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RECURSIVE PARTITION STRUCTURES

BY ALEXANDER V. GNEDIN AND YURI YAKUBOVICH1

Utrecht University

A class of random discrete distributions P is introduced by means of a
recursive splitting of unity. Assuming supercritical branching, we show that
for partitions induced by sampling from such P a power growth of the number
of blocks is typical. Some known and some new partition structures appear
when P is induced by a Dirichlet splitting.

1. Introduction. By a random discrete distribution (or a paintbox) we shall
understand an infinite collection P = (Pj ) of nonnegative random variables whose
sum is unity. Interpreting the terms of P as frequencies of distinct colors, King-
man’s paintbox construction [16] defines a random exchangeable partition P of
an infinite set of balls labeled 1,2, . . . in such a way that, conditionally given
(Pj ), the generic ball n is painted color j with probability Pj , independently of
all other balls. The blocks of P are composed of balls painted the same color.
Two paintboxes which only differ by the arrangement of terms in a sequence yield
the same P ; hence to maintain symmetry we may identify the paintboxes with
the point process

∑
j δPj

. See [3, 22] for extensive background on exchangeable
partitions.

Let Knr be the number of colors represented exactly r times on n first balls,
and let Kn be the total number of different colors represented on n first balls,
so that

∑
r Knr = Kn,

∑
r rKnr = n. The sequence of joint distributions of

(Kn1, . . . ,Knn) for n = 1,2, . . . is a partition structure, that is, a consistent family
of distributions on partitions [16]. We are interested in the asymptotic features of
Kn and Knr ’s, as n → ∞, for one particular class of models for P .

The functionals Kn and Knr have been studied in some depth for several fam-
ilies of random discrete distributions. The best known instance is the Poisson–
Dirichlet/GEM paintbox, which induces P called the Ewens partition. For the
Ewens partition Kn is approximately Gaussian with the mean and the variance
both growing logarithmically, and the sequence (Kn1,Kn2, . . .) converges, as
n → ∞, to a sequence of independent Poisson variates [1]. The GEM realiza-
tion of the Poisson–Dirichlet paintbox amounts to the stick-breaking representa-
tion Pj = W1 · · ·Wj−1(1 − Wj) (j = 1,2, . . .) with independent Wj ’s distributed
according to beta(θ,1). A larger class of models for P of this type, with arbitrary
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independent identically distributed factors Wj ∈ [0,1], was studied in [6], where
it was shown that, under very mild assumptions on the distribution of Wj ’s, the
behavior of Kn is analogous to that in the Ewens case.

Each random discrete distribution P resulting from the stick-breaking can be
viewed as a collection of jump sizes of the process (exp(−St ), t ≥ 0), where
(St ) is a compound Poisson process. A considerable extension of this scheme
(see [7, 8]) appears when we assume (St ) to be a subordinator with some infi-
nite Lévy measure ν. It is known that the orders of growth of Kn and Knr ’s are
determined then by the behavior of the tail ν[x,∞[ for x ↓ 0. Specifically, if the
tail behaves like xα�(1/x) with 0 < α < 1 and � a function of slow variation at in-
finity, then the order of growth of Kn and all Knr ’s is nα�(n), and with this scaling
Kn and each Knr converge, almost surely, to constant multiples of the same ran-
dom variable [10]. A distinguished example of the latter situation is the Poisson–
Dirichlet paintbox [23] with two parameters 0 < α < 1 and θ > −α, which induces
the Ewens–Pitman partition structure whose distribution is given by the formula

P[Kn1 = k1, . . . ,Knn = kn]

= n!θ(θ + α) . . . (θ + (� − 1)α)

(θ)n↑

n∏
i=1

(
(1 − α)i−1

)ki

i!ki ki ! ,

where (a)i↑ = a(a+1) . . . (a+i−1) stands for rising factorials, and � = k1 +· · ·+
kn. A construction of this partition structure via exp(−St ) is given in [7], and in
Section 6.1 we briefly recall the original construction [20] of the two-parameter
paintbox. Very different asymptotic behavior appears when the tail ν[x,∞[ is
slowly varying at zero like, for example, for gamma subordinators: in this case
the moments of Kn and Knr ’s are slowly varying functions of n, all Knr ’s grow on
the same scale but slower than Kn and, subject to a suitable normalization, Kn is
asymptotically Gaussian [2, 11].

