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CONTINUUM TREE LIMIT FOR THE RANGE OF RANDOM
WALKS ON REGULAR TREES

BY THOMAS DUQUESNE

Université Paris 11

Let b be an integer greater than 1 and let Wε = (Wε
n ;n ≥ 0) be a random

walk on the b-ary rooted tree Ub, starting at the root, going up (resp. down)
with probability 1/2 + ε (resp. 1/2 − ε), ε ∈ (0,1/2), and choosing direc-
tion i ∈ {1, . . . , b} when going up with probability ai . Here a = (a1, . . . , ab)

stands for some nondegenerated fixed set of weights. We consider the range
{Wε

n ;n ≥ 0} that is a subtree of Ub. It corresponds to a unique random rooted
ordered tree that we denote by τε . We rescale the edges of τε by a factor ε

and we let ε go to 0: we prove that correlations due to frequent backtracking
of the random walk only give rise to a deterministic phenomenon taken into
account by a positive factor γ (a). More precisely, we prove that τε converges
to a continuum random tree encoded by two independent Brownian motions
with drift conditioned to stay positive and scaled in time by γ (a). We actually
state the result in the more general case of a random walk on a tree with an
infinite number of branches at each node (b = ∞) and for a general set of
weights a = (an,n ≥ 0).

1. Introduction. Random walks on trees have been intensively studied by
many authors having different motivations coming from group theory, discrete
potential theory, statistical mechanics or genetics. We refer to [21] for a general
introduction to random walks on infinite graphs and to [15] for a probabilistic
approach more focused on trees. See also [14] for a survey of open problems
concerning random walks on trees. In most of the papers about random walks
on trees, given the treelike environment the transition probabilities of the random
walk are fixed and one focuses on a certain range of questions: the speed of the
random walk (see [18] for random walks on groups, [20] for random walks on pe-
riodic trees, [12] and [13] for random walks on Galton–Watson trees), large devia-
tion principle for the distance-from-the-root process (see [8] for random walks on
Galton–Watson trees), central-limit theorem for the distance-from-the-root process
and the number of visited vertices (see [4] for the b-ary tree and [17] for the sim-
ple random walk on supercritical Galton–Watson trees). In this paper we consider
a different problem; the transition probabilities are not fixed: we study, near criti-
cality, transient random walks on the b-ary rooted tree and more generally on the
∞-ary tree, in a “diffusive” regime.
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Let us specify that we only consider ordered rooted trees that are formally de-
fined as in [16]: Let N = {0,1,2, . . .} be the set of the nonnegative integers, set
N

∗ = N \ {0}. The ∞-ary tree is the set U = {∅} ∪ ⋃
n≥1(N

∗)n of the finite words
written with positive integers by. Let u ∈ U be the word u1 . . . un, ui ∈ N

∗. We
denote the length of u by |u| : |u| = n. |u| is viewed as the height of the vertex u

in U. Let v = v1 . . . vm ∈ U. Then the word uv stands for the concatenation of
u and v: uv = u1 . . . unv1 . . . vm. Observe that U is totally ordered by the lexico-
graphical order denoted by ≤. A rooted ordered tree t is a subset of U satisfying
the following conditions:

(i) ∅ ∈ t and ∅ is called the root of t .
(ii) If v ∈ t and if v = uj for some j ∈ N

∗, then u ∈ t .
(iii) For every u ∈ t , there exists ku(t) ≥ 0 such that uj ∈ t for every 1 ≤ j ≤

ku(t).

We denote by T the set of ordered rooted trees. Let us mention that we sometimes
see ordered rooted trees as family trees. So, we often use the genealogical terminol-
ogy instead of the graph-theoretical one. All the random objects introduced in this
paper are defined on an underlying probability space denoted by (�,F ,P). Let
ε ∈ (0,1/2) and let a = (an, n ≥ 1) be some nondegenerated fixed set of weights,
namely

∑
an = 1 and 0 ≤ an < 1, n ≥ 1.

We attach to the infinite tree U a cemetery point ∂ /∈ U situated at height (−1)

and we view ∂ as the parent of the root ∅. Then, we let run a particle on U ∪ {∂}
that evolves as follows:

(a) The particle starts at ∅ at time 0 and it stops when it reaches ∂ .
(b) If at time n the particle is at vertex v ∈ U, then it jumps down to the parent

of v with probability 1/2 − ε and it goes up with probability 1/2 + ε.
(c) When going up, the particle chooses direction j ∈ N

∗ and jumps to the
vertex vj ∈ U with probability aj .

The height of the particle evolving in U ∪ {∂} is then distributed as a random
walk on Z started at 0, stopped when reaching state −1, and whose possible jumps
are (+1) with probability 1/2 + ε and (−1) with probability 1/2 − ε. In this paper
we condition the particle to never reach ∂ (observe that this conditioning is non-
singular). We denote by Wε = (Wε

n ;n ≥ 0) the sequence of vertices in U visited
by the conditioned particle.

We study the range {Wε
n ;n ≥ 0} when ε goes to zero. Observe that it is an

ordered rooted subtree of U. There exists a unique ordered rooted tree τε ∈ T

corresponding to {Wε
n ;n ≥ 0} via a one-to-one map that fixes the root ∅, preserves

adjacency and that is increasing with respect to the lexicographical order.
Since Wε goes to infinity, τε has one single infinite line of descent. Following

Aldous’ terminology introduced in [2] we call sin-tree such trees (see Section 2.1
for precise definitions). The distribution of τε is not simple and it shows corre-
lations due to frequent backtracking of the random walk (see comments in Sec-
tion 2.3). However, Theorem 2.1, which is the main result of the paper, asserts
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that τε converges in distribution to some continuum random tree. More precisely,
think of τε as a planar graph embedded in the clockwise oriented half-plane and
suppose that its edges have length 1; consider a particle visiting continuously the
edges of τε at speed 1 from the left to the right, going backward as little as possi-
ble; we denote by Cs(τε) the distance from the root of the particle at time s and we
call the resulting process C(τε) = (Cs(τε); s ≥ 0) the left contour process of τε . It
is clear that the particle never reaches the part of τε at the right hand of the infi-
nite line of descent; observe, however, that C(τε) completely encodes the left part
of τε . Denote by C•(τε) the process corresponding to a particle visiting τε from
the right to the left. Thus, (C(τε),C

•(τε)) completely encodes τε (see Section 2.2
for more careful definitions and other encodings of sin-trees). Let D and D• be
two independent copies of the process s → Bs − 2s − 2 infr≤s(Br − 2r) where B

is distributed as the standard linear Brownian motion started at 0. Theorem 2.1
asserts that the convergence(

εCs/ε2(τε), εC
•
s/ε2(τε)

)
s≥0 −→

ε→0
(2Dγs,2D•

γ s)s≥0

holds in distribution in C([0,∞),R
2) endowed with the topology of uniform con-

vergence on compact sets. We see that correlations in τε only give rise to a deter-
ministic phenomenon characterized by a constant γ = γ (a) that is defined by

1/γ = E[(1 + X1 + X1X2 + X1X2X3 + · · ·)−1],(1)

where (Xn;n ≥ 1) stands for a sequence of i.i.d. {an,n ≥ 1}-valued random vari-
ables whose distribution is given by P(Xn = ai) = ∑

aj , the sum being taken over
the j ’s such that aj = ai . Observe that if b is some integer greater than 1 and if
an = 0 for all n ≥ b + 1, then the particle remains in the b-ary ordered rooted tree
Ub = {∅} ∪ ⋃

n≥1{1, . . . , b}n. More comments about this limit theorem are added
before and after the statement of Theorem 2.1.

Before ending this section, let us give a short overview of the proof of the the-
orem: one part of the proof relies on a specific encoding of the range {Wε

n ;n ≥ 0}
that can be explained as follows: Denote by (|Wε

n |;n ≥ 0) the sequence of succes-
sive heights of the particle. It is obviously distributed as a random walk started at 0
whose possible jumps are (+1) with probability 1/2+ε and (−1) with probability
1/2 − ε, conditioned to stay nonnegative. Then, the piecewise linear process

t −→ ∣∣Wε�t	
∣∣ + (t − �t	)∣∣Wε�t	+1

∣∣
is the contour process of an infinite “fictive” tree denoted by τ ε whose distribu-
tion can be informally described as follows: τ ε has one infinite line of descent; at
each vertex v on the infinite line of descent an independent random number with
distribution µ of independent Galton–Watson trees with offspring distribution µ

is attached at the left of the infinite line. Here, µ stands for the probability mea-
sure on N given by µ(k) = (1/2 + ε)(1/2 − ε)k , k ≥ 0 (see Section 2 for precise
definitions concerning trees and Lemma 3.1 for the details).
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We then encode the walk (Wε
n ;n ≥ 0) by the tree τ ε and random marks

µu ∈ N
∗, u ∈ τ ε that are defined as follows: Let u ∈ τ ε be distinct from the root ∅.

Denote ←−u its parent. By definition of the contour process the edge (←−u ,u) cor-
responds to a unique upcrossing of the process (|Wε

n |;n ≥ 0) between times n(u)

and n(u) + 1. Thus, there exists j ∈ N
∗ such that the word Wε

n(u)+1 is written
Wε

n(u)j and we set µu = j . Then, we easily check that conditional on τ ε , the
marks µu, u ∈ τ ε \ {∅} are independent and distributed on N

∗ in accordance
with a (see Section 3.1 for details). We get back the walk Wε from the marked
tree Tε = (τ ε; (µu,u ∈ τ ε)), in the following way: consider u ∈ τ ε , distinct from
the root ∅ at height |u| = n; denote by u0 = ∅, u1, . . . , un = u the ancestors of u

listed in the genealogical order. Then we define the track of u, TrTε
(u), by the

word µu1
. . .µun

∈ U (observe that the mark of the root plays no role). Then,

Wε
n(u)+1 = TrTε

(u)

and thus

TrTε
(τ ε) = {Wε

n ;n ≥ 0}.
Taking the trace of τ ε has two distinct effects: the first one shuffles τ ε in the order
of the marks in N

∗. The second one shrinks the tree because several edges of τ ε

might correspond to the same vertex in U.
Let us briefly explain how to deal with the shuffling effect of the tree: it is

possible to reorder randomly the marked tree Tε into a new marked tree T̃ε =
(τ̃ε; (µ̃u, u ∈ τ̃ε)) such that:

(a) τ̃ε has the same distribution as the tree obtained from τ ε by changing inde-
pendently and uniformly at random the order of birth of brothers in τ ε .

