model, as the density of yi can be written as the mixture
p(yi|µ, σ2, f) =

∫

p(yi|µ, σ2, θ)f(dθ) where θ = {r, δ} and the mixing measure f is
a Dirichlet process. Such models have a history going back to Antoniak (1974), and
have been put to practical use by MacEachern (1994), Escobar and West (1995,1998),
MacEachern and Müller (1998), Neal (2000), Dahl (2003b) and others.

Model (1) provides the following:

(a) the possible values of f include all discrete distributions on {0, 1}m × R
m (f is

estimated nonparametrically);

(b) a sample of n mean shifts from f may have less than n unique values (the {r, δ}’s
“cluster”);

(c) the attributes j for which r(k),j × δ(k),j 6= 0 may depend on k (relevant attributes
may be cluster-specific).

Samples from a Dirichlet process are discrete, and so f has support on a countable
number of {r, δ}-values. This discreteness implies that a sample from f could have a
number of ties, and thus forms a clustering. That the Dirichlet process prior gives a
simple and interpretable model for a clustering process can be seen via the Pólya urn
representation of a sample from a Dirichlet process, which is described in Blackwell and
MacQueen (1973): If f ∼ Dirichlet(α, f0) and θ1, . . . , θn are i.i.d. samples from f , then
unconditional on f the joint distribution of the θi’s is equal to that of an exchangeable
sequence generated as follows:

1. sample θ1 ∼ f0 ;

2. sample θ2 ∼ α
α+1f0 + 1

α+1δθ1
(·) ;

...

n. sample θn ∼ α
α+n−1f0 + n−1

α+n−1 f̂n−1,

where δθ1
(·) is a point-mass measure on θ1 and f̂n−1 is the empirical distribution of

θ1, . . . , θn−1. The above process is called a Pólya urn scheme with parameters α and
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f0. It is clear that, depending on α, the sample θ1, . . . , θn may have been generated by
fewer than n draws from f0 and thus have fewer than n unique values, achieving item
(b) described above. We denote the number of draws from f0 as K, and the values
of the draws as θ(1), . . . , θ(K). The function mapping the unit labels {1, . . . , n} to the
independent draws {1, . . . , K} is denoted c. As can be seen, α determines the distri-
bution of K, whereas f0 determines the distribution of the cluster-specific parameters
θ(1), . . . , θ(K). Note that under the Pólya urn model there is positive prior probability
that a given object is assigned to its own “singleton” cluster. This property allows
for the identification of outliers and reduces the possibility that they will hinder the
detection of coherent clusters.

Rewriting in terms of the Pólya urn representation, our full probability model can
be alternatively described by replacing the first two lines of (1) with

{r1, δ1}, . . . , {rn, δn} ∼ Pólya urn(α, f0).

A convenient choice for the baseline distribution f0 is that of independent binary and
normal random variables,

f0(r, δ) =
m
∏

j=1

binary(rj |
eλj

1 + eλj
) × normal(δj |0, τ2

j ). (2)

In this case λj represents the prior log-odds that the mean of a given attribute within a
cluster differs from that of the other clusters. The parameter τ 2

j represents the average

squared magnitude of such a difference. For now we allow λj and τ2
j to vary among

attributes, although in Section 2.3 we suggest a more parsimonious version of the model.

2.1 Model behavior

Key to understanding model behavior and parameter estimation is the probability of
the data within a cluster conditional on the clustering c but marginal over the values of
the cluster-specific parameters θ(1), . . . , θ(K), where θ(k) = {r(k), δ(k)}. The marginal
distribution for the data from attribute j in cluster k can be obtained by summing and
integrating:

p({yi,j : c(i) = k}|µj , σ
2
j , c) =

1
∑

rj=0

eλjrj

1 + eλj
×

∫







∏

i:c(i)=k

normal(yi,j |µj + rj × δj , σ
2
j )







f0(δj |τ
2
j ) dδj

=
1 + eλj+λ̂j (k)

1 + eλj
×

∏

i:c(i)=k

normal(yi,j |µj , σ
2
j )
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where λ̂j(k) is given by

λ̂j(k) = log
p({yi,j : c(i) = k}|rj = 1, µj , σ

2
j , τ2

j )

p({yi,j : c(i) = k}|rj = 0, µj , σ2
j )

(3)

= log
multivariate normal (y(k),j |µj1, σ2

j I + τ2
j 11

′)

multivariate normal (y(k),j |µj1, σ2
j I)

(4)

=
1

2

{

τ2
j

τ2
j + σ2

j /nk

nk

σ2
j

ξj(k)
2
+ log

σ2
j /nk

σ2
j /nk + τ2

j

}

(5)

where ξj(k) is the average value of yi,j − µj , averaged over objects i in group k. The

value of λ̂j(k) can be thought of as the adjustment to the log odds of r(k),j = 1, the
existence of a mean shift in attribute j for members of cluster k, having observed data
from that cluster and given values of µj , σ

2
j and τ2

j . Alternatively, λ̂j(k) is a log Bayes
factor for evaluating H : E(yi,j) 6= µj versus Hc for data in group k.

Taking the product over all clusters k and attributes j gives

p(y1, . . . , yn|c, µ, σ2, λ, τ 2) =







K
∏

k=1

m
∏

j=1

1 + eλj+λ̂j (k)

1 + eλj







×







n
∏

i=1

m
∏

j=1

normal(yi,j |µj , σ
2
j )







.