The stick-breaking model for P is the simplest instance of a recursive construc-
tion in the sense of the present paper. By stick-breaking the unity splits in two
pieces 1 − W1 and W1, the first piece becomes a term of P , and the second keeps
on dividing by the same rule, hence producing again a term for P and a piece
which divides further, and so on. The paintbox associated with exp(−St ), for (St )

a subordinator with infinite Lévy measure, can be also realized via a recursive con-
struction which produces, at each step, infinitely many terms for P and exactly one
piece to undergo further splitting.

In this paper, the principal step away from the models of the stick-breaking
type is that we deal with the recursive models for P in which a random splitting
of unity involves some branching. We assume an inductive procedure in which
each step yields a collection of terms included in P , and a multitude of divisible
pieces to iterate a random splitting rule. A typical example of our class of models
is the paintbox arising by the following construction of a random Cantor set R
(see [18] for the general theory of recursive constructions of this kind). Start with
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dividing the unit interval in three intervals of sizes X1, Y2,X3, from the left to the
right, as obtained by cutting [0,1] at the locations of two uniform order statistics.
Remove the middle interval and iterate the operation of cutting and removing the
middle independently on two other intervals (considered as scaled copies of [0,1]),
then iterate on four intervals, and so on. A random set R of Lebesgue measure
zero is defined as the complement to the union of all removed intervals, and the
collection of lengths of the removed intervals arranged in some sequence defines
a paintbox P . It will follow from the main result of this paper (Theorem 5) that Kn

and each Knr grow for this P like nα∗ with exponent α∗ = (
√

17 − 3)/2, which is
equal to the Malthusian parameter of a related branching process and is also equal
to the Hausdorff dimension of R [18, 19].

In wider terms, our construction is described as follows. At step one the unity
is randomly divided in some collection of solids and some collection of crumbs.
The solids immediately suspend further transformation while the crumbs keep on
falling apart. At step two the crumbs are split further by the same random rule,
the newly created solids become indivisible and the crumbs are subject to further
division, and so on. Eventually, the crumbs decompose completely in solids, and
the sizes of solids (arranged in some sequence) comprise the paintbox P .

We will show that the power growth of Kn and Knr ’s is quite common for P
derived from such a recursive paintbox with supercritical branching. Moreover, by
the power scaling Kn and Knr ’s all converge to constant multiples of the same ran-
dom variable M which can be characterized in terms of a distributional fixed-point
equation. Some explicit moment computations for M are possible for instances
of the splitting procedure based on the Dirichlet distribution; for some choices of
the parameters these yield the paintboxes of the Poisson–Dirichlet (α,α/d)-type
(d = 1,2, . . .) and for some other choices yield new paintboxes hence novel parti-
tion structures.

2. Malthusian hypothesis and a martingale. Let (X,Y) = ((Xi), (Yj )) be
two sequences of random variables with values in [0,1]. To introduce a genealog-
ical structure of the division process it will be convenient to assume that the se-
quences are labeled by two disjoint subsets of N. We further require that

∑
i

Xi + ∑
j

Yj = 1, E

[∑
i

Xi

]
< 1, E[#{i :Xi > 0}] > 1.(1)

The division process starts with a sole unit crumb ξ∅ (generation 0) which pro-
duces the first generation of crumbs (ξi) and solids (ηj ) whose joint law and la-
bels are the same as for (X,Y). Inductively, the offspring of generation k − 1 are
crumbs (ξi1,...,ik−1,i) and solids (ηi1,...,ik−1,j ). The solids stop division, while each
crumb ξi1,...,ik splits further into crumbs (ξi1,...,ik,i) and solids (ηi1,...,ik,j ) whose
labeling and sizes relative to the parent crumb follow the law of (X,Y), indepen-
dently of the history and the sizes of other members of the current generation. The
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first two assumptions in (1) guarantee that the total size of solids over all genera-
tions is unity, hence these sizes (arranged in a sequence) define a paintbox P . The
third assumption in (1) says that the branching of crumbs is supercritical.

Introduce the intensity measures σ and ν by requiring the equalities

E

[∑
i

f (Xi)

]
=

∫ 1

0
f (x)σ (dx),

E

[∑
j

f (Yj )

]
=

∫ 1

0
f (x)ν(dx)

to hold for all nonnegative measurable functions f . Substituting power functions
f (x) = xα in these formulas yields the Mellin transforms of the measures

ψ(α) :=
∫ 1

0
xασ(dx),

ϕ(α) :=
∫ 1

0
xαν(dx).

Recall that, as a function of complex parameter, the Mellin transform of a mea-
sure on [0,1] is analytical in the half-plane to the right of the convergence abscissa,
has a ridge on Imα = 0 and decreases on the real half-line.