(b) If u1, u2 ∈ τ̃ε are such that u1 ≤ u2, then

TrT̃ε
(u1) ≤ TrT̃ε

(u2)

(see Section 3.1 for a precise definition). Thus, the shuffled tree τ̃ε has a simple
distribution specified by Remark 3.1. Up to the shrinking effect, τ̃ε is close to τε

and if we denote by (C(τ̃ε),C
•(τ̃ε)) the left and the right contour processes of τ̃ε

we prove in Section 2.1 that(
εCs/ε2(τ̃ε), εC

•
s/ε2(τ̃ε)

)
s≥0 −→

ε→0
(2Ds,2D•

s )s≥0,(2)

in distribution in C([0,∞),R
2) endowed with the topology of uniform conver-

gence on compact sets. Denote by d the graph distance in U. Informally speak-
ing, (2) says that the metric space (τ̃ε, ε · d) converges to some random metric
space that is a continuum random tree encoded by D and D• [see comment (c)
after Theorem 2.1 for a more precise discussion of that point]. Next, observe that
for any u1 and u2 in τ̃ε

0 ≤ d(u1, u2) − d
(
TrT̃ε

(u1),TrT̃ε
(u2)

) ≤ 2G(u1, u2)
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where conditional on u1, u2 ∈ τ̃ε , G(u1, u2) is a random integer with a geometric
distribution with parameter q = P(X1 �= X2), which is a quantity that does not
depend on ε. This gives an informal argument to explain why the limits of the
metric spaces (τε, ε · d) and (τ̃ε, ε · d) should be close and why tightness for the
contour processes of τε is not the difficult part of the proof: it is deduced from (2)
by (now standard) arguments inspired from the proof of Theorem 20 in Aldous’
paper [3].

The technical point of the paper concerns the identification of the limiting
tree by studying precisely the “shrinking effect” via explicit computations for the
U-indexed Markov process (Zv, v ∈ U) given by

Zv = #
{
u ∈ τ̃ε : TrT̃ε

(u) = v
}
.

This analysis is done in Propositions 3.3 and 3.4. More precisely, if we fix a real
number x > 0 and if we remove from τ̃ε all the descendents of the unique vertex
at height �x/ε	 on the infinite line of descent, we get a finite tree denoted by τ̃ x

ε .
Let U be a uniform random variable in [0,1] independent of τ̃ε . Denote by U(ε)

the vertex of τ̃ x
ε coming in the �U#τ̃ x

ε 	th position in the lexicographical order. Set

V (ε) = ∑
v∈U

v≤TrT̃ε
(U(ε))

1{Zv>0}.

Then, we prove that

ε2
(
V (ε) − 1

γ
U#τ̃ x

ε

)
−→
ε→0

0

in probability. This key result is stated more precisely in Lemma 3.7.
The paper is organized as follows: In Sections 2.1 and 2.2 we specify our nota-

tion and we define various encodings of trees and forests; Theorem 2.1 is stated in
Section 2.3; Section 3 is devoted to its proof that relies on a certain combinatorial
representation of the range {Wε

n ;n ≥ 0} given in Section 3.1 and on a technical
estimate (Lemma 3.7) whose proof is postponed to Section 3.3 while the proof of
Theorem 2.1 itself is done in Section 3.2.

2. Preliminaries and definitions.

2.1. Trees, forests and sin-trees. We first start with some notation. We define
on U the genealogical order � by

∀u, v ∈ U u � v ⇐⇒ ∃w ∈ U :v = uw.

If u � v, we say that u is an ancestor of v. If u is distinct from the root, it has a
unique predecessor with respect to � that is called its parent and that is denoted
by ←−u . We define the youngest common ancestor of u and v by the �-maximal
element w ∈ U such that w � u and w � v and we denote it by u ∧ v. We also
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define the distance between u and v by d(u, v) = |u| + |v| − 2|u ∧ v| and we use
notation �u, v� for the shortest path between u and v. Let t ∈ T and u ∈ t . We
define the tree t shifted at u by θu(t) = {v ∈ U :uv ∈ t} and we denote by [t]u the
tree t cut at the node u : [t]u := {u} ∪ {v ∈ t :v ∧u �= u}. Observe that [t]u ∈ T. For
any u1, . . . , uk ∈ t we also set [t]u1,...,uk

:= [t]u1 ∩ · · · ∩ [t]uk
and

[t]n = [t]{u∈t : |u|=n} = {u ∈ t : |u| ≤ n}, n ≥ 0.

Let us denote by G the σ -field on T generated by the sets {t ∈ T :u ∈ t}, u ∈ U

and let µ be a probability distribution on N. We call Galton–Watson tree with
offspring distribution µ [a GW(µ)-tree for short] any (F ,G)-measurable random
variable τ whose distribution is characterized by the two following conditions:

(i) P(k∅(τ ) = i) = µ(i), i ≥ 0.
(ii) For every i ≥ 1 such that µ(i) �= 0, the shifted trees θ1(τ ), . . . , θi(τ ) under

P(· | k∅(τ ) = i) are independent copies of τ under P.

REMARK 2.1. Let u1, . . . , uk ∈ U such that ui ∧ uj /∈ {u1, . . . , uk}, 1 ≤ i,

j ≤ k, and let τ be a GW(µ)-tree. Then, conditional on the event {u1, . . . , uk ∈ τ },
θu1(τ ), . . . , θuk

(τ ) are i.i.d. GW(µ)-trees independent of [τ ]u1,...,uk
.

We often consider a forest (i.e., a sequence of trees) instead of a single tree.
More precisely, we define the forest f associated with the sequence of trees
(tl; l ≥ 1) by the set

f = {(−1,∅)} ∪ ⋃
l≥1

{(l, u), u ∈ tl}

and we denote by F the set of forests. Vertex (−1,∅) is viewed as a fictive root
situated at generation −1. Let u′ = (l, u) ∈ f with l ≥ 1; the height of u′ is defined
by |u′| := |u| and its ancestor is defined by (l,∅). For convenience, we denote it
by ∅l := (l,∅). As already specified, all the ancestors ∅1,∅2, . . . are the descen-
dants of (−1,∅) and are situated at generation 0. Most of the notation concerning
trees extend to forests: The lexicographical order ≤ is defined on f by taking
first the individuals of t1, next those of t2, . . . , and so on and leaving (−1,∅)

unordered. The genealogical order � on f is defined tree by tree in an obvious
way. Let v′ ∈ f . The youngest common ancestor of u′ and v′ is then defined as
the �-maximal element of w′ such that w′ � u′ and w′ � v′ and we keep denoting
it by u′ ∧ v′. The number of children of u′ is ku′(f ) := ku(tl) and the forest f

shifted at u′ is defined as the tree θu′(f ) := θu(tl). We also define [f ]u′ as the for-
est {u′} ∪ {v′ ∈ f : v′ ∧ u′ �= u′} and we extend notation [f ]u′

1,...,u
′
k

and [f ]n in an
obvious way. For convenience of notation, we often identify f with the sequence
(tl; l ≥ 1). When (tl; l ≥ 1) = (t1, . . . , tk,∅,∅, . . .), we say that f is a finite forest
with k elements and we abusively write f = (t1, . . . , tk).
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We define the set of sin-trees by

Tsin = {
t ∈ T :∀n ≥ 0,#{v ∈ t : |v| = n and #θv(t) = ∞} = 1

}
.

Let t ∈ Tsin. For any n ≥ 0, we denote by u∗
n(t) the unique individual u on the

infinite line of descent [i.e., such that #θu(t) = ∞] situated at height n. Observe
that u∗

0(t) = ∅. We use notation �∞(t) = {u∗
n(t);n ≥ 0} for the infinite line of

descent of t and we denote by (ln(t);n ≥ 1) the sequence of positive integers such
that u∗

n(t) is the word l1(t) . . . ln(t) ∈ U. We also introduce the set of sin-forests
Fsin that is defined as the set of forests f = (tl; l ≥ 1) such that all the trees tl are
finite except one sin-tree tl0 . We extend to sin-forests notation u∗

n and ln by setting
ln(f ) = ln(tl0), u∗

n(f ) = (l0, u
∗
n(tl0)) and u∗

0(f ) = ∅l0 .
Next, we introduce a natural class of random sin-trees called Galton–Watson

trees with immigration (GWI-trees for short). The distribution of a GWI-tree is
characterized by:

(a) its offspring distribution µ on N that we suppose critical or subcritical:
µ̄ = ∑

k≥0 kµ(k) ≤ 1;
(b) its dispatching distribution r defined on the first octant {(k, l) ∈ N

∗ ×
N

∗ : 1 ≤ l ≤ k} that prescribes the distribution of the number of immigrants and
their positions with respect to the infinite line of descent.

More precisely, τ is a GWI(µ, r)-tree if it satisfies the two following conditions:

(i) The sequence S = ((ku∗
n(τ )(τ ), ln+1(τ ));n ≥ 0) is i.i.d. with distribution r .

(ii) Conditional on S, the trees θu∗
n(τ )i(τ ) with n ∈ N and 1 ≤ i ≤ ku∗

n(τ )(τ )

with i �= ln+1(τ ) are mutually independent GW(µ)-trees.

We define a GWI(µ, r)-forest with l ≥ 1 elements by the forest ϕ = (τ, τ1, . . . ,

τl−1) where the τi’s are i.i.d. GW(µ)-trees independent of the GWI(µ, r)-tree τ . It
will be sometimes convenient to insert τ at random in the sequence (τ1, . . . , τl−1)

but unless otherwise specified the random sin-tree in a random sin-forest occupies
the first row.

The word “immigration” comes from the following obvious observation: Let ϕ

be a GWI(µ, r)-forest with l + 1 elements. Set for any n ≥ 0, Zn(ϕ) = #{u ∈
ϕ : |u| = n} − 1. Then the process (Zn(ϕ);n ≥ 0) is a Galton–Watson process with
immigration started at state l, with offspring distribution µ and immigration dis-
tribution ν given by

ν(k) = ∑
1≤j≤k+1

r(k + 1, j), k ≥ 0.