(6)
Note that the second product on the right hand side does not depend on the clustering
or the parameters describing the distribution of the cluster-specific parameters, and so
the conditional distribution of the clustering c given the data and the other parameters
is proportional to its prior times the first product. The k, jth term in this product
is an increasing function of λ̂j(k). Taking logs and using a Taylor series expansion of

log(1+eλj+λ̂j(k)) about λ̂j(k) = 0, the log-likelihood as a function of c is approximately
∑K

k=1

∑m
j=1

eλj

1+eλj
λ̂j(k) plus a constant. This indicates that higher posterior probability

is given to clusterings for which λ̂j(k) is large across attributes, weighted by eλj /(1+eλj ).

Recall that λ̂j(k) is the log-ratio of two multivariate normal densities, the numerator
modeling the responses at attribute j within a cluster as having marginal correlation
τ2
j /(τ2

j + σ2
j ), the denominator modeling the responses as independent. As can be seen

from (5), λ̂j(k) is large if ξj(k)
2

is large compared to σ2
j /nk, its expected value under

the hypothesis of no mean shift.

It is also informative to look at the likelihood (6) as a function of µ and σ2. Taking
the derivative of the log-likelihood with respect to µj , the maximizer in µj is seen to
satisfy

µj =

∑K
k=1[1 − vj(k)]nkȳj(k)
∑K

k=1[1 − vj(k)]nk

, with vj(k) =
eλj+λ̂j(k)

1 + eλj+λ̂j (k)

τ2
j

τ2
j + σ2

j /nk
,

Without the weight vj(k) the conditional maximizer would be ȳj , the sample mean
over all clusters. The weight has the effect of making the estimate of µj predominantly



326 Model-based subspace clustering

based on data from clusters k for which there is unlikely to be a mean shift, i.e. k for

which eλj+λ̂j(k)/(1 + eλj+λ̂j(k)) is small. Similarly, the maximizer of the likelihood in
σ2

j satisfies

σ2
j =

∑K
k=1 nk{s

2
j (k) + [ȳj(k) − µj ]

2[1 − vj(k)v′j(k)]}
∑K

k=1[nk − vj(k)]

where s2
j (k) =

∑

i:c(i)=k[yi,j − ȳj(k)]2/nk and v′j(k) = 1 + (σ2
j /nk)/(σ2

j /nk + τ2
j ). Al-

though less transparent than the likelihood equation for µj , the behavior is analogous:
For a group k with a large probability of a mean shift (vj(k) large), [ȳj(k)− µj ]

2 is not
a good estimate of σ2

j and so the contribution to the estimate of σ2
j from group k is

dominated by s2
j (k). On the other hand, if it is unlikely that group k has a mean shift

(vj(k) small), then the contribution to the numerator from group k is approximately
nk(s2

j (k) + [ȳj(k) − µj ]
2) =

∑

i:c(i)=k[yi,j − µj ]
2.

2.2 Parameter estimation

Inference can be made on {c, α, µ, σ2} by constructing a relatively straightforward
Markov chain which converges to the posterior distribution p(c, α, µ, σ2|y1, . . . , yn).
We suggest an algorithm based on Gibbs sampling of the cluster membership function
and the other parameters. This approach is the “standard” estimation technique for
Dirichlet process mixture models, and is discussed by MacEachern (1994) for mixtures of
univariate normals, and in general by Neal (2000). Given a current state of {c, α, µ, σ2},
one such algorithm iteratively sample new states for each quantity as follows:

1. For i ∈ {1, . . . , n} in random order, sample c(i) conditional on the data, µ, σ2 and
α but marginal over the cluster-specific parameters;

2. For k ∈ {1, . . . , K}, sample {r(k), δ(k)} from its full conditional distribution;

3. For j ∈ {1, . . . , m}, sample µj and σ2
j from their full conditional distributions;

4. Sample α from its full conditional distribution.

These steps are outlined in more detail below.

Sampling c: Unconditional on the observed data, the conditional distribution of c(i)
given the other values of c and α is computed as follows: Let K be the number of unique
values of {c(i′) : i′ 6= i}, and relabel these values as 1, . . . , K if unit i is currently in its
own cluster. The conditional distribution of c(i) is

Pr(c(i) = k|c(i′), i′ 6= i, α) ∝

{

nk,−i if k < K + 1
α if k = K + 1

where nk,−i is the number of objects in cluster k not including unit i. In other words,
unit i is placed into an existing cluster with probability proportional to the cluster’s
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size, and is placed into a new cluster with probability proportional to α. Conditional
on the data and the other parameters these probabilities are reweighted as

Pr(c(i) = k|c(i′), i′ 6= i, α, µ, σ2, λ, τ 2, y1, . . . , yn) ∝

{

nk,−i × wk if k < K + 1
α × wK+1 if k = K + 1

where the weights are given by

wk =

m
∏

j=1

1 + exp{λj + λ̂+i
j (k)}

1 + exp{λj + λ̂−i
j (k)}

if k < K + 1

wK+1 =

m
∏

j=1

1 + exp{λj + λ̂+i
j (K)}

1 + expλj
,

and λ̂+i
j (k) , λ̂−i

j (k) are calculated as in (3) but including and excluding yi in cluster
k for the marginal probability calculation, respectively. Each weight wk represents the
relative probability of the data under c(i) = k.

With each resampling the number of clusters could increase by one, decrease by one,
or remain unchanged, allowing the Markov chain to move around the space of clusters.
To improve mixing of the Markov chain, we suggest including split-merge Metropolis-
Hastings steps in the algorithm as well. Details for the implementation of such steps
can be found in Jain and Neal (2004) or Dahl (2003a).