The Malthusian hypothesis accepted in this paper amounts to the assumptions
that:

• there exists a solution α∗ to the equation

ψ(α) = 1(2)

(which satisfies then α∗ ∈ ]0,1[ since ψ(1) < 1 < ψ(0) by (1)),
• there exists ε > 0 such that α∗ is a unique solution to (2) in the half-plane

{α : Reα > α∗ − ε} and ϕ(α∗ − ε) < ∞.

Following the established tradition in the theory of branching processes we call α∗
the Malthusian exponent. Obvious sufficient conditions for the Malthusian hypoth-
esis are ψ(0) < ∞ and ϕ(0) < ∞. Note also that the second part of the Malthu-
sian hypothesis implies that σ is not supported by a geometric progression, since
otherwise (2) would have infinitely many periodically spaced roots on the line
Reα = α∗.

Summing the α∗th powers of crumbs in a given generation yields a remarkable
process called the intrinsic martingale [13]

Mk := ∑
i1,...,ik

ξ
α∗
i1,...,ik

, k = 1,2, . . . ,

which, under the Malthusian hypothesis, converges to a terminal value

M := lim
k→∞Mk
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with E[M] = 1; see [17]. The limit variable satisfies the distributional fixed-point
equation

M
d= ∑

i

X
α∗
i M(i),(3)

where M(i) are independent copies of M , independent of X. It is known that (3)
along with E[M] = 1 uniquely characterizes M [12], Proposition 3(a).

3. The mean values of counts. Consider the powered sums of sizes of all
solids that make up the paintbox

Gα := ∑
j

P α
j =

∞∑
k=1

∑
i1,...,ik−1,j

ηα
i1,...,ik−1,j

and let

p(α) := E[Gα].
For integer arguments the value p(n) is the probability that n balls are painted
the same color. The first-split decomposition of the division process yields the
distributional equation

Gα
d= ∑

i

Xα
i G(i)

α + ∑
j

Y α
j ,(4)

where G
(i)
α are independent copies of Gα which are also independent of (X,Y).

Taking the expectations this implies

p(α) = ϕ(α)

1 − ψ(α)
for Reα > α∗ − ε.(5)

By the Malthusian hypothesis the expectations involved are finite, and the func-
tion p is meromorphic in the half-plane Reα > α∗ − ε, with a sole simple pole
at α∗. These analytic properties of p provide a background for establishing the
growth properties for the mean values of counts Kn and Knr .

Conditionally given (Pj ) the probability that at least one of n balls is painted
color j is 1 − (1 − Pj )

n, hence recalling the definition of p

E[Kn] = E

[∑
j

(
1 − (1 − Pj )

n)] =
n∑

m=1

(
n

m

)
(−1)m+1p(m).(6)

In a similar way, computing the chance that color j is represented exactly r times
in n balls:

E[Knr ] =
(

n

r

)
E

[∑
j

(
P r

j (1 − Pj )
n−r)]

(7)

=
(

n

r

) n−r∑
m=0

(
n − r

m

)
(−1)mp(m + r).
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THEOREM 1. Under assumption (1) and the Malthusian hypothesis, the fol-
lowing asymptotics hold:

E[Kn] = nα∗ �(−α∗)ϕ(α∗)
ψ ′(α∗)

+ O(nα∗−ε) as n → ∞,(8)

E[Knr ] = nα∗ �(r − α∗)ϕ(α∗)
−r!ψ ′(α∗)

+ O(nα∗−ε) as n → ∞.(9)

PROOF. Because the function p is bounded in the half-plane Reα > α∗ − ε,
outside any neighborhood of α∗, and because p has a simple pole at α∗, we can
apply the Rice method (see [5], Theorem 2(ii)) to the alternating sum (6) to obtain

n∑
m=1

(
n

m

)
(−1)m+1p(m)

(10)

= Res
α=α∗

p(α)
�(1 − α)�(n + 1)

α�(n + 1 − α)
+ O(nα∗−ε).