Recall that a Galton–Watson process with immigration (Zn(ϕ);n ≥ 0) is an
N-valued Markov chain whose transition probabilities are characterized by

E
[
xZn+m(ϕ)|Zm(ϕ)

] = fn(x)Zm(ϕ)g(fn−1(x))g(fn−2(x)) · · ·g(f0(x)),(3)
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where f (resp. g) stands for the generating function of µ (resp. ν) and where fn is
recursively defined by fn = fn−1 ◦ f , n ≥ 1 and f0 = Id.

We conclude this section by giving an elementary result on the so-called
GW(µ)-size-biased trees that are GWI(µ, r)-trees with dispatching distribution
of the form r(k, j) = µ(k)/µ̄, 1 ≤ j ≤ k. Size-biased trees arise naturally by con-
ditioning critical or subcritical GW-trees on nonextinction: see [1, 2, 9] or [11]
for related results. The term “size-biased” can be justified by the following ele-
mentary result needed in Section 3.3: Let ϕ be a random forest corresponding to
a sequence of l independent GW(µ)-trees and let ϕ� be a GWI(µ, r)-forest with l

elements where r is taken as above and where the position of the unique random
sin-tree in ϕ� is picked uniformly at random among the l possible choices. Check
that for any nonnegative measurable functional G on F × U:

E

[∑
u∈ϕ

G([ϕ]u, u)

]
= ∑

n≥0

lµ̄nE
[
G

([ϕ�]u∗
n(ϕ�), u

∗
n(ϕ�)

)]
(4)

and in particular dP([ϕ�]n ∈ ·)/dP([ϕ]n ∈ ·) = Zn(ϕ)/lµ̄n.

2.2. The encoding of sin-trees. The purpose of the paper is to provide a limit
theorem for τε thanks to its encoding by two contour processes as briefly explained
in the Introduction. It will be convenient to introduce two additional encoding
processes: namely, the height process (also called exploration process) and a cer-
tain kind of random walk.

Encoding of finite trees and forests. Let t ∈ T be a finite tree and let u0 = ∅ <

u1 < · · · < u#t−1 be the vertices of t listed in the lexicographical order. We define
the height process of t by Hn(t) = |un|, 0 ≤ n < #t . H(t) clearly characterizes the
tree t .

We also encode t by its contour process which is informally defined as follows:
think of t as a graph embedded in the clockwise oriented half-plane with unit
length edges; let run a particle starting at the root at time 0 that explores t from
the left to the right moving continuously along each edge at unit speed until it
comes back to its starting point. In this evolution, each edge is crossed twice and
the total amount of time needed to explore the tree is thus 2(#t − 1). The contour
process C(t) = (Cs(t);0 ≤ s ≤ 2(#t − 1)) is defined as the distance-from-the-
root process of the particle at time s ∈ [0,2(#t − 1)]. More precisely, C(t) can be
recovered from the height process by the following transform: Set bn = 2n−Hn(t)

for 0 ≤ n < #t and b#t = 2(#t − 1). Then observe that

Cs(t) =


Hn(t) − s + bn, if s ∈ [bn, bn+1 − 1) and n < #t − 1,
s − bn+1 + Hn+1(t), if s ∈ [bn+1 − 1, bn+1] and n < #t − 1,
H#t−1(t) − s + b#t−1, if s ∈ [b#t−1, b#t ].

(5)

See Figure 1. We also need to encode t in a third way by a path V (t) = (Vn(t);0 ≤
n ≤ #t) that is defined by Vn+1(t) = Vn(t) + kun(t) − 1 and V0(t) = 0. V (t) is
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FIG. 1. When the particle reaches the vertex un for the first time, then the double-line edges
have been visited two times [the total number of such edges is n − Hn(t)], the one-line
edges have been visited one time [the total number of such edges is equal to Hn(t)] and the
dashed-line edges have not been visited. Then the total amount of time needed to reach un is
bn = 2(n − Hn(t)) + Hn(t) = 2n − Hn(t).

sometimes called the Lukaciewicz path associated with t . It is clear that we can
reconstruct t from V (t). Observe that the jumps of V (t) are ≥ −1. Moreover,
Vn(t) ≥ 0 for any 0 ≤ n < #t and V#t (t) = −1. We recall from [10] without proof
the following formula that allows to write the height process as a functional of
V (t):

Hn(t) = #
{

0 ≤ j < n :Vj (t) = inf
j≤k≤n

Vk(t)

}
, 0 ≤ n < #t.(6)

REMARK 2.2. If τ is a critical or subcritical GW(µ)-tree, then it is clear from
our definition that V (τ) is a random walk started at 0 that is stopped at −1 and
whose jump distribution is given by ρ(k) = µ(k + 1), k ≥ −1. However, neither
H(τ) nor C(τ) is Markov process except for the geometric case: µ(k) = (1−p)pk

with p ∈ (0,1/2]. In this case, C(ϕ) is distributed as a random walk killed at −1
and whose possible jumps are (+1) with probability p and (−1) with probability
1 − p [more precisely, it is the restriction of the first T−1 − 1 steps of a random
walk killed at the reaching time of level (−1)].

The previous definition of V and of the height process can be easily extended
to a forest f = (tl; l ≥ 1) of finite trees as follows: Since all the trees tl are finite,
it is possible to list all the vertices of f but (−1,∅) in the lexicographical order:
u0 = ∅1 < u1 < · · · , and so on. We then simply define the height process of f by
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Hn(f ) = |un| and V (f ) by Vn+1(f ) = Vn(f ) + kun(f ) − 1 with V0(f ) = 0. Set
np = #t1 + · · · + #tp and n0 = 0 and observe that

Hnp+k(f ) = Hk(tp+1) and Vnp+k(f ) = Vk(tp+1) − p,

0 ≤ k < #tp+1,p ≥ 0.

We thus see that the height process of f is the concatenation of the height processes
of the trees composing f . Moreover, the nth visited vertex un is in tp iff p =
1 − inf0≤k≤n Vk(f ). Then, it is easy to check that (6) remains true for every n ≥ 0
when H(t) and V (t) are replaced by respectively H(f ) and V (f ).

Encodings of sin-trees. Let t ∈ Tsin. A particle visiting t in the lexicographical
order never reaches the part of t at the right hand of the infinite line of descent.
So we need two height processes or equivalently two contour processes to encode
t . More precisely, the left part of t is the set {u ∈ t :∃v ∈ �∞(t) s.t. u ≤ v}. It can
be listed in a lexicographically increasing sequence of individuals denoted by ∅ =
u0 < u1 < · · ·. We simply define the left height process of t by Hn(t) = |un|, n ≥ 0.
H(t) completely encodes the left part of t . To encode the right part we consider
the “mirror image” t• of t . More precisely, let v ∈ t be the word c1c2 . . . cn. For
any j ≤ n, denote by vj := c1 . . . cj the j th ancestor of v with v0 = ∅. Set c•

j =
kvj−1(t) − cj + 1 and v• = c•

1 . . . c•
n. We then define t• as {v•, v ∈ t} and we define

the right height process of t as H •(t) := H(t•).

REMARK 2.3. Observe that τ and τ • have the same distribution if τ is a
GW(µ)-tree. This is no longer the case if τ is a GWI(µ, r)-tree unless r(k,m) =
r(k, k − m + 1).

We now give a decomposition of H(t) and H •(t) along �∞(t) that is well suited
to GWI-trees and that is used in Section 3.2: Recall that (un;n ≥ 0) stands for the
sequence of vertices of the left part of t listed in the lexicographical order. Let
us consider the set {u∗

n−1(t)i;1 ≤ i < ln(t);n ≥ 1} of individuals at the left hand
of �∞(t) having a brother on �∞(t). To avoid trivialities, we assume that this set
is not empty and we denote by v1 < v2 < · · · the (possibly finite) sequence of its
elements listed in the lexicographical order.

The forest f (t) = (θv1(t), θv2(t), . . .) is then composed of the bushes rooted at
the left hand of �∞(t) taken in the lexicographical order of their roots. Define
Ln(t) := (l1(t)−1)+· · ·+ (ln(t)−1), n ≥ 1, with L0(t) = 0 and consider the pth
individual of f (t) with respect to the lexicographical order on f (t); check that the
corresponding bush is rooted in t at height

α(p) = inf
{
k ≥ 0 :Lk(t) ≥ 1 − inf

j≤p
Vj (f (t))

}
.

Thus the corresponding individual in t is un(p) where n(p) is given by

n(p) = p + α(p)(7)
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[note that the first individual of f (t) is labelled by 0]. Conversely, let us consider
un that is the nth individual of the left part of t with respect to the lexicographical
order on t . Set p(n) = #{k < n :uk /∈ �∞(t)} that is the number of individuals
coming before un and not belonging to �∞(t). Then

p(n) = inf{p ≥ 0 : n(p) ≥ n}(8)

and the desired decomposition follows:

Hn(t) = n − p(n) + Hp(n)(f (t)).(9)

Since n − p(n) = #{0 ≤ k < n :uk ∈ �∞(t)}, we also get

α
(
p(n) − 1

) ≤ n − p(n) ≤ α(p(n)).(10)

Observe that if un /∈ �∞(t), then n − p(n) = α(p(n)). The proofs of these identi-
ties follow from simple counting arguments and they are left to the reader (see
Figure 2). Similar formulas hold for H •(t) taking t• instead of t in (7), (8),
(9) and (10).

FIG. 2. The left part of a sin-tree t . The individuals which are not on �∞(t) have two labels: the first
one is their row in the lexicographical order on t and the second one (tagged with a star) corresponds
to their row in f (t); individuals of �∞(t) have only one label corresponding to their row in t .
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REMARK 2.4. The latter decomposition is particularly useful when we
consider a GWI(µ, r)-tree τ : In this case (f (τ ), f (τ •)) is independent of
(L(τ),L(τ •)), f (τ) and f (τ •) are mutually independent and f (τ) [resp. f (τ •)] is
a forest of i.i.d. GW(µ)-trees if for some k ≥ 2 we have r(k,2)+ · · · + r(k, k) �= 0
[resp. r(k, k−1)+· · ·+r(k,1) �= 0]; it is otherwise an empty forest. Moreover, the
process (L(τ),L(τ •)) is an N × N-valued random walk whose jump distribution
is given by

P
(
Ln+1(τ ) − Ln(τ) = m;Ln+1(τ

•) − Ln(τ
•) = m′) = r(m + m′ + 1,m + 1).