Sampling {r(k), δ(k)}: Under the prior distribution (2) and given the data, µ, σ2

and c, r(k),1, . . . , r(k),m are conditionally independent binary random variables having

log-odds λj + λ̂j(k). If r(k),j = 1, then δ(k),j has a normal(δ̂j , τ̂
2
j ) distribution, with

τ̂2
j = (nk/σ2

j +1/τ2
j )−1 and δ̂j = τ̂2

j (
∑

i:c(i)=k(yi,j −µj)/σ2
j ). Otherwise, δ(k),j is normal

(0, τ2
j ).

Sampling α: Fixed values of α and n provide a prior predictive distribution for the
number of clusters K which is generally concentrated on a small set of integers. More
diffuse priors for K can be obtained by putting a prior on α and including it as an
unknown parameter in the MCMC scheme. For example, a uniform prior on α/(α + 1)
results in a prior distribution for K that is monotonically decreasing from K = 1 but
has a reasonably heavy tail out to K = n.

As shown in Antoniak (1974), the distribution of K as a function of α is proportional
to αKΓ(α)/Γ(α + n). This can be highly skewed in α ∈ R

+ depending on K. Since
K varies over the MCMC sampling procedure, coming up with a fixed proposal distri-
bution for α in a Metropolis-Hastings update is problematic. Escobar and West (1998)
provide a sampling approach based on data augmentation if the prior for α is a gamma
distribution. For arbitrary priors one can reparameterize in terms of π = α

α+1 ∈ (0, 1),
which represents the probability that a given pair of objects are in different clusters.
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Changing variables, we have

p(π|K) ∝ p(π) ×

(

π

1 − π

)K
Γ[π/(1 − π)]

Γ[π/(1 − π) + n]
.

Sampling from p(π|K) can be achieved by sampling from a grid on (0, 1).

Sampling µ, σ2: The full conditional distribution of {µj , σ
2
j } depends on the data

only through observations from attribute j. It is relatively straightforward to update
these parameters for each j = 1, . . . , m using a Gibbs step in the case of conjugate
prior distributions: Given c and {r(k), δ(k)}, k = 1, . . . , K we calculate εi,j = yi,j −
r(c(i)),j × δ(c(i)),j . These “residuals” at attribute j from all clusters {εi,j , i = 1, . . . , n}
are conditionally i.i.d. normal(µj , σ

2
j ). The full conditionals of µj and σ2

j are then
normal and inverse-gamma respectively if conjugate priors are used:

µj ∼ normal(µ̂j , σ̂
2
j ) , where σ̂2

j = (n/σ2
j + 1/v)−1, µ̂j = σ̂2

j (
∑n

i=1 εi,j/σ2
j + m/v)

1/σ2
j ∼ gamma[ν1 + n/2, ν2 +

∑n
i=1(εi,j − µj)

2)/2],

where m, v, ν1 and ν2 parameterize the priors of µj and σ2
j .

2.3 Estimating hyperparameters

The types of clusters identified by the above modeling strategy are determined in part
by the prior f0 for the mean shifts, which in turn depends on the parameters λ and
τ 2. Ideally, one has a good idea of what types of clusters are of interest and is able to
specify fixed values or informative prior distributions for some or all of these parameters.
Alternatively, in many data analysis situations the attribute measurements may be of a
common type. In this case it might be appropriate to model the relevance indicators rj

and mean shifts δj as depending on some parameters that are shared across attributes,
and then estimating these parameters from the data. For example, one possibility is to
model f0 as follows:

f0(r, δ) =

m
∏

j=1

binary(rj |
eλ

1 + eλ
) × normal(δj |0, τ2

j = η × σ2
j ), (7)

and then include estimation of λ and η in the MCMC algorithm. In the above model,
τ2
j has been parameterized as τ 2

j = ησ2
j , and so η relates the magnitude of the mean

shifts at an attribute to the variance of the attribute, or alternatively, η/(η + 1) is the
marginal correlation at relevant attributes among observations in the same cluster. A
prior distribution on λ and η amounts to modeling the elements of the relevance vectors r

and δ/σ as marginally exchangeable but dependent. Such an exchangeable prior allows
for differences across attributes of the cluster-specific parameters, but generally provides
estimates with lower variability than if they were modeled as a priori independent. Even
if the attributes represent measurements of very different types, it still might be desirable
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to use such an exchangeable prior, as it establishes a common criterion for relevance
across attributes.

Standard conjugate priors for these hyperparameters are beta (aλ, bλ) for eλ/(1+eλ)
and inverse-gamma (aη , bη) for η. Estimation of these parameters can be incorporated
into the Markov chain described above by including Gibbs sampling steps for these
parameters:

• sample eλ/(1 + eλ) ∼beta{aλ +
∑K

k=1

∑m
j=1 r(k),j , bλ +

∑K
k=1

∑m
j=1(1 − r(k),j)};

• sample η ∼ inverse-gamma{aη + 1
2nK, bη + 1

2

∑K
k=1

∑m
j=1 δ2

(k),j/σ2
j }.

One additional modification to the MCMC algorithm required by model (7) is that,
conditional on η, the mean shifts give information about σ2. As a result, the Gibbs
sampling step for σ2 becomes

• sample σ2
j ∼ inverse-gamma{a+ 1

2 (n+K), b+ 1
2 (

∑n
i=1(εi,j−µi,j)

2+
∑K

k=1 δ2
(k),j/η)}.