The residue at α∗ is equal to −ϕ(α∗)/ψ ′(α∗), which taken together with �(n +
a)/�(n) ∼ na readily yields (8). The result for Knr can be obtained in the same
way. Alternatively, observe that the sum in (7) is asymptotic to a constant multi-
ple of the r th derivative of (6) in the variable n, hence (9) follows from (8) by a
Tauberian argument. �

The first-split decomposition shows that the number of colors Kn satisfies a
divide-and-conquer recurrence of the form

Kn
d= ∑

i

K
(i)
Ani

+ Bn,

where (K
(i)
n , n = 1,2, . . .) are independent copies of (Kn), and the joint law of

(Ani,Bn)i≥1 follows by considering the partition of n induced by the joint paint-
box (X1,X2, . . . ; (∑j Yj )). In other words, given (X,Y) each of n balls is painted
color i with probability Xi and left uncolored with probability

∑
j Yj then Ani

is the number of balls painted color i and Bn is the number of uncolored balls.
Because (3) is a limit analogue of this equation, the contraction method [25] can
be exploited to show weak convergence of scaled Kn. To argue the strong con-
vergence we will apply an indirect approach (also used in [10]) which relates the
growth properties of Kn,Knr with the sizes of solids. Let

Nx := #{j :Pj ≥ x}
be the number of solids with size at least x.

LEMMA 2. If the paintbox satisfies Nx ∼ Lx−α a.s. as x ↓ 0, with 0 < α < 1
and L a nonnegative random variable, then for n → ∞

Kn/nα → �(1 − α)L a.s.
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and

Knr/nα → (
α�(r − α)/r!)L a.s.

PROOF. Conditioning on the paintbox (Pj ), the value of L is fixed, hence
we are in the range of applicability of Karlin’s result; see [15], Theorem 1, equa-
tion (23) and page 396. From this it is obvious that the claim holds unconditionally.

�

4. The limit distribution. To determine the limiting behavior of xα∗Nx as
x → 0 we shall connect the recursive paintbox construction to a general Crump–
Mode–Jagers (CMJ) branching process [13]. The idea is to map the sizes of crumbs
into a continuous time scale.

The setup for a CMJ branching process involves the random data (π,χ) with π

a prototypical point process on R+ according to which descendants are born, and
(χ(t), t ∈ R) a process called characteristic (or a score of individual), which is
nonnegative and satisfies χ(t) = 0 for t < 0. The branching process starts at time 0
with a single progenitor which produces offsprings at epochs of π , and each de-
scendant follows the same kind of behavior independently of the history and of the
coexisting individuals. Labeling individuals in the genealogical order by integer
sequences w = j1, . . . , jn, let τw be the birth epoch of the generic individual. The
CMJ process is defined as [13]

Z
χ
t = ∑

w

χw(t − τw),

which is the sum of characteristics of individuals born before t .
To represent the configuration of crumbs as a CMJ process we set τw = − log ξw

for crumb labeled w and we define the characteristic

χw(t) = #{j :− log(ηwj/ξw) ≤ t}
to encode the configuration of solids produced by the crumb. It follows easily from
the definitions that Z

χ
t = Ne−t . A key point is to apply [19], Theorem 5.4.

LEMMA 3. As t → ∞
e−α∗tZχ

t → M
ϕ(α∗)

−α∗ψ ′(α∗)
a.s.

for M the terminal value of the intrinsic martingale.

PROOF. Translated in our terms, Conditions 5.1 and 5.2 from [19] require
existence of integrable, bounded, nonincreasing positive functions h1 and h2 such
that

E

[
sup

t

1

h1(t)

∑
i

X
α∗
i 1(Xi < e−t )

]
< ∞
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and

E

[
sup

t

e−α∗t#{j :Yj ≥ e−t }
h2(t)

]
< ∞.

These two inequalities follow from the Malthusian hypothesis with h1(t) =
h2(t) = e−εt for sufficiently small ε > 0. Applying [19], Theorem 5.4, we see
that

e−α∗tZχ
t → N

∫ ∞
0 e−α∗tE[χ(t)]dt∫ ∞

0 ue−α∗uµ(du)
a.s.(11)

where N is the terminal value of some martingale (different from the intrinsic
martingale) and µ is the intensity measure of τ , that is, the image of measure σ

via mapping x �→ − logx. Since E[χ(t)] = ∫ 1
0 1(x ≥ e−t )ν(dx) by definition of

intensity ν, the numerator in the r.h.s. of (11) is∫ ∞
0

e−α∗t E[χ(t)]dt =
∫ 1

0
yα∗−1

∫ 1

0
1(x ≥ y)ν(dx) dy

=
∫ 1

0

xα∗

α∗
ν(dx) = ϕ(α∗)

α∗
by Fubini’s theorem which is applicable due to the Malthusian hypothesis. Chang-
ing the variable in the numerator of the r.h.s. of (11) we see that it is equal
to −ψ ′(α∗). Hence

e−α∗tZχ
t → N

ϕ(α∗)
−α∗ψ ′(α∗)

a.s.