We next define the left contour process of the sin-tree t denoted by C(t) as
the distance-from-the-root process of a particle starting at the root and moving
clockwise on t viewed as a planar graph embedded in the oriented half-plane with
edges of unit length. We define C•(t) as the contour process corresponding to the
anticlockwise journey and we can also write C(t•) = C•(t). More precisely, C(t)

[resp. C•(t)] can be recovered from H(t) [resp. H •(t)] through (5) that still holds
for sin-trees [note that in that case the sequence (bn;n ≥ 0) is infinite].

It will be sometimes convenient to approximate a sin-tree t by the finite tree
[t]u∗

n(t) with n large. The formula connecting the contour processes of t and
[t]u∗

n(t) is given as follows: Set σn(t) = #{u ∈ t :u < u∗
n(t)} and σn(t

•) = #{u ∈
t• :u < u∗

n(t
•)}. We get σn(t) + σn(t

•) = #[t]u∗
n(t) + n − 1 since the individuals of

�∅, u∗
n−1(t)� have been counted twice. Check that

σn(t) = sup{k ≥ 0 :Hk(t) ≤ n},
(11)

2σn(t) − n = sup{s ≥ 0 :Cs(t) ≤ n},
with similar formulas for t•. Thus we get

Cs(t) = Cs

([t]u∗
n(t)

)
if s ∈ [0,2σn(t) − n],

(12)
C•

s (t) = C2(#[t]u∗
n(t)−1)−s

([t]u∗
n(t)

)
if s ∈ [0,2σn(t

•) − n].
(Observe that a similar formula is not available for height processes.)

2.3. Statement of the main result. For convenience of notation, we set d =
1/2 − ε and u = 1/2 + ε. Recall that τε ∈ T denotes the random ordered rooted
tree associated with the range of the random walk Wε in U. First observe that the
process (|Wε

n |;n ≥ 0) giving the distance from the root of the particle performing
the random walk does contain an important part of the information concerning τε .
Moreover, this process is simply distributed as the post-infimum path of a random
walk whose possible jumps are +1 with probability u and −1 with probability d .
Recall that (Bs; s ≥ 0) stands for the linear Brownian motion and set for any y ∈ R,
B

(y)
s = Bs + ys and I

(y)
s = infu≤s B

(y)
u . Standard arguments imply(

ε
∣∣Wε

�s/ε2	
∣∣; s ≥ 0

) (d)−→
ε→0

(
B

(2)
s+g − I (2)∞ ; s ≥ 0

)
,
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where we have set g = inf{s ≥ 0 :B(2)
s = I

(2)∞ }. Notation
(d)→ stands for the conver-

gence in distribution in the appropriate space of right-continuous functions with

left limits endowed with Skorohod topology. We also use notation
(fd)→ for the con-

vergence in distribution of all finite-dimensional marginals.
This result turns out to provide the right scaling for τε though the connection

between (|Wε
n |;n ≥ 0) and τε is nontrivial and the distribution of τε is not simple;

for instance, we can check that τε and τ •
ε might not have the same distribution.

Take the binary case a = (a,1 − a,0,0, . . .) for some a ∈ (0,1). Define the set
A ⊂ T by A = {t ∈ T :k∅(t) = 2, k1(t) = 0, k2(t) > 0}. Then it follows from sim-
ple arguments discussed in Section 3.1 that

P(τε ∈ A) = du2a(1 − a)

(u + da)(u + d2a)
,

P(τ •
ε ∈ A) = du2a(1 − a)

(u + d(1 − a))(u + d2(1 − a))
.

Thus, except for a = 1/2, P(τε ∈ A) �= P(τ •
ε ∈ A). Actually, when ε goes to zero,

the particle backtracks more and more often causing correlations. However, Theo-
rem 2.1 asserts that the correlations only give rise to a deterministic phenomenon
that is taken into account by the coefficient γ = γ (a) given by (1).

THEOREM 2.1. Let D and D• be two independent copies of B(−2) − 2I (−2).
Then:

(i) (εCs/ε2(τε), εC
•
s/ε2(τε))s≥0

(d)−→
ε→0

(2Dγs,2D•
γ s)s≥0,

(ii) (εH�s/2ε2	(τε), εH
•
�s/2ε2	(τε))s≥0

(d)−→
ε→0

(2Dγs,2D•
γ s)s≥0.

Let us make some comments. (a) The limit of the height and the contour
processes are the same up to the multiplicative time constant 2. This comes from
the fact that vertices are visited once by the height process while the edges are
crossed exactly twice by the contour process.

(b) The definition of γ through expectation (1) is only for practical reasons.
We have not found a simpler expression except for the case a1 = · · · = ab = 1/b,
where b is an integer greater than 1. In that case the Xi’s are deterministic and
γ = 1 − 1/b.

(c) The continuum random sin-tree whose 2D(γ ·) and 2D•
(γ ·) are respectively

the left and the right height processes can be defined as follows: To any real s

corresponds a vertex in the tree at height Hs = 1(−∞,0)(s)2D−γ s +1[0,∞)(s)2D•
γ s .

Let s ≤ s′. The youngest common ancestor of the vertices corresponding to s and s′
is situated at height

m(s, s′) = inf{Hu;u ∈ I (s, s ′)},
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where I (s, s ′) is taken as [s, s′] if 0 /∈ [s, s′] and as R \ [s, s′] otherwise. Thus, the
distance between the vertices corresponding to s and s′ is

d(s, s′) = Hs + Hs′ − 2m(s, s′).

We say that s and s′ are equivalent if they correspond to the same vertex in the tree,
that is, d(s, s′) = 0 that is denoted by s ∼ s′. We formally define the continuum
random sin-tree as the quotient set T = R/ ∼. Then d induces a metric on T that
makes it be a (random) Polish space.

We can show that the metric space (T ,d) is an R-tree (see [6] for related results).
Due to the Brownian nature of H , all fractal dimensions of T are a.s. equal to 2.
A point σ ∈ T is called a branching point if the open set T \ {σ } has more than
two connected components and it corresponds to times at which H reaches a local
minimum. Since all the local minima of H are distinct, all the branching points are
binary, that is, T \ {σ } has three connected components.

(d) Observe that the limiting tree T is symmetric since D and D• have the
same distribution. A heuristic explanation is the following: arguments discussed in
Section 3.2 imply that an unbalanced set of weights a breaks the symmetry of τε

only if τε has branching points of order ≥ 3 which does not happen to the limiting
tree T that is binary.

3. Proof of the main result.

3.1. Combinatorial results. In this section ε is fixed and for convenience of
notation we drop the corresponding subscript in the random variables. Thus, we
write W and τ instead of Wε and τε . As explained in the Introduction, the lin-
ear interpolation of the process (|Wn|;n ≥ 0) can be viewed as the left contour
process of a (fictive) GWI-tree denoted by τ and whose distribution is given by the
following lemma.

LEMMA 3.1. The linear interpolation of (|Wn|;n ≥ 0) is distributed as the
left contour process of a GWI(µ, r)-tree where µ(k) = udk , r(k, k) = µ(k − 1)

and r(k,m) = 0, 1 ≤ m < k, k ≥ 0.

PROOF. Let (ξn;n ≥ 1) be i.i.d. such that P(ξn = 1) = u and P(ξn = −1) = d .
Set S0 = 0 and Sn = ξ1 + · · · + ξn and define T−1 as T−1 := inf{n ≥ 0 :Sn = −1}
(with the convention inf ∅ = ∞). Since the random walk S = (Sn;n ≥ 0) a.s. drifts
to +∞, P(T−1 = ∞) > 0. By definition of W , (|Wn|;n ≥ 0) has the same distrib-
ution as S under P(·|T−1 = ∞).

Let us denote by (T
(0)
i ; i ≥ 0) the passage times to state 0: T

(0)
0 = 0 and T

(0)
i+1 =

inf{n > T
(0)
i : Sn = 0}, with the convention inf ∅ = ∞. Set

K = sup
{
i ≥ 0 :T (0)

i < ∞}
< ∞ a.s.
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We denote by E1, . . . ,EK,EK+1 the excursions of S away from 0 defined by

Ei = (
S

T
(0)
i−1+n

;0 ≤ n ≤ ζi := T
(0)
i − T

(0)
i−1

)
, 1 ≤ i ≤ K,

and by EK+1 = (S
T

(0)
K +n

;n ≥ 0). We first consider the tree τ whose contour

process is the linear interpolation of (Sn;0 ≤ n ≤ T−1 − 1) under P(·|T−1 < ∞):

CLAIM. τ is a GW(µ)-tree.

PROOF. If L stands for the number of children of the root of τ , then L + 1 is
also the number of times S visits 0 before T−1 :L = sup{i ≥ 0 : T

(0)
i < T−1}. By

applying the Markov property at the stopping times T
(0)
i ’s, we show that P(L =

0) = d and that for any l ≥ 1, conditional on the event {L = l;T−1 < ∞}:
(a) E1, . . . ,El are i.i.d. and they are distributed as E1 under P(·|E1(1) =

1;T (0)
1 < ∞). Moreover, the Markov property at time 1 implies that

(b) (E1(n + 1) − 1;0 ≤ n ≤ T
(0)
1 − 2) under P(·|E1(1) = 1;T (0)

1 < ∞) has the
same distribution as (Sn;0 ≤ n ≤ T−1 − 1) under P(·|T−1 < ∞).

Now observe that the contour processes of the subtrees θ1τ, . . . , θLτ are the
linear interpolations of (Ei (n + 1) − 1;0 ≤ n ≤ ζi − 2), 1 ≤ i ≤ L. We deduce
from (a) and (b) that τ satisfies the two conditions of the definition of a GW-tree;
its distribution is then the distribution of L under P(·|T−1 < ∞), which can be
computed as follows: Observe first that

{L = l;T−1 < ∞}
= {

E1(1) = 1;T (0)
1 < ∞; . . . ;El(1) = 1;T (0)

l < ∞;El+1(1) = −1
}
.

Then, by (a):

P(L = l;T−1 < ∞) = dP
(
E1(1) = 1;T (0)

1 < ∞)k
.