2.4 Simulation Study

We expect the accuracy of the clustering procedure to be high if the number of relevant
attributes is large (large λ) and/or the magnitude of the mean shifts relative to the error
variance is large (large η). We investigate these claims empirically with a simulation
study. Eighteen datasets were generated as follows:

1. For k = 1, . . . , K = 10, generate {r(k), δ(k)} via

• r(k),1 . . . , r(k),m ∼ i.i.d. binary(eλ/(1 + eλ)), and

• δ(k),1 . . . , δ(k),m ∼ i.i.d. normal(0, η).

2. For i = 1, . . . , n, sample c(i) uniformly from {1, . . . , K} and set
{ri, δi} = {r(c(i)), δ(c(i))}.

3. For i = 1, . . . , n sample yi ∼ multivariate normal(ri × δi, I).

This data generating mechanism is the same as the model described by (1) and (7),
except that the cluster memberships for the simulated data are not generated with
a Pólya urn scheme. Eighteen datasets were generated in this manner, one for each
combination of λ ∈ {−3,−2,−1}, η ∈ {1/2, 1, 2} and n ∈ {50, 100}. These parameter
values provide datasets exhibiting varying degrees of information about the clustering,
from small mean shifts at roughly 5% of the attributes (η = 1/2, λ = −3) to large mean
shifts at roughly 25% of the attributes (η = 2, λ = −1). To increase comparability
across simulations, the same clustering was used for each of the nine datasets for a
given sample size, and the clustering for the n = 50 datasets was a subclustering of the
n = 100 clustering.
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We used the model described by (1) and (7) to analyze the simulated data, with “unit
information” priors (Kass and Wasserman 1995) for µ and σ2 whereby a priori we have
µj ∼ normal(ȳ·,j , s

2
j ) and σ2

j ∼ inverse gamma(1/2, s2
j/2). The prior on α/(α + 1)

was taken to be uniform(0,1), and the priors for eλ/(1 + eλ) and η were uniform(0,1)
and inverse-gamma(1/2,1/2) respectively. A Markov chain of length 10,000 was run
for each dataset, each starting with all n units in the same cluster. Convergence of the
chains appeared to be rapid, typically occurring in the first few tens of scans and always
occurring within the first half of the chain.

Figure 1 gives some indication of the mixing of the chains for three of the simulated
datasets. The figure plots the Jaccard index of similarity (Jaccard 1912, Milligan, Soon
and Sokal 1983) between sampled clusterings c and the clustering c0 which generated
the data for every tenth scan of the Markov chain. The Jaccard index is defined as
J(c, c0) = Ns·s/Ns|s, with Ns·s being the number of pairs of objects in the same group
under both clusterings, and Ns|s the number of pairs in the same group under at least one
clustering. With c0 being the true clustering, this index measures how well a clustering
c identifies pairs of objects that should be in the same group, but penalizes c if it puts
too many objects in the same group. We also assess posterior mean performance of
the method using the Jaccard index. The average values of J(c, c0), averaged over
sampled clusterings from the second halves of the Markov chains, are shown in Table 1.
As conjectured, the ability to accurately identify clusters increases with the number of
relevant attributes (λ) and the magnitude of the mean shifts (η).
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Figure 1: Plots of the Jaccard index of similarity between c0 and every 10th sampled
value of c for the three datasets η ∈ {1/2, 1, 2} with n = 50 and λ = −2.

If the posterior distribution of c indicates a strong clustering then it may be of
interest to identify the attributes which contribute substantially to the between-group
differences. One way to do this is to obtain posterior estimates of r(1), . . . , r(K) and
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η
n = 50 1/2 1 2

-3 0.07, 0.02 0.07, 0.02 0.15, 0.04
λ -2 0.12, 0.08 0.52, 0.34 0.87, 0.68

-1 0.28, 0.27 0.75, 0.72 0.91, 0.83

η
n = 100 1/2 1 2

-3 0.08, 0.01 0.08, 0.02 0.36, 0.05
λ -2 0.16, 0.08 0.67, 0.31 0.99, 0.88

-1 0.76, 0.60 0.90, 0.90 0.97, 0.95

Table 1: Results of the simulation study: Numbers are the the Jaccard indices of
similarity averaged over sampled clusterings from each of the Markov chains. The first
number is the average index using the subspace clustering method, the second using a
standard Dirichlet mixture model, clustering on all attributes.

δ(1), . . . , δ(K) conditional on a single estimate of the clustering. We give an example of
this for the n = 50, λ = −2, η = 2 dataset. The estimated modal clustering ĉ (the value
of c that was sampled the most number of times) had a Jaccard index of J(c0, ĉ) = 0.88,
placing 48 observations into 10 groups which were “pure” except for one misplaced
object. The remaining two objects were not grouped within these ten clusters or with
each other. The MCMC algorithm was run as above but with c fixed at ĉ. To summarize
the conditional posterior distribution of r(1), . . . , r(K) and δ(1), . . . , δ(K), we categorize
an attribute j as relevant for a given cluster k if r(k),j = 1 for more than half of the
saved scans. Figure 2 plots the MCMC sample mean of r(k),j × δ(k),j at these attributes
for the three largest clusters. As can be seen, such a criterion gives good estimates of
the larger mean shifts but misses some of the smaller mean shifts.