We can also apply the same result to a CMJ branching process with different
characteristic χ ′(t) = 1(t ≥ 0), which counts individuals born before t . Condi-
tion 5.1 remains the same and Condition 5.2 becomes supt e

−α∗t /h2(t) < ∞, so
we can take h2(t) = e−α∗t/2. Thus the Malthusian hypothesis implies that

e−α∗tZχ ′
t → N

1

−α∗ψ ′(α∗)
a.s.(12)

with the same N as above.
Biggins [4] derived similar asymptotics for Z

χ ′
t in terms of branching random

walks. From [4], Theorem B and the Malthusian hypothesis

1

T

∫ T

0
e−α∗t dZ

χ ′
t → M

1

−ψ ′(α∗)
a.s.

as T → ∞, where M is the terminal value of the intrinsic martingale. Integration
by parts and comparison with (12) show that N = M a.s. �

Translating the lemma back in terms of the sizes of solids we have:
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COROLLARY 4. As x ↓ 0

xα∗Nx → ϕ(α∗)
−α∗ψ ′(α∗)

M a.s.

Next, combining this corollary with Lemma 2 gives our principal asymptotic
result which complements Theorem 1.

THEOREM 5. If assumption (1) and the Malthusian hypothesis both hold, then

Kn ∼ nα∗
[
ϕ(α∗)�(−α∗)

ψ ′(α∗)

]
M as n → ∞,

Knr ∼ nα∗
[
ϕ(α∗)�(r − α∗)

−ψ ′(α∗)r!
]
M as n → ∞,

almost surely.

5. Moments of M . Formulas for moments of the terminal value of the intrin-
sic martingale involve expectations of some symmetric functions in the variables
(Xi). For each integer vector λ = (λ1, . . . , λ�) with components λ1 ≥ · · · ≥ λ� > 0
let

m(λ) = E

[ ∑
(µ1,...,µ�)

∑
i1<···<i�

X
µ1α∗
i1

· · ·Xµ�α∗
i�

]
,

where the external sum expands over all distinct permutations (µ1, . . . ,µ�) of the
entries of (λ1, . . . , λ�), and the internal sum expands over all increasing �-tuples
of labels of (Xi). We assume for the rest of the paper that these moments exist for
all integer vectors λ; this is always the case if the number of positive Xi’s does not
exceed some constant, since Xi ≤ 1 for all i.

Let ak = E [Mk] (k = 0,1, . . .) be the moments of the terminal value M of the
intrinsic martingale (they all are finite, see [12], Proposition 4). In principle, the
moments can be determined recursively from the following lemma.

LEMMA 6. Under assumption (1), the Malthusian hypothesis and finiteness
of moments m(λ), the moments ak satisfy the recursion

ak = k!
1 − ψ(α∗k)

∑
λ
k

λ�=(k)

m(λ)
∏
j

aλj

λj ! for k = 2,3, . . .(13)

where the initial values are a0 = a1 = 1 and the summation is over all nonincreas-
ing positive integer sequences λ = (λ1, . . . , λ�) with λ1 + · · · + λ� = k and � > 1.

PROOF. Take the kth power in (3) and expand the r.h.s. by the multinomial
formula. Collecting all terms containing ak to the left side yields the recursion.

�
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6. Dirichlet splittings.

6.1. Bessel bridges. It is known that the Ewens–Pitman (α,α) partition struc-
ture (0 < α < 1) can be induced by a paintbox P whose components are the lengths
of excursions from 0 of a Bessel bridge (Bt , t ∈ [0,1]) of dimension 2 − 2α

[7, 21, 23]. A possible recursive construction of P is the following. For each
t ∈ [0,1] define Gt = sup{s ≤ t :Bs = 0} and Dt = inf{s ≥ t :Bs = 0}. Choose
a random point T from some distribution on ]0,1[, independently of (Bt ). The
bridge (Bt ) decomposes into three components according as 0 ≤ t ≤ GT (bridge),
GT < t < DT (excursion) or DT ≤ t ≤ 1 (bridge). Given GT and DT , the com-
ponents are conditionally independent and the first and the third components are
the scaled copies of (Bt ). It follows that the iterated division in three intervals
(bridge-excursion-bridge) yields the same P as the recursive construction directed

by (X1, Y2,X3)
d= (GT ,DT − GT ,1 − DT ) with arbitrary distribution for T .