But (b) implies that P(E1(1) = 1;T (0)
1 < ∞) = uP(T−1 < ∞). Thus,

P(L = l;T−1 < ∞) = d
(
uP(T−1 < ∞)

)k
and by summing over l we get P(T−1 < ∞) = d/(1 − uP(T−1 < ∞)) which im-
plies that P(T−1 < ∞) = d/u. Finally we get

P(L = l|T−1 < ∞) = udk = µ(k),

which achieves the proof of the claim. �

Let us achieve the proof of the lemma: we now consider the tree τ whose con-
tour process is the linear interpolation of (|Wn|;n ≥ 0). To simplify notation, we
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identify this process to S under P(·|T−1 = ∞). Then K + 1 is the number of chil-
dren of the ancestor of τ . First, observe that

{K = k;T−1 = ∞}
(13)

= {
E1(1) = 1;T (0)

1 < ∞; . . . ;Ek(1) = 1;T (0)
k < ∞;T (0)

k+1 = ∞}
.

By applying the Markov property, we then show that conditional on {K = k;T−1 =
∞}:

(1) E1, . . . ,Ek+1 are independent;
(2) E1, . . . ,Ek are distributed as E1 under P(·|E1(1) = 1;T (0)

1 < ∞);

(3) Ek+1 is distributed as E1 under P(·|T (0)
1 = ∞).

Now, by applying the Markov property at time 1 we see that(
E1(n+1)−1;n ≥ 0

)
under P

(·|T (0)
1 = ∞) (law)= S under P(·|T−1 = ∞).(14)

Observe that the contour processes of the subtrees θ1τ , . . . , θK+1τ are the linear
interpolations of (Ei(n+ 1)− 1;0 ≤ n ≤ ζi − 2), 1 ≤ i ≤ K + 1. Deduce from (b),
from the previous claim and from (14) that conditional on {K = k;T−1 = ∞}, the
subtrees θ1τ , . . . , θkτ are k independent GW(µ)-trees and that θk+1τ is distributed
as τ . It implies that τ satisfies the two conditions of the definition of GWI-trees.
Since the infinite subtree is θk+1τ , τ is a GWI(µ, r)-tree with

r(k + 1,m) = 0, 1 ≤ m < k + 1,

r(k + 1, k + 1) = P(K = k|T−1 = ∞), k ≥ 0,

which can be computed as follows: Deduce from (13) and the Markov property

P(K = k;T−1 = ∞) = P
(
E1(1) = 1;T (0)

1 < ∞)kP
(
T

(0)
1 = ∞)

.

Now observe that P(T
(0)
1 = ∞) = uP(T−1 = ∞) and that P(E1(1) = 1;T (0)

1 <

∞) = d . Thus P(K = k|T−1 = ∞) = µ(k), k ≥ 0, which achieves the proof of the
lemma. �

Observe that τ is completely asymmetric, that is, it has no vertices at the right
hand of its infinite line of descent. Note also that its immigration distribution ν is
equal to µ. In what follows, we explain how to recover the full range {Wn;n ≥ 0}
from τ . To that end we need to label τ by random marks in N

∗ as explained in
the Introduction. Let us introduce some notation: the set T = (t; (mu,u ∈ t)) is an
N

∗-marked tree T if t ∈ T and if mu ∈ N
∗, u ∈ t . The mu’s are the marks of T . The

set of N
∗-marked trees is denoted by TN∗ . We define the track of T as the mapping

TrT : t → U defined as follows: Let u ∈ t ; if we denote by u0 = ∅ � u1 � · · · �
un = u the ancestors of u, then we define TrT (u) as the word mu1 . . .mun ∈ U,
with the convention TrT (∅) = ∅ (observe that m∅ plays no role in the definition
of TrT ).
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Similarly we define marked forests as sets of the form F = (f ; (mu,u ∈ f ))

where f ∈ F and mu ∈ N
∗. The set of marked forests is denoted by FN∗ . We define

the track TrF of F exactly as we have defined the track of marked trees and we set
for any u ∈ F

θu(F ) = (
θu(f ); (

muv, v ∈ θu(f )
))

and [F ]u = ([f ]u; (mv, v ∈ [f ]u)).
Since the linear interpolation of the process (|Wn|;n ≥ 0) is the distance-from-

the-root process of a (fictive) particle exploring continuously τ at unit speed from
left to right τ , we can associate with each vertex u ∈ τ \{∅} a unique time n(u) ∈ N

such that the (fictive) particle climbs the edge (←−u ,u) between times n(u) and
n(u) + 1. Since |Wn(u)+1| = 1 + |Wn(u)|, we can find µu ∈ N

∗ such that the word
Wn(u)+1 is written Wn(u)µu ∈ U. We then define the random marked tree T as

T = (
τ ; (µu,u ∈ τ)

)
,

where the mark of the root µ∅ is taken independent of W and distributed on N
∗ in

accordance with the set of weights a: P(µ∅ = i) = ai , i ∈ N
∗. The distribution of

T is described by an elementary lemma whose proof is left to the reader.

LEMMA 3.2. Conditional on τ , the marks (µu,u ∈ τ) are independent and
distributed in accordance with a. Moreover,

TrT (τ ) = {Wn;n ≥ 0}.(15)

As already explained in the Introduction, to take the track of τ is a procedure
that can be broken up in two distinct subprocedures: The first one “shuffles” τ by
putting its edges in a certain random order. The second one “shrinks” τ by iden-
tifying some successive edges with respect to the new random order. Let us first
specify what we mean by shuffling: Let t ∈ T; we say that p = (pu,u ∈ t) is a per-
mutation of t if each pu is a permutation of the (possibly empty) set {1, . . . , ku(t)}.
Let u ∈ t be the word c1 . . . cn. We denote by uk = c1 . . . ck the kth ancestor of u.
We define the word up by pu0(c1) . . . pun−1(cn) ∈ U if u �= ∅ and by ∅ otherwise.
We set tp = {up;u ∈ t}. Now, pick uniformly at random a permutation π of t

among the
∏

u∈t ku(t)! possible ones. We define the shuffling of t as the random
tree Sh(t) := tπ .

REMARK 3.1. Shuffling a GW-tree does not change its distribution. It is also
easy to check that Sh(τ ) is a GWI(µ, r ′)-tree with r ′ given by r ′(k, j) = udk−1/k,
1 ≤ j ≤ k.

We would like to shuffle an N
∗-marked tree T = (t; (mu,∈ t)) in accor-

dance with the order of its marks in N
∗: for any permutation p of t , set T p =

(tp; (mup, u ∈ t)) and observe that

TrT p(tp) = TrT (t).(16)
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Let π(T ) = (πu,u ∈ t) be a random permutation of t such that the πu’s are mutu-
ally independent and πu is picked uniformly at random among the permutations σ

of {1, . . . , ku(t)} satisfying

muσ(1) ≤ muσ(2) ≤ · · · ≤ muσ(ku(t)).

We define the shuffling of T as Sh(T ) := T π(T ). By definition the mapping
TrSh(T ) : tπ(T ) → U is increasing with respect to the lexicographical order:

∀u, v ∈ tπ(T ) u ≤ v �⇒ TrSh(T )(u) ≤ TrSh(T )(v).(17)

Observe that if any brothers in T have distinct marks, then π(T ) is deterministic.
Thus, tπ(T ) has clearly not the same distribution as Sh(t). However, when the
marks mu, u ∈ t , are i.i.d. random variables, we can easily check that tπ(T ) is
distributed as Sh(t). Thus, if we set

T̃ = Sh(T ) := (
τ̃ ; (µ̃u, u ∈ τ̃ )

)
,

then we deduce from the previous observation that

TrT̃ (τ̃ ) = {Wn;n ≥ 0}, τ̃
(law)= Sh(τ ),(18)

and that

∀u, v ∈ τ̃ u ≤ v �⇒ TrT̃ (u) ≤ TrT̃ (v).(19)

So, we first obtain τ by shuffling the GWI-tree τ and then by identifying the
edges of the resulting marked tree that have the same random marks. We now
give estimates in Propositions 3.3 and 3.4 on how much this edge identifica-
tion does shrink τ̃ . Let us introduce some notation: with any marked forest
F = (f ; (mu,u ∈ f )) we associate a collection (Zv(F );v ∈ U) of integers defined
by

Zv(F ) = #{u ∈ f : TrF (u) = v}.
Some key estimates in the proof of Theorem 2.1 rely on a precise computation
of the law of the Zv(F )’s when F is distributed as a GW-forest or a GWI-forest.
From now until the end of the paper all the GW or GWI-forests that we consider
share the same offspring distribution µ(k) = udk , k ≥ 0. We set for any i ∈ N

∗ and
for any x ∈ [0,1]

f (x) := ∑
k≥0

udkxk = u

1 − dx
and fi(x) := f (1 − ai + aix).

For any v = m1 . . .mn ∈ U we also define

fv := fm1 ◦ · · · ◦ fmn and av := am1 . . . amn,

with f∅ = Id and a∅ = 1. We adopt the following convention: to simplify notation,
we do not distinguish constants in inequalities and we denote them in a generic
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way by a symbol Kα,β,... meaning that we bound by a positive constant that only
depends on parameters α,β, . . . , and so on.

We first describe the law of (Zv(F );v ∈ U) with F = (ϕ; (µu,u ∈ ϕ)), where
ϕ = (τ1, . . . , τl) is a forest of l i.i.d. GW(µ)-trees and where conditional on ϕ the
marks (µu,u ∈ ϕ) are taken mutually independent and distributed in accordance
with a.

PROPOSITION 3.3.

(i) For any v,w ∈ U,

E
[
xZvw(F )|Zv(F )

] = fw(x)Zv(F ).

(ii) Moreover for any v = m1 . . .mn ∈ U,

1 − fv(1 − x) = x

A(v)x + B(v)
with 1/B(v) = av(d/u)n

and

A(v) = 1 + u

d

1

am1

+
(

u

d

)2 1

am1am2

+ · · · +
(

u

d

)n−1 1

am1 . . . amn−1

.

(iii) For any positive integer p,

E

[∑
v∈U

Zv(F )p

]
≤ Ka,p

lp

1 − d/u
.

PROOF. We first show (i) whose proof reduces to the “l = 1” case by an imme-
diate independence argument. Let us take F = T1 = (τ1; (µu,u ∈ τ1)) and v ∈ U.
Consider the set Lv of the vertices u ∈ τ1 satisfying TrT1(u) = v. We denote by
u1 < · · · < uZv(T1) the elements of Lv listed in the lexicographical order. As a con-
sequence of Remark 2.1, we see that conditional on Lv the marked trees (θui

(T1),
1 ≤ i ≤ Zv(T1)) are i.i.d. marked trees distributed as T1. Observe next that for any
w ∈ U

Zvw(T1) =
Zv(T1)∑
i=1

#
{
u ∈ θui

(T1) : Trθui
(T1)(u) = w

}
.