An appropriate model to compare to the subset clustering approach is a Dirichlet
process mixture model assuming all attributes are relevant to all clusters, i.e. a “stan-
dard” clustering method. This model can be viewed as a submodel of the one developed
in this paper with λ = ∞. Results for this model applied to the 18 simulated datasets
are also presented in Table 1. The subset clustering model outperformed this submodel
for all simulated datasets, although as we would expect, the improvement decreases as
the number of relevant attributes increases.

We also clustered the data using two other approaches: the model based clustering
algorithm Mclust (Fraley and Raftery, 2002) as implemented in the R computing en-
vironment, and the COSA algorithm of Friedman and Meulman. The routine Mclust

did not identify any clusters for any of the 18 simulated datasets (i.e. the preferred
number of groups was K = 1 for each dataset). We speculate that this is due to the
fact Mclust fits an m-dimensional mean vector for each group and that it uses BIC
to penalize model complexity. For these simulated data the actual number of mean
parameters required to differentiate between groups is much less than m, and so the
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Figure 2: Data and estimated mean shifts from the three largest clusters from the
n = 50, η = 2, λ = −2 dataset.

improvement in fit obtained by adding a cluster is small relative to the BIC complexity
penalty of order m.

In contrast to Mclust, the goal of the COSA algorithm is to find clusters based
on subsets of relevant attributes. The COSA algorithm generates a set of distances
between objects which one can then input into a distance-based clustering method. We
computed COSA distances for only the dataset with the strongest evidence of clustering
(n = 100, λ = −1, η = 2). An average-linkage dendrogram of the COSA distances is
shown in Figure 3, along with the group labels used to generate the data. As can be seen,
the COSA distances are only weakly related to the true group labels. Additionally, the
shape of the dendrogram does not reflect the strong clustering of the data. In contrast,
the proposed model-based method produced a posterior mode clustering for these data
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that identified the 10 clusters and correctly grouped 99 of the 100 objects. This lack of
performance by COSA is partly due to the fact that COSA distances are largely based
on attributes that have low variances within a group, as opposed to attributes where
the within-group mean differs from that of the other groups. This is discussed further
in Section 3.2 .
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Figure 3: Average linkage dendrogram using COSA distances for the n = 100, η =
2, λ = −1 dataset. Plotting characters are the true group labels.

3 Clustering shifts in mean and variance

In many cases it is desirable to form groups of objects based on differences in means and
variances. For example, one notion of subspace clustering is that the data for a relevant
attribute within a cluster are all very similar (having a small variance), whereas the data
for an irrelevant attributes vary widely (having a high variance). This is the notion of
clustering that Friedman and Meulman (2004) consider with their COSA algorithm. In
other applications we might want to allow for a positive mean-variance relationship,
such as with skewed data or in biostatistical applications for which biological activity
may be marked by increases in mean and variance.

Recall that the modeling approach discussed in the previous section identifies clusters
by modeling the variance and covariance at a relevant attribute j within a cluster,
unconditional on the mean shift, as

Var(yi,j) = σ2
j + τ2

j , Cov(yi1,j , yi2,j) = τ2
j , Cor(yi1,j , yi2,j) =

τ2
j

τ2
j + σ2

j

=
η

η + 1
,

where the last equality holds under the parameterization in (7). A model extension
allowing for cluster-specific variance at relevant attributes can be parameterized as

Var(yi,j) = ω2
(k),j(σ

2
j +τ2

j ), Cov(yi1,j , yi2,j) = ω2
(k),jτ

2
j , Cor(yi1,j , yi2,j) =

τ2
j

τ2
j + σ2

j

=
η

η + 1
,

where ω2
(k),j represents the shift in variance at attribute j within cluster k. This can be
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written as the following modification to model (1):

f ∼ Dirichlet(α, f0) (8)

{r1, δ1, ω
2
1}, . . . , {rn, δn, ω2

n} ∼ i.i.d. f

ε1, . . . , εn ∼ i.i.d. multivariate normal(0, diag{σ2
1 , . . . , σ

2
m})

yi,j = µj + r(k),j × δ(k),j × ω(k),j + ω
r(k),j

(k),j × εi,j

where now the cluster-specific parameters are θ(k) = {r(k), δ(k), ω
2
(k)}. A simple conju-

gate base measure is given by

f0(r, δ, ω2) =
m
∏

j=1

binary(rj |
eλ

1 + eλ
)×normal(δj |0, τ2

j = ησ2
j )×inverse gamma(ω2

j |aω, bω).

(9)
The values of aω and bω determine what types of variance shifts the model will detect.
For example, to detect COSA-like clusterings where the variance at relevant attributes
is lower than the background variance we might fix aω ≥ bω + 1 so that ω2

(k),j is less

that one on average. Alternatively we could put a prior on (aω, bω) along with the other
hyperparameters as discussed in Section 2.3.