In particular, assuming T
d= U for U uniform [0,1], the law of (X1, Y2,X3)

is Dirichlet with parameters (α,1 − α,α), because this is the law of (GU,DU −
GU,1 − GU), as in [21]. Computing

ψ(β) = 2α

β + α
and ϕ(β) = �(1 + α)�(β + 1 − α)

�(1 − α)�(β + 1 + α)

we see that in this case the Malthusian exponent is α∗ = α. Applying Theorem 5
we obtain the asymptotics

Kn ∼ �(α)

�(2α)
Mnα, n → ∞,

which is the “α-diversity” of P previously shown in [10, 22, 23] by different
methods. The variable M has moments

E[Mq] = �(α)�(q + 1)

[�(α)/�(2α)]q�((q + 1)α)
, q > −1

and its distribution is a size-biased version of the Mittag–Leffler distribution;
see [21].

Choosing any other distribution for T (e.g., T = 1/2 a.s.) will result in different
distribution for (X1, Y2,X3), although, by the special self-similarity properties of
this (α,α) case, the law of P (up to arrangement of terms) will not alter.

We recall the original construction of the Poisson–Dirichlet paintbox from [20];
see also [22]. Let 0 < α < 1 and θ > −α. Take (Wj ) to be a sequence of
independent random variables where Wj has beta(θ + jα,1 − α) distribution.
Then the Poisson–Dirichlet (α, θ) paintbox can be composed of the terms Pj =
W1 · · ·Wj−1(1 − Wj).
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6.2. Other tripartite Dirichlet splittings. To extend the above Bessel bridge
model assume that the triple (X1, Y2,X3) has a Dirichlet distribution with para-
meters (γ,β, γ ), where β,γ > 0. In this case the intensity measure σ has a den-
sity which is beta(γ,β + γ ) multiplied by 2, and ν is beta(β,2γ ). Their Mellin
transforms are

ψ(α) = 2
�(β + 2γ )�(α + γ )

�(α + β + 2γ )�(γ )
and ϕ(α) = �(β + 2γ )�(α + β)

�(β)�(α + β + 2γ )
.

The recursion for moments ak = E[Mk] in Lemma 6 specializes as

an =
n∑

k=0

(
n

k

)
akan−k

�(β + 2γ )�(kα∗ + γ )�((n − k)α∗ + γ )

�(nα∗ + β + 2γ )�(γ )2 , n ≥ 2(14)

with the initial values a0 = a1 = 1.
In the case when r = β + γ is integer, ψ is a rational function, and (2) is ac-

tually a polynomial equation in α of degree r . The case r = 1 covers the Bessel
bridge instance of the previous section. For r = 1,2, . . . simplification is possible
by introducing variables

bn = �(nα∗ + γ )

�(γ )n! an(15)

for which the recursion (14) becomes
n∑

k=0

bkbn−k = (nα∗ + γ )r↑
(γ )r↑

bn, n ≥ 2.(16)

Note that the same formulae also hold for n = 0,1 since b0 = 1 and in view of (2).
This allows us to characterize the generating function

h(y) :=
∞∑

k=0

bky
k

as a solution to the differential equation

z1−γ dr

dzr
(h(zα∗)zγ+r−1) = (γ )r↑h(zα∗)2.(17)

In the variable y = zα∗ this equation is a nonlinear differential equation with poly-
nomial coefficients.

For instance, when r = 2, (2) becomes (α∗ + γ )(α∗ + γ + 1) = 2γ (γ + 1) and
after some manipulations we obtain

α2∗y2h′′(y)/
(
γ (γ + 1)

) + yh′(y) + h(y) = h2(y) .

We did not succeed in solving the equation in terms of some known special func-
tions for r ≥ 2. We can, nevertheless, show that this partition structure is of novel
type:
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LEMMA 7. For no r = 2,3, . . . and no γ ∈ ]0, r[ does the recursive parti-
tion structure obtained by the recursive tripartite Dirichlet splitting with parame-
ters (γ, r − γ, γ ) belong to the Ewens–Pitman two-parameter family of partition
structures.

PROOF. The statement follows by computing probabilities p(n) for n balls
painted the same color. Indeed, in the (α, θ)-model this probability is [22]

pα,θ (n) = (1 − α)(n−1)↑
(1 + θ)(n−1)↑

,

and in our model it is

p(n) = (r − γ )n↑
(r + γ )n↑ − 2(γ )n↑

.