So we get

E
[
xZvw(T1)|Zv(T1)

] = E
[
xZw(T1)

]Zv(T1).

Then it remains to prove E[xZw(T1)] = fw(x), which follows from iterating the
previous identity and from the easy observation E[xZi(T1)] = fi(x), i ≥ 1.
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The proof of (ii) is a simple recurrence. Let us prove (iii): For any positive
integer p and any v = m1 . . .mn ∈ U, we deduce from (ii) the following inequality:

f (p)
v (1) = p! 1

B(v)

(
A(v)

B(v)

)p−1

(20)

≤ p!av

(
d

u

)|v|
(1 − a+)1−p,(21)

where we have set a+ = maxi≥1 ai < 1. For any integer i we denote by (x)i the
factorial polynomial x(x−1) . . . (x− i+1) [with the convention: (x)0 = 1]. Check
recursively that for any l, p ≥ 1 and any h ∈ C∞(R,R),

dphl

dxp
=

p∑
j=1

(l)jh(x)l−jQj,p

(
h′(x), . . . , h(p)(x)

)
,(22)

where the Qj,p’s are j -homogeneous polynomials with N-valued coefficients that
only depend on j and p. Deduce from (21) that for any v ∈ U,

E[(Zv(F ))p]
(23)

= dpf l
v

dxp
(1)

=
p∑

j=1

(l)jQj,p

(
f ′

v(1), . . . , f (p)
v (1)

)
(24)

≤
p∑

j=1

(l)j a
j
v

(
d

u

)j |v|
Qj,p

(
1!,2!(1 − a+)−1, . . . , p!(1 − a+)1−p)

(25)

≤ Ka,plpav

(
d

u

)|v|
.(26)

Then, by an easy argument,

E[Zv(F )p] ≤ Ka,plpav

(
d

u

)|v|
(27)

which implies (iii) by the following observation:∑
v∈U

av

(
d

u

)|v|
= ∑

n≥0

(
d

u

)n ∑
m1,...,mn≥1

am1 · · ·amn = 1

1 − d/u
.(28)

�

We need similar results for GWI-forests. Let r be some fixed repartition proba-
bility measure. We denote by ν the corresponding immigration distribution given
by ν(k − 1) = ∑

1≤j≤k r(k, j), k ≥ 1. For any x ∈ [0,1] and any i ∈ N
∗ we write

g(x) := ∑
k≥0

ν(k)xk and gi(x) := g(1 − ai + aix).
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Let F0 = (ϕ0; (µu,u ∈ ϕ0)) be a random marked GWI-forest whose distribution is
characterized as follows: ϕ0 = (τ0, τ1, . . . , τl), the τi’s are mutually independent,
τ1, . . . , τl are i.i.d. GW(µ)-trees, τ0 is a GWI(µ, r)-tree and conditional on ϕ0
the marks µu are i.i.d. random variables distributed in accordance with a. For
convenience of notation, we set

u∗
n = u∗

n(ϕ0) and v∗
n = TrF0(u

∗
n), n ≥ 0.

We also set Sp = {v∗
ni, i ∈ N

∗ \ {µu∗
n
}, n ≥ 0} and we define S as the σ -field gen-

erated by the random variables (µu∗
n
;n ≥ 0) and (Zw(F0);w ∈ Sp).

PROPOSITION 3.4.

(i) Conditional on S, the collection of the U-indexed processes ((Zwv(F0);
v ∈ U);w ∈ Sp) are mutually independent. Moreover, for any w ∈ Sp, the process
(Zwv(F0);v ∈ U) only depends on S through Zw(F0). More precisely,(

Zwv(F0);v ∈ U
)

under P
(·|w ∈ Sp;Zw(F0) = l

) (law)= (
Zv(F );v ∈ U

)
where F = (ϕ; (µu,u ∈ ϕ)), where ϕ is a sequence of l i.i.d. GW(µ)-trees and
where conditional on ϕ the marks (µu,u ∈ ϕ) are i.i.d. distributed in accordance
with a.

(ii) For any p ≥ 1, any n ≥ 0,

E
[
Zv∗

n
(F0)

p] ≤ Ka,p(l + 1)p max
0≤j≤p

g(j)(1)p,

and for any i ∈ N
∗,

E
[
Zv∗

ni(F0)
p] ≤ Ka,pai(l + 1)p max

0≤j≤p
g(j)(1)p,

with the convention g(0) = g.
(iii) For any p ≥ 1 and any n ≥ 0,

E

[∑
v∈U

Zv

([F0]u∗
n

)p]
≤ Ka,p

n + 1

1 − d/u
(l + 1)p max

0≤j≤p
g(j)(1)p.

PROOF. Set for any w ∈ Sp, Lw = {u ∈ ϕ0 : TrF0(u) = w}. Then by defini-
tion, Zw(F0) = #Lw . Check that

∀u �= u′ ∈ ⋃
w∈Sp

Lw u,u′ /∈ L∞(ϕ0) and u ∧ u′ /∈ {u,u′}.

These two observations combined with Remark 2.1 imply that conditional on S
the marked trees θu(F0), u ∈ ⋃

w∈Sp Lw are i.i.d. marked GW(µ)-trees with in-
dependent marks distributed in accordance with a. This implies (i) thanks to the
following equality valid for any w ∈ Sp and any v ∈ U:

Zwv(F0) = ∑
u∈Lw

#
{
u′ ∈ θu(F0) : Trθu(F0)(u

′) = v
}
.
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Let us prove (ii): Suppose that the word u∗
n is written l1 . . . ln ∈ U for some nonneg-

ative integers l1, . . . , ln. Consider u ∈ ϕ0 such that TrF0(u) = v∗
n . There are three

cases:

(i) If |u ∧ u∗
n| = n, then u = u∗

n.
(ii) If |u ∧ u∗

n| = −1, then u ∧ u∗
n is the fictive root (−1,∅). Thus, the ancestor

∅0 of the sin-tree τ0 is not an ancestor of u. It implies

#
{
u ∈ ϕ0 : |u ∧ u∗

n| = −1 and TrF0(u) = v∗
n

} =
l∑

j=1

Zv∗
n

(
θ∅j

(F0)
)
.

(iii) If u ∧ u∗
n = u∗

k with 0 ≤ k < n, we can find some j ∈ {1, . . . , ku∗
k
(ϕ0)} with

j �= lk+1 and some u′ ∈ U such that

u = u∗
kju′, µu∗

kj
= µu∗

k+1
, Trθu∗

k
j (F0)(u

′) = w∗
k+1,

where w∗
k+1 ∈ U stands for the word µu∗

k+2
. . .µu∗

n
∈ U, with the convention

w∗
n = ∅.

Now, set for any 0 ≤ k < n,

Ek+1 = {
j ∈ {

1, . . . , ku∗
k
(ϕ0)

}
: j �= lk+1 and µu∗

kj
= µu∗

k+1

}
.

The combination of the three preceding cases implies that

Zv∗
n
(F0) = 1 +

l∑
j=1

Zv∗
n

(
θ∅j

(F0)
)

+
n−1∑
k=0

∑
j∈Ek+1

#
{
u′ ∈ θu∗

kj
(ϕ0) : Trθu∗

k
j (F0)(u

′) = w∗
k+1

}
.

Set κk = #Ek , 1 ≤ k ≤ n, κ0 = l and w∗
0 = v∗

n . Then, by (i) we get

E
[
r
Zv∗

n
(F0)|(κk+1,µu∗

k+1

)
0≤k≤n−1

] = rfv∗
n
(r)l

n−1∏
k=0

fw∗
k+1

(r)κk+1(29)

= r

n∏
k=0

fw∗
k
(r)κk .(30)

It also follows from the previous observations that κ1, . . . , κn are mutually inde-
pendent with the same distribution specified by

E[xκ1] = E
[
gµu∗

0
(x)

] = ∑
i∈N∗

aigai
(x).(31)

From Proposition 3.3(ii) we get a.s.

fw∗
k
(1 + z) = 1 + z

B(w∗
k )

(
1 − A(w∗

k )

B(w∗
k )

z

)−1
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and since

A(w∗
k )

B(w∗
k )

≤
(

d

u
a+

)|w∗
k |

+ · · · + d

u
a+ ≤ (1 − a+)−1,

fw∗
k
(1 + z) has a.s. a power series expansion with a radius of convergence greater

than 1 − a+ > 0. Then, for any |z| < 1 − a+ we can write

fw∗
k
(1 + z)κk = 1 + ∑

p≥1

D(k)
p zp with D(k)

p = 1

p!
dpf

κk

w∗
k

dzp
(1).

Deduce from (26)

0 ≤ 1

p!
dpf

κk

w∗
k

dzp
(1) ≤ Kp,aκ

p
k aw∗

k

(
d

u

)|w∗
k |

(32)

≤ Kp,aκ
p
k an−k+ .(33)

Then observe that
n∏

k=0

fw∗
k
(1 + z)κk = 1 + ∑

p≥1

Dpzp, |z| < 1 − a+,

where

Dp = ∑
P⊂{0,...,n}

∑
∑

k∈P qk=p

qk≥1

∏
k∈P

D(k)
qk

.

Set D0 = 1 and deduce from (30)

E
[(

Zv∗
n
(F0)

)
p|(κk,µu∗

k

)
0≤k≤n

] = p!(Dp + Dp−1).(34)

Use (33) and the independence of the κi’s to get

E[Dp] ≤ ∑
P⊂{0,...,n}

∑
∑

k∈P qk=p

qk≥1

∏
k∈P

Kqk,aE[κqk

k ]an−k+ .

If P ⊂ {0, . . . , n} and
∑

k∈P qk = p with qk ≥ 1, k ∈ P , then #P ≤ p and qk ≤ p

for any k ∈ P . Thus, ∏
k∈P

E[κqk

k ] ≤ (l + 1)p(1 ∨ E[κp
1 ])p

since κ1, . . . , κn are identically distributed and κ0 = l. Deduce from (31)

1 ∨ E[κp
1 ] ≤ Ka,p max

(
1, g′(1), . . . , g(p)(1)

)
.

Thus,

E[Dp] ≤ Ka,p(l + 1)p max
0≤j≤p

g(j)(1)p(35)
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since ∑
P⊂{0,...,n}

∑
∑

k∈P qk=p

qk≥1

∏
k∈P

an−k+ ≤ Kp(1 − a+)−p.