3.1 Parameter Estimation

Posterior calculations for the model given by (8) and (9) can be made using the algorithm

outlined in Section 2.2 and 2.3 with the modification that the numerator of λ̂j(k) in (3)
now must be obtained by integrating out the cluster specific values of ω2

(k),j in addition
to those of r(k),j and δ(k),j . The within-cluster distribution of the data at a relevant
attribute, marginal over ω2

(k),j and δ(k),j , is a multivariate t-distribution with density

p({yi,j : c(i) = k}|rj = 1) = (2π)−nk/2|σ2
j I + τ2

j 11′|−1/2 Γ(aω + nk/2)

Γ(aω)
baω
ω ×

[

bω +
nk

σ2
j

{

ξj(k)2 −
τ2
j

τ2
j + σ2

j /nk
ξj(k)

2

}]−(aω+nk/2)

.(10)

The quantity λ̂j(k) is given by λ̂j(k) = log[p({yi,j : c(i) = k}|rj = 1)/p({yi,j : c(i) =
k}|rj = 0)] as before, and is used to perform Gibbs sampling of the cluster function
c and the relevance vectors r(1), . . . , r(K) as described in Section 2.2. Gibbs sam-
pling of the other model parameters also proceeds as in Section 2.2, with the mod-
ification that quantities at relevant attributes are rescaled by the shifts in standard
deviation ω(1), . . . , ω(K). Details of the rescaling are straightforward, and the pro-
cedure is implemented in R-code available at the author’s website. In order to per-
form the rescaling, conditional samples of ω2

(1), . . . , ω
2
(K) are required, and can be sam-

pled as ω2
(k),j ∼ inverse-gamma (aω + nk/2, bω + 1

2ξ′
(k),jΣjξ(k),j) if r(k),j = 1, where

ξ(k),j = {yi,j−µj : c(i) = k} and Σj = σ2
j I+τ2

j 11
′, and ω2

(k),j ∼ inverse-gamma (aω, bω)
if r(k),j = 0.
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3.2 Comparison to COSA

We evaluate the model given by (8) and (9) with two simulated datasets, one considered
by Friedman and Meulman (2004) and one similar to it. The dataset considered by
Friedman and Meulman consists of 10,000 attributes measured on 100 objects, in which
the responses from all but 150 of the attributes were generated from a standard normal
distribution. For one cluster of 85 objects, these 150 attributes are also standard normal,
but for a second cluster of 15 objects these attributes were sampled from a normal
distribution with mean 1.5 and standard deviation of 0.2. Thus the two groups differ
in both mean and variance at 150 out of 10,000 attributes. As shown in the article,
the COSA algorithm does a good job of distinguishing the two groups. To examine the
ability of COSA to detect mean shifts in the absence of variance reductions, Hoff (2004)
applied the COSA algorithm to a dataset similar to the one described above, having the
mean shift of 1.5 but lacking any change in variance. As shown in Hoff (2004), COSA
was unable to detect the clusters, indicating that the algorithm may be insensitive to
group differences based on means alone.

We evaluated the Dirichlet mixture model given by (8) and (9) on these two 10,000
attribute datasets. Prior distributions for all parameters were as in the simulation
study in Section 2.4, and the hyperparameters (aω, bω) were fixed at (3, 2). This gives
a relatively diffuse prior for the ω2’s, having a prior mean of 1 and a prior mode of 1/2.
This prior favors clusterings having a decrease in variance at relevant attributes, but
allows for no change in variance and even the possibility of an increase in variance. Two
Markov chains of length 1000 were run, one for each of the two simulated datasets. In
the case of the data having both a mean and variance shift, all sampled clusterings after
scan 222 were equal to the true clustering. For the data with just a mean shift, all scans
after scan 90 were equal to the true clustering. This indicates that the true clustering is
a very strong mode of the posterior distributions for both datasets. This should not be
too surprising, as the class of models described by (8) includes the distributions which
generated both datasets. However, it seems important to note that the COSA procedure
fails to identify the clusters in the second dataset, a dataset having a relatively simple
cluster structure that is apparently easy to identify with a correct model class.

4 A model extension for chromosomal abnormalities

A model for the cellular evolution of cancer within an individual is that an accumula-
tion of genetic abnormalities in certain chromosomal regions of a cell lineage eventually
results in tumorigenesis. In particular, abnormalities may take the form of chromosomal
gain or loss. A normal cell has two copies of each chromosome, whereas cells having un-
dergone errors in duplication may have lost or replicated certain regions of chromosomes,
potentially resulting in one copy of chromosomal material at a given location (deletion)
or more than two copies (amplification). If a cell lineage undergoes tumorigenesis, then
such copy number changes are passed on to the descendant cells that eventually make
up a tumor. If tumors from different, unrelated individuals all have the same types of
deletion or amplification events at a combination of locations, then this is some evidence
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that these locations play a role in tumorigenesis. This reasoning has been applied to
several studies, including Hemminki (1997), Roylance et al. (1999), and is discussed in
Gray and Collins (2000). Newton (2002) uses this idea to develop a clustering model for
binary chromosomal abnormality data used to identify mechanisms of tumorigenesis.

In this section we consider a first step in such an analysis: determining the extent
to which a population of tumors can be divided into groups having similar patterns
of chromosomal abnormalities. In a study using comparative genomic hybridization
(CGH) array data from 44 breast cancer tumors (detailed in Loo et al. 2004), yi,j is
the log base 2 relative hybridization level of DNA samples from tumor i at genome
location j compared to the hybridization level of a normal cell’s DNA at that location.
Large negative or positive values of yi,j suggest deletion or amplification abnormalities
for tumor i at location j. The researchers provided data on chromosomes 1, 6, 16, and
17 for statistical analysis. Hybridization levels were measured at 345, 183, 150, and 133
locations on these four chromosomes respectively, for a total of m = 811 observations
for each of the n = 44 tumors. Figure 4 shows hybridization data from chromosome
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Figure 4: Hybridization ratio data from chromosome 1 for three tumors. The gap is the
centromere.