Assuming the coincidence for some value of parameters (α, θ) we must have α =
α∗ and p(n) = pα,θ (n) for all n. Analyzing the behavior of these probabilities as
n → ∞ we find out that

pα,θ (n) ∼ �(1 + θ)

�(1 − α)
n−α−θ and p(n) ∼ �(r + γ )

�(r − γ )
n−2γ ,

whence θ = 2γ − α. Substituting this value in the equation p(2) = pα,θ (2) we see

that α = γ − r2−r
2r−γ

. Comparing again the rates of decrease of pα,θ (n) and p(n) for
these particular values of α, θ we get

�(1 + (r2 − r)/(2r − γ ) + γ )

�(1 + (r2 − r)/(2r − γ ) − γ )
= �(r + γ )

�(r − γ )
.

Since the r.h.s. increases as a function of r > γ and the l.h.s. is the same function
evaluated at a different point, necessarily 1 + r2−r

2r−γ
= r . But this can happen only

for r = 1 or r = γ . In the latter case the parameter γ = r is not admissible, so the
coincidence happens only for r = 1. �

6.3. Multiple splittings and (α,α/d) partitions. Now suppose the splitting
procedure produces d + 1 crumbs (d ≥ 1) and one solid at each step. Suppose
the joint distribution of the crumb sizes and the solid size relative to their parent
crumb is the Dirichlet distribution with parameters (γ, . . . , γ,β) where γ ’s corre-
spond to d + 1 crumbs and β corresponds to the solid. Mellin transforms of the
intensity measures are

ψ(α) = (d + 1)
�(β + (d + 1)γ )�(α + γ )

�(α + β + (d + 1)γ )�(γ )

and

ϕ(α) = �(β + (d + 1)γ )�(α + β)

�(β)�(α + β + (d + 1)γ )
.
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The d = 1 case was considered in the preceding section. Similarly to the above,
explicit computations are only possible when β + dγ = r is integer.

The simplest case r = 1 leads to some exactly solvable recursion for moments
of the terminal value M of the intrinsic martingale. We consider this case in more
detail. For r = 1, (2) becomes (d + 1)γ /(α + γ ) = 1 with the solution α∗ = dγ .
The recursion for moments an of M is easier to write down in new variables bn

defined by (15): ∑
bλ1 . . . bλd+1 = (nd + 1)bn, n ≥ 2,(18)

where the sum is taken over all nonnegative integer vectors (λ1, . . . , λd+1) with∑
j λj = n. This leads to the differential equation dyh′(y) + h(y) = h(y)d+1 for

the generating function h(y) = ∑∞
n=0 bny

n. Solving this equation we obtain

E[Mq] = dq�(α∗ + α∗/d)q�(1/d + q)

�(α∗/d)q−1�(qα∗ + α∗/d)�(1/d)
.

We recognize these as the moments of the limit distribution of d�(α∗+α∗/d)
�(α∗/d)

n−α∗Kn,
where Kn is the number of blocks in the Ewens–Pitman partition structure with pa-
rameters (α∗, α∗/d) [20, 22] restricted to the first n balls. The limit has density pro-
portional to x1/dfα∗(x), where fα is the density of the Mittag–Leffler distribution
with parameter α. The following proposition shows that the partition structures
coincide.

PROPOSITION 8. The exchangeable partition obtained by a splitting scheme
with d + 1 crumbs and one solid whose joint distribution is Dirichlet
(α/d, . . . , α/d︸ ︷︷ ︸

d+1

,1 − α) (0 < α < 1) coincides with the Ewens–Pitman (α,α/d)

partition.

In the proof we use a mapping q which sends a collection B of kd + 1 elements
with unit sum to a random collection of (k + 1)d + 1 elements with unit sum. This
mapping is defined for α ∈]0,1[ as follows:

(1) choose an element from the collection B by a size-biased pick;
(2) replace the chosen element Z by d + 2 elements (YZ,X1Z, . . . ,Xd+1Z)

where (Y,X1, . . . ,Xd+1) is an independent of B Dirichlet(1 − α,α/d, . . . , α/d)

random vector;
(3) remove the element YZ from the collection, divide all elements by 1 − YZ

so that they sum to 1, and let q(B) be the rescaled collection.

LEMMA 9. Let B be a collection of kd + 1 random variables whose joint
distribution is Dirichlet(α/d, . . . , α/d). Then q(B) is a collection of (k + 1)d + 1
random variables with joint distribution Dirichlet(α/d, . . . , α/d). Moreover, the
size of the discarded element is a beta(1 − α, (k + 1 + 1/d)α) random variable
independent of q(B).
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PROOF. After the first step, the conditional distribution of elements in B given
that the size-biased pick has index i is the Dirichlet distribution with one parame-
ter α/d + 1 for element i and other parameters α/d . We relabel the elements so
that the chosen element is the first one. After the second step, the elements in the
collection have the Dirichlet distribution with the first parameter 1 − α and other
(k + 1)d + 1 parameters α/d . This can be easily verified by a moment calcula-
tion, exploiting the independence of (Y,X1, . . . ,Xd+1) and B and the fact that the
Dirichlet parameters of (Y,X1, . . . ,Xd+1) sum to the Dirichlet parameter of the
replaced element. The statement of the lemma now follows from [14], Chapter 40.