Then by (34) and an easy argument

E
[
Zv∗

n
(F0)

p] ≤ Ka,p(l + 1)p max
0≤j≤p

g(j)(1)p.(36)

To achieve the proof of (ii), we set Lv∗
n
= {u ∈ ϕ0 \ {u∗

n} : TrF0(u) = v∗
n}. Recall

that any u ∈ Lv∗
n

has offspring distribution µ and that u∗
n has offspring distribu-

tion ν. Since Zv∗
n
= 1 + #Lv∗

n
, we get for any i ∈ N

∗,

E
[
x

Zv∗
ni |Lv∗

n
,µu∗

n+1

] = x
1{µ

u∗
n+1

=i}
fi(x)

Zv∗
n
−1

gi(x).

Thus,

E
[
x

Zv∗
ni |Zv∗

n
= k + 1

] = (1 − ai + aix)fi(x)kgi(x).

By differentiating p times at x = 1 we get

E
[(

Zv∗
ni

)
p|Zv∗

n
= k + 1

] = dpf k
i gi

dxp
(1) + pai

dp−1f k
i gi

dxp−1 (1).

Now observe that for any q ≥ 0, g
(q)
i (1) = a

q
i g(q)(1) and

dqf k
i

dxq
(1) = (aid/u)q(k + q − 1)q,

by a simple computation. Thus,

dpf k
i gi

dxp
(1) =

p∑
q=0

p!
q!(p − q)!a

p−q
i g(p−q)(1)(aid/u)q(k + q − 1)q

≤ Kpa
p
i (k + p)p max

1≤j≤p
g(j)(1).

Consequently,

E
[(

Zv∗
ni

)
p|Zv∗

n

] ≤ Kpa
p
i

(
Zv∗

n
− 1 + p

)
p max

1≤j≤p
g(j)(1).

Since p ≥ 1 and by (36) we get

E
[(

Zv∗
ni

)
p

] ≤ Kpai(l + 1)p max
1≤j≤p

g(j)(1)p

this easily implies the second inequality of Proposition 3.4(ii).
We now prove (iii): First observe that the decomposition∑

v∈U

Zv

([F0]u∗
n

)p = e1 + e2 + e3
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holds with

e1 = ∑
w∈Sp
|w|≤n

∑
v∈U

Zwv

([F0]u∗
n

)p
,

e2 = ∑
0≤k<n

Zv∗
k

([F0]u∗
n

)p
,

e3 = ∑
v∈U

Zv∗
nv

([F0]u∗
n

)p
.

Note for any v ∈ U and for any w ∈ Sp such that |w| ≤ n that Zwv([F0]u∗
n
) =

Zwv(F0). Then by Proposition 3.3(i) and Proposition 3.4(iii)

E[e1|S] ≤ Ka,p

∑
w∈Sp
|w|≤n

Zw(F0)
p

1 − d/u

(37)

≤ Ka,p(1 − d/u)−1
n∑

k=0

∑
i∈N∗

Zv∗
k i(F0)

p.

We then deduce from the second inequality of Proposition 3.4(ii)

E[e1] ≤ Ka,p(l + 1)p max
0≤j≤p

g(j)(1)p
n + 1

1 − d/u
.(38)

Observe next that Zv∗
k
([F0]u∗

n
) = Zv∗

k
(F0). Then by the first inequality of (ii), we

get

E[e2] ≤ Ka,pn(l + 1)p max
0≤j≤p

g(j)(1)p.(39)

To bound E[e3], note that conditional on Zv∗
n
([F0]u∗

n
) = l, the process

(Zv∗
nv([F0]u∗

n
);v ∈ U) is distributed as (Zv(F );v ∈ U) where F = (ϕ; (µu,u ∈

ϕ)), where ϕ is a sequence of l independent GW(µ)-trees and where conditional
on ϕ the marks (µu,u ∈ ϕ) are i.i.d. random variables distributed in accordance
with a. Thus, by Proposition 3.3:

E
[
e3|Zv∗

n

([F0]u∗
n

)] ≤ Ka,p

Zv∗
n
([F0]u∗

n
)p

1 − d/u
.

Now observe that Zv∗
n
(F0) = Zv∗

n
([F0]u∗

n
) and use (36) to get

E[e3] ≤ Ka,p max
0≤j≤p

g(j)(1)p
(l + 1)p

1 − d/u
.(40)

Then, (iv) follows by adding (38), (39) and (40). �
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3.2. Proof of Theorem 2.1. Let us first explain why Theorem 2.1 reduces
to a convergence for finite trees: we restore ε in the random variables T ε =
(τ ε; (µu,u ∈ τ ε)) and T̃ε = Sh(T ε) = (τ̃ε; (µ̃u, u ∈ τ̃ε)). For any positive real
number x we set xε = �x/ε	 and we define ζ̃x,ε = sup{n ≥ 0 : |Wε

n | ≤ xε}. As
explained in the Introduction, we associate a unique finite ordered rooted tree τx

ε

with the subtree {Wε
n ;0 ≤ n ≤ ζ̃x,ε} ⊂ U. Observe that in general τx

ε �= [τε]u∗
xε

(τε);
however, τx

ε and τε coincide up to level xε:

[τx
ε ]xε = [τε]xε .(41)

The following proposition asserts that the convergence of τε is equivalent to the
convergence of the τx

ε ’s for all x > 0. For convenience of notation, we set ζx,ε =
2ε2#τx

ε and

Hs(x, ε) = ε1[0,ζx,ε)(s)H�s/2ε2	(τ x
ε ) and Cs(x, ε) = ε1[0,ζx,ε−2ε2](s)Cs/ε2(τ

x
ε ).

We also define the limiting process by

D(x)
s = 1[0,σx ](s)Ds + 1[σx,∞)(s)D

•
(ζx−s)+,

where ζx = σx + σ •
x with σx (resp. σ •

x ) = sup{s ≥ 0 : Ds (resp.D•
s ) ≤ x}.

PROPOSITION 3.5. Theorem 2.1 is implied by either of the following equiva-
lent convergences:

(i) ∀x > 0 C(x, ε)
(d)−→

ε→0
(2D

(x)
γ s ; s ≥ 0),

(ii) ∀x > 0 H(x, ε)
(d)−→

ε→0
(2D

(x)
γ s ; s ≥ 0).

PROOF. The proof of (ii) �⇒ (i) can be copied from the proof of Theo-
rem 2.4.1 of [5]. It relies on formula (5) that makes the contour process of a fi-
nite ordered rooted tree an explicit functional of the corresponding height process.
Since (5) also holds for contour processes of sin-trees, similar arguments work
to show that Theorem 2.1(ii) implies Theorem 2.1(i). Let us prove that Proposi-
tion 3.5(i) implies Proposition 3.5(ii): Recall from (5) that

Hn(τ
x
ε ) = C2n−Hn(τx

ε )(τ
x
ε ).

So, if we denote by S(ε) the maximal height of τx
ε we get

sup
n<#τx

ε

|Hn(τ
x
ε ) − C2n(τ

x
ε )| ≤ max

|n−n′|≤S(ε)
|Cn(τ

x
ε ) − Cn′(τ x

ε )|,

which implies after scaling

sup
s≤ζx,ε

|Hs(x, ε) − Cs(x, ε)| ≤ max
|s−s′|≤ε2S(ε)

|Cs(x, ε) − Cs′(x, ε)|.

Proposition 3.5(i) implies that εS(ε) converges in distribution to the supremum of
D(x) that is a.s. finite. Thus, the right member of the latter inequality converges
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to zero in probability and Proposition 3.5(ii) follows. A similar argument shows
that Theorem 2.1(i) implies Theorem 2.1(ii). Now, the proof will be achieved if
we show that Proposition 3.5(ii) implies Theorem 2.1(ii): Assume that Proposi-
tion 3.5(ii) is true and deduce from (41) that(

εH�s∧ex,ε/2ε2	(τε), εH
•
�s∧e•

x,ε/2ε2	(τε)
)
s≥0

(d)−→
ε→0

(
2Dγ(s∧ex),2D•

γ (s∧e•
x)

)
s≥0,(42)

where ex,ε = inf{n ≥ 0 :Hn(τ
x
ε ) ≥ xε} and ex = inf{s ≥ 0 :Ds ≥ x} with similar

definitions for e•
x,ε and e•

x . Observe that Proposition 3.5(ii) implies for any x > 0
that (ex,ε, e•

x,ε) converges in distribution to (ex, e•
x). Since ex and e•

x a.s. go to
infinity with x, we then get for any M > 0,

lim
x→∞ lim sup

ε→0
P(ex,ε ≤ M; e•

x,ε ≤ M) = 0,

which implies Theorem 2.1(ii) by (42) and by standard arguments. �

We define τx
ε = [τ ε]u∗

xε
(τ ε) and τ̃ x

ε = [τ̃ε]u∗
xε

(τ̃ε) and we also set

T
x

ε = [T ε]u∗
xε

(τ ε) = (
τx

ε ; (µu,u ∈ τx
ε )

)
,

T̃ x
ε = [T̃ε]u∗

xε
(τ̃ε) = (

τ̃ x
ε ; (µ̃u, u ∈ τ̃ x

ε )
)
.

By definition, #τ̃ x
ε = #τx

ε = ζ̃x,ε . Deduce from (18) and (19)

TrT̃ε
(τ̃ x

ε ) = {Wε
n ;0 ≤ n ≤ ζ̃x,ε}, τ̃ x

ε

(law)= Sh(τ x
ε )(43)

and

∀u, v ∈ τ̃ x
ε u ≤ v �⇒ TrT̃ε

(u) ≤ TrT̃ε
(v).(44)

By Proposition 3.5, Theorem 2.1 reduces to prove that for any x > 0:

H(x, ε)
(d)−→

ε→0

(
2D(x)

γ s ; s ≥ 0
)
.(45)

The first step of the proof of (45) is a limit theorem for τ̃ x
ε : let us set for any

s ∈ [0,∞)

H̃s(x, ε) = ε1[0,2ε2#τ̃ x
ε )(s)H�s/2ε2	(τ̃ x

ε ),

C̃s(x, ε) = ε1[0,2ε2(#τ̃ x
ε −1)](s)Cs/ε2(τ̃

x
ε ).

LEMMA 3.6.

(i) ∀x > 0 C̃(x, ε)
(d)−→

ε→0
(2D

(x)
s ; s ≥ 0),

(ii) ∀x > 0 H̃ (x, ε)
(d)−→

ε→0
(2D

(x)
s ; s ≥ 0).
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PROOF. Deduce from (9)

Hn(τ̃ε) = n − pε(n) + Hpε(n)(f (τ̃ε)), n ≥ 0.(46)

Recall that f (τ̃ε) stands for the forest composed by the bushes rooted at the left
hand of the infinite line of descent of τ̃ε and that pε(n) is given by pε(n) = inf{p ≥
0 : nε(p) ≥ n} where

nε(p) = p + inf
{
k ≥ 0 :Lk(τ̃ε) > − inf

j≤p
Wj(f (τ̃ε))

}
with Ln(τ̃ε) = (l1(τ̃ε) − 1) + · · · + (ln(τ̃ε) − 1), n ≥ 1, and L0(τ̃ε) = 0. By Re-
mark 3.1, τ̃ε is a GWI(µ, r ′)-tree with r ′(k, l) = udk−1/k, 1 ≤ l ≤ k. Thus by
Remark 2.4:

(a) the two forests (f (τ̃ε), f (τ̃ •
ε )) are independent of (L(τ̃ε),L(τ̃ •

ε ));
(b) f (τ̃ε) and f (τ̃ •

ε ) are two mutually independent sequences of i.i.d.
GW(µ)-trees;

(c) (L(τ̃ε),L(τ̃ •
ε )) is an N × N-valued random walk whose jump distribution is

given by

P
(
Ln+1(τ̃ε) − Ln(τ̃ε) = l;Ln+1(τ̃

•
ε ) − Ln(τ̃

•
ε ) = l′

) = 1

l + l′ + 1
udl+l′ .

Check first that E[Ln(τ̃ε)] = E[Ln(τ̃
•
ε )] = nd/2u, which implies(

εLs/ε(τ̃ε), εLs/ε(τ̃
•
ε )

)
s≥0

(d)−→
ε→0

(
s/2, s/2

)
s≥0.(47)

Next, we need to prove the joint convergence of (εH�s/2ε2	(τ̃ε), εV�s/2ε2	(f (τ̃ε))):
We know from Remark 2.2 that (Vp(f (τ̃ε));p ≥ 0) is a random walk with jump
distribution given by ρ(k) = udk+1, k ≥ −1. An elementary computation implies
for any λ ∈ R that

E
[
exp

(
iλεV�s/2ε2	(f (τ̃ε))

)] = exp
(
−sλ2

2
− 2iλs

)
+ o(1)

and by standard arguments(
εV�s/2ε2	(f (τ̃ε))

)
s≥0

(d)−→
ε→0

B(−2)(48)

(see, e.g., Theorem 2.7 of [19]). We then use Theorem 2.3.1 of [5] that asserts that
under (48) the joint convergence(

εH�s/2ε2	(f (τ̃ε)), εV�s/2ε2	(f (τ̃ε))
)
s≥0

(d)−→
ε→0

(
2
(
B(−2) − I (−2)),B(−2))(49)

holds provided that for any δ > 0,

lim inf
ε→0

(
f�δ/ε	(0)

)�1/ε	
> 0(50)



2240 T. DUQUESNE

(recall that fn is recursively defined by fn = fn−1 ◦ f ). Check that

fn(x) = u

d

1 − (u/d)n − x(1 − (u/d)n−1)

1 − (u/d)n+1 − x(1 − (u/d)n)
.

Then,

lim
ε→0

(
f�δ/ε	(0)

)�1/ε	 = exp
(
− 4

e4δ − 1

)
> 0

and (49) follows from (50). Recall notation α from Section 2.2 and observe that

εα(�s/2ε2	) = inf
{
s′ ≥ 0 : εL�s′/ε	(τ̃ε) > − inf

r≤�s/2ε2	
εV�r/2ε2	(f (τ̃ε))

}
.

Deduce from (7) that

2ε2nε(�s/2ε2	) = 2ε2�s/2ε2	 + 2ε2α(�s/2ε2	).
Then by (47) and (49)(

εα(�s/2ε2	))s≥0
(d)−→

ε→0
−2I (−2) and

(
2ε2nε(�s/2ε	); s ≥ 0

) (d)→(s; s ≥ 0).

Thus, (2ε2pε(�s/2ε	); s ≥ 0)
(d)→(s; s ≥ 0) and (10) combined with the conver-

gence of pε and (46) imply(
εH�s/2ε2	(τ̃ε)

)
s≥0

(d)−→
ε→0

(
2B(−2)

s − 4I (−2)
s

)
s≥0 = 2D.

The joint convergence (47) combined with the independence of f (τ̃ε) and f (τ̃ •
ε )

also implies (
εH�·/2ε2	(τ̃ε), εH�·/2ε2	(τ̃ •

ε )
)
s≥0

(d)−→
ε→0

(2D,2D•).

Use (5) and arguments similar to those used in the proof of Theorem 2.4.1 of [5]
to get (

εCs/ε2(τ̃ε), εC
•
s/ε2(τ̃ε)

)
s≥0

(d)−→
ε→0

(2D,2D•).(51)

Set σ̃x,ε = sup{s ≥ 0 :Cs(τ̃ε) ≤ xε} and define σ̃ •
x,ε in a similar way. Recall no-

tation σx , σ •
x and D(x) introduced before Proposition 3.5 and deduce from (51)

that

(σ̃x,ε, σ̃
•
x,ε)

(d)−→
ε→0

(σx, σ
•
x ).

It easily implies Lemma 3.6(i) by (12). Then, argue exactly as in the proof of
Proposition 3.5 to deduce Lemma 3.6(ii) from Lemma 3.6(i). �

We now have to prove Proposition 3.5(ii). In one part of the proof we adapt Al-
dous’ approach (Theorem 20 of [3]) and we get estimates for the tree τx

ε reduced
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at certain random times. The main technical difficulty is Lemma 3.7 that asserts
that these random times are asymptotically uniformly distributed. Let us first de-
fine these random times: Let (Ui; i ≥ 1) be a sequence of i.i.d. random variables
independent of Wε and uniformly distributed on (0,1). Let u0 = ∅ < u1 < · · · <

u#τ̃ x
ε −1 be the vertices of τ̃ x

ε listed in the lexicographical order. We set

Ui(x, ε) = u�Ui#τ̃ x
ε 	 and Vi(x, ε) = TrT̃ x

ε
(Ui(x, ε)) ∈ U.

Then Vi(x, ε) ∈ {Wε
n ;0 ≤ n ≤ ζ̃x,ε} and the row of the corresponding vertex in τx

ε

is given by

V i(x, ε) = ∑
v∈U

v≤Vi(x,ε)

1{Zv(T̃ x
ε )>0}.

The key argument is the following lemma that is proved in the next section.

LEMMA 3.7. For any i ≥ 1, the following convergence holds in probability:

ε2
(
V i(x, ε) − 1

γ
Ui#τ̃ x

ε

)
−→
ε→0

0.

From now until the end of the section we assume that Lemma 3.7 is true and we
prove Proposition 3.5(ii): Fix x > 0 and set for any δ > 0:

ω
(
H(x, ε), δ

) = sup{|Hs(x, ε) − Hs′(x, ε)|; |s − s′| ≤ δ}.
We first prove tightness for H(x, ε), ε > 0: By a standard criterion (see, e.g.,
Corollary 3.7.4 of [7]) we only need to prove

lim
M→∞ lim inf

ε→0
P

(
sup
s≥0

Hs(x, ε) ≤ M

)
= 1(T1)

and for any η > 0,

lim
δ→0

lim sup
ε→0

P
(
ω

(
H(x, ε), δ

)
> η

) = 0.(T2)

PROOF OF (T1). Note that the mapping Tr preserves height. So, we get

sup
s≥0

Hs(x, ε) = ε sup
{
TrT̃ x

ε
(u) :u ∈ τ̃ x

ε

} = sup
0≤s<2ε2#τ̃ x

ε

εH�s/2ε2	(τ̃ x
ε )

which is a tight family of random variables by Lemma 3.6. �

PROOF OF (T2). Let k be a positive integer and let p be a permutation of
{1, . . . , k} such that Vp(1)(x, ε) ≤ · · · ≤ Vp(k)(x, ε) in U. It implies

V p(0)(x, ε) ≤ V p(1)(x, ε) ≤ · · · ≤ V p(k)(x, ε) ≤ V p(k+1)(x, ε)
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where we set 0 = V p(0)(x, ε) and #τx
ε = V p(k+1)(x, ε). We first need to get an

upper bound for the quantities qi defined for any 0 ≤ i ≤ k by

qi = sup
{∣∣Hn(τ

x
ε ) − HV p(i)(x,ε)(τ

x
ε )

∣∣;V p(i)(x, ε) ≤ n ≤ V p(i+1)(x, ε)
}
.

Observe that qi can be rewritten

qi = sup
{∣∣|v| − ∣∣Vp(i)(x, ε)

∣∣∣∣;v ∈ TrT̃ x
ε
(τ̃ x

ε )
(52)

and Vp(i)(x, ε) ≤ v ≤ Vp(i+1)(x, ε)
}
.

Set

w0(k, x, ε) = max
0≤i≤k

qi, w1(k, x, ε) = max
0≤i≤k

∣∣∣∣Vp(i+1)(x, ε)
∣∣ − ∣∣Vp(i)(x, ε)

∣∣∣∣
and

�(k, x, ε) = max
v∈TrT̃ x

ε
(τ̃ x

ε )
d
(
v, {∅,V1(x, ε), . . . , Vk(x, ε)}).

Equation (52) easily implies

w0(k, x, ε) ≤ w1(k, x, ε) + �(k, x, ε).(53)

Since Tr preserves height, we get for any i ≥ 1,

|Vi(x, ε)| = |Ui(x, ε)| = H�Ui#τ̃ x
ε 	(τ̃ x

ε ).

Then by Lemma 3.6 we get the following convergence in distribution:

εw1(k, x, ε) −→
ε→0

max
0≤i≤k

∣∣D(x)
U(i+1)ζx

− D
(x)
U(i)ζx

∣∣,
where 0 = U(0) ≤ U(1) ≤ · · · ≤ U(k) ≤ U(k+1) = 1 denotes the increasing re-
ordering of {0,1,U1, . . . ,Uk}. Thus,

∀η > 0 lim
k→∞ lim sup

ε→0
P

(
εw1(k, x, ε) > η