1 for three tumors. The three tumors show a similar profile along the first part of
chromosome 1, whereas only two of the three show an amplified response along the
second part of the chromosome, suggesting a potential clustering based on subsets of
genome locations. Additionally, there is some indication that the amplified responses
are accompanied by increases in variance. Finally, the figure suggests that abnormalities
occur at contiguous regions of the chromosome, so that the presence of abnormalities
along the chromosome is a spatially dependent process.
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4.1 Modeling spatial genetic events

To analyze these data we use the model for shifts in means and variances as outlined by
(8) and (9), but modify f0 to account for the spatial nature of the abnormalities. This
is done by modeling the vector r as a binary Markov sequence, parameterized as

log odds(rj = 1|rj−1) =

{

γ1 + γ2rj−1 if locations j and j-1 are next to each other;
γ1 otherwise.

Two consecutively numbered locations are not next to each other if they are on different
chromosomes or on different arms of the same chromosome. This model can also be
written in exponential family form,

f0r(r) = κ(λ1, λ2)
−1 exp{

m
∑

j=1

λ1,jrj +

m
∑

j=2

λ2,jrjrj−1} (11)

where λ1,j = γ1 + log(1 + eγ1) − log(1 + eγ1+λ2,j ) and λ2,j = γ2 if locations j and
j − 1 are next to each other and λ2,j = 0 otherwise. Alternatively we could model the
dependence between measurements at j and j − 1 as a function of the genetic distance
between them. We do not pursue this model complication, as the measurement locations
are approximately evenly spaced along the four chromosomes. One additional model
modification we do make is to constrain µ = 0, as we are interested in detecting common
regions of chromosomal gain or loss rather than deviations from an average amount of
gain or loss.

The full probability model for all data and unknown quantities is:

• Sampling model: yi ∼ multivariate normal (ri × δi × ωi, diag{σ2 × (ω2
i )

ri}).

• Prior for variances :

– σ2
1 , . . . , σ2

m ∼ i.i.d. inverse gamma (ν1, ν2) .

– (log ν1, log ν2) ∼ multivariate normal (0, 100× I).

• Clustering model: {r1, δ1, ω
2
1}, . . . , {rn, δn, ω2

n} ∼ Pólya urn(α, f0).

• Prior for α: α
α+1 ∼ uniform(0,1) .

• Prior for f0: f0(r, δ, ω2) =
∏m

j=1 binary(rj |rj−1, γ1, γ2) × normal(δj |0, ησ2
j ) ×

inverse-gamma(ω2
j |a, b);

–
eγ1

1+eγ1
, eγ1+γ2

1+eγ1+γ2
∼ independent uniform (0,1);

– η ∼ inverse gamma (1/2, 1/2);

– (log a, log b) ∼ multivariate normal (0, 100× I).
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The prior on the variances σ2
1 , . . . , σ2

m is an exchangeable prior, in that unconditional on
(ν1, ν2) the variances are dependent but exchangeable. This has the effect of reducing
the variability of the σ2

j ’s, and is justifiable in the sense that each attribute measurement
is of a similar type (CGH array data), so that knowledge of the variance at one attribute
gives some information about the variance at another. The prior distribution on the
parameters in the base measure f0 are proper but diffuse. These can also be viewed as
generating a prior for the cluster-specific parameters {r, δ, ω2} which is exchangeable
across attributes.

4.2 Parameter estimation

Parameter estimation for this more complicated model is only slightly more difficult than
that for the model described in Section 3. As before, a useful quantity for estimation is
the marginal probability of the data in a cluster given the parameters and clustering:

p({yi : c(i) = k}) =

{

K
∏

k=1

κ(λ1 + λ̂(k), λ2)

κ(λ1, λ2)

}

×







m
∏

j=1

∏

i:c(i)=k

normal(yi,j : µj , σ
2
j )







,

where λ̂(k) = {λ̂1(k), . . . , λ̂m(k)} is as defined by (3) and (10).

Gibbs sampling of the cluster memberships proceeds as in Section 2.2 but with the
following modification to the weights w1, . . . , wk:

wk =
κ(λ1 + λ̂

+i
(k), λ2)

κ(λ1 + λ̂
−i

(k), λ2)
if k < K + 1,

wK =
κ(λ1 + λ̂

+i
(k), λ2)

κ(λ1, λ2)

Conditional on the clustering and the other parameters, r(k) can be sampled from

the (exponentially parameterized) Markov model (11) with parameters {λ1 + λ̂(k), λ2}.
The remaining parameters in the model can be updated by sampling either from full
conditionals as described in Sections 2 and 3 or Metropolis-Hastings steps for ν1, ν2, a,
and b.

4.3 Posterior Inference

Four Markov chains of length 25,000 scans each were generated as described above.
One chain was begun with K = 1, one with K = 44, and the two remaining chains
were given randomly sampled starting values for the clustering function. The Markov
chains arrived at similar regions of the parameter space after a few hundred scans.
After dropping the first 1000 scans from each Markov chain, the modal clustering ĉ
(the clustering that was sampled the most number of times) placed the 44 tumors into
three groups of sizes 14, 11 and 9, and put 10 tumors into their own “outlier” groups.
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Figure 5: Summaries of the posterior distributions of the clustering. Panel 1 plots the
cumulative sample sizes of the three largest groups for every 100th scan of the Markov
chain. Panel 2 plots the Jaccard index between ĉ and every 100th sampled value of c.