�

PROOF OF PROPOSITION 8. The Poisson–Dirichlet paintbox can be arranged
in a sequence by the stick-breaking procedure described in the end of Section 6.1.
We show that the terms of the paintbox in our model can be also arranged in such
sequence, as follows. Since each crumb produces exactly one solid in the model
in focus, there is a one-to-one correspondence between solids and their parent
crumbs. Let the first solid η(1) in the arrangement be a child of the progenitor
crumb ξ∅ and let A1 = {ξ1, . . . , ξd+1} be the offspring crumbs of ξ∅. Inductively,
at time k let the first k solids have been arranged as η(1), . . . , η(k) and let Ak be
some collection of crumbs. The next solid to be added to the sequence is chosen
in the following way. Select a crumb ξw by a size-biased pick from all crumbs in
the collection Ak , let the next element η(k + 1) added to P be the solid child of
this ξw , and further replace ξw in the collection Ak by the offspring crumbs of ξw ,
thus constructing Ak+1 := (Ak \{ξw})∪{ξw,1, . . . , ξw,(d+1)}. Proceed by induction
to arrange all solids in sequence.

Now let us check that the sequence of solids P = (η(i)) has the same distribu-
tion as the lengths produced by the stick-breaking procedure described at the end
of Section 6.1. At the first step, the law of η(1) is the marginal distribution of the
Dirichlet distribution which is beta(1 − α, (1 + 1/d)α). For k = 1,2, . . . introduce
the scaled collections of crumbs

Bk =
{

ξ

|Ak| : ξ ∈ Ak

}
, where |Ak| =

∑
ξ∈Ak

ξ = 1 − η(1) − · · · − η(k).

Then B1 has Dirichlet(α/d, . . . , α/d) distribution by [14], Chapter 40, and Bk+1 =
q(Bk) for all k. Using Lemma 9, we check by induction that Bk is a collec-
tion of dk + 1 elements whose joint distribution is Dirichlet with all parame-
ters α/d , and η(k) has beta(1 − α, (k + 1/d)α) distribution and is independent
of η(1), . . . , η(k − 1) for all k. Taking Wk = 1 − η(k) yields the desired decompo-
sition. �

7. Further subdivision of solids. Suppose we have some recursive paintbox
construction with the Mellin transforms ψ0 and ϕ0 of the intensity measures for X
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and Y. A refined paintbox construction can be produced by a further independent
subdivision of each solid according to some sequence P̃ = (Ỹk) of nonnegative
random variables with

∑
Ỹk = 1. This is equivalent to replacing (Yj ) in the original

construction by an array (Yj Ỹk) (arranged in a sequence). By independence, the
Mellin transform of a new intensity measure for (Yj Ỹk) in the refined process is
the product

ϕ(α) = ϕ0(α)ϕ̃(α), ϕ̃(α) = E

[∑
k

Ỹ α
k

]
.

If the expected number of nonzero Ỹk’s is finite, then this new construction satisfies
the Malthusian hypothesis once the original construction satisfied it. If an infinite
number of positive Ỹk’s is possible, we should also require ϕ̃(α∗ − ε) < ∞ to keep
with the Malthusian hypothesis.

One example where a similar additional subdivision of solids was used is a rep-
resentation of the Poisson–Dirichlet (α, θ) paintbox [although it does not fit ex-
actly in our scheme since the expected number of nonzero Xi’s is 1, violating (1)].
The recipe is the following [7, 9, 24]: divide the unit interval by points of a stick-
breaking process with Wi i.i.d. beta(θ,1) and then organize on each subinterval an
independent subdivision by zeroes of a Bessel process of dimension 2 − 2α. Here
α∗ = 0 [due to a violation of (1)] and ϕ̃(α∗) = ∞.

When the Malthusian hypothesis still holds for the refined process, it has some
common features with the original one. For instance, the Malthusian exponent
remains the same, and the limit of n−α∗Kn changes only by a constant factor ϕ̃(α∗).
However, other characteristics of the paintbox, such as probabilities p(n) that n

balls are painted in the same color, change significantly once any subdivision is
made.
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edged.
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