Examination of the Markov chains indicated good mixing and that cluster composition
was fairly similar to that of ĉ across MCMC scans and chains. Some aspects of this are
presented in Figure 5. The first panel gives the cumulative sample sizes of the largest
cluster, second largest cluster and third largest cluster for every 100th scan of one of
the Markov chains The second panel gives the Jaccard index of similarity between ĉ and
each 100th sampled value of c. Results for the other Markov chains are similar.

On average over all scans and chains, the sample sizes of the three largest groups
were 13.5, 10.4, and 7.2 respectively, making up 31.1 (71%) of the 44 tumors. The
ten tumors that were placed into their own outlier groups under ĉ were also typically
outliers across scans of the Markov chains. The fraction of scans in which these ten
tumors were outliers were .97, .96, .93, .92, .91, .89, .86, .84, .74 and .38. Of the remaining
34 tumors, one had a 14% posterior probability of being an outlier and the rest had
probabilities of less than 3%. On average across scans and Markov chains, 8.7 tumors
(20%) were placed in their own outlier groups.

Data from the three largest groups under ĉ are shown in Figures 6, 7 and 8. Hy-
bridization ratios within these groups are generally characterized by having high vari-
ances relative to σ2 and having some common regions of over or under expression. The
main features of the largest group include large, consistent amplification of genetic ma-
terial on the second arm of chromosome 1, moderate amplification on the first arm of
chromosome 16, and deletion on the second arm of chromosome 16. The second largest
group also exhibits some amplification on chromosome 1, but has higher variances than
the first group and lacks a pattern of gain and loss on chromosome 16. The third largest
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Figure 6: Data from the largest cluster. Gray lines are ±2σ̂.

group exhibited a similar pattern to that of the largest group, but with a smaller shift
on the second arm of chromosome 1 and an indication of deletion on the first arm of
chromosome 17.

For comparison, data from one of the outlier tumors is shown in Figure 9. This
tumor was identified as an outlier in 97% of the saved scans of the Markov chains,
which seems like a desirable classification: This tumor distinguishes itself from the
others by exhibiting no sign of amplification or deletion anywhere on chromosomes 1,
6 or 16, but has a very clear abnormality pattern on 17, one that is unlike that of the
other tumors.

As can be seen from these plots, the data are quite noisy even within a cluster.
However, for each of these clusters there exist many regions of the chromosomes in
which the hybridization ratios are all either above zero or all below zero. As a quick
ad-hoc check, for each of the three groups under ĉ we counted the number of locations
at which the measurements were either all above zero or all below zero, and compared
these counts to the expected number of such locations from randomly sampled subsets of
tumors, the subsets having sizes of nk ∈ {14, 11, 9}. The ratios of observed to expected
counts were 2.4, 1.2, and 1.5 for the clusters of size 14,11 and 9 respectively (or “p-
values” of < .0001, .142 and .02). In contrast, when taken together, the set of 10
outliers had an observed to expected ratio of 0.7 (or a “p-value” of .96). This simply
checks that the clustering procedure grouped together tumors having similar patterns
of over and under expression.

5 Discussion

This paper has developed a model-based method of finding clusters based on subsets
of attributes. The types of clusterings this method is designed to identify include, but
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Figure 7: Data from the second largest cluster.

are not limited to, clusterings where all attributes differ among groups and where a
fixed subset of attributes all differ among groups, and so this approach is more general
than a variable selection procedure. The method also has the feature (shared by all
Dirichlet process mixture models) that an object can potentially be put into a group
by itself if its attribute pattern is not minimally similar to those of other objects.
Depending on the application, this could be a desirable feature: Outlying observations
can be identified and will not influence the features of the groups. Additionally, the
basic method presented here for identifying clusterings based on attribute subsets is
extendable to more general data analysis situations. For example, non-normal data
can be modeled with exponential family distributions, using µ(k) = µ + r(k) × δ(k) to
represent the canonical parameters.

The method described in this article is based on a nonparametric mixture of se-
quences of independent normal random variables. As a result, the estimated clus-
tering has the task of representing any bivariate correlation of the attributes as well
as higher-order dependence patterns. If the attributes are highly correlated then the
number of components required by the mixture model to fit the data might be large.
A quick, ad-hoc solution to this is to perform the subspace clustering on the princi-
pal components of the data. Alternatively, one can estimate parameters in the model
yi = µ + r(k) × δ(k) + εi with Cov(εi) = Σ being an arbitrary covariance matrix.
Posterior calculations for this model are made difficult by the fact that the marginal
distribution of the data within a cluster, unconditional on the cluster parameters r(k)

and δ(k) is given by the sum
∑

r(k)∈{0,1}m p(r(k))p({yi : ci = k}|r(k)) where, as a

function of r(k), p({yi : ci = k}|r(k)) is proportional to |V |1/2 exp{−θV −1θ/2} with
V = [R(k)Σ

−1R(k) + τ−2I ], R(k) = diag(r(k)) and θ is a function of V , Σ, µ and
{yi : c(i) = k}. Computing this sum over r(k) is impractical for any realistic number
of attributes m, and so sampling values of c(i) from its full conditional is not possible.
However, one can construct an approximate full conditional for c(i) by replacing Σ with
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Figure 8: Data from the third largest cluster.

its diagonal and using the proposal distribution of Section 2.2. Having sampled a pro-
posed value of r to go along with the proposed c(i), the new values can be accepted
or rejected with the appropriate probability. Model-based subspace clustering of such
correlated data, with the possibility of cluster-specific correlation matrices, is a current
research area of the author.

Computer code in the R-language and example analyses are available at the author’s
website http://www.stat.washington.edu/hoff/research.html.
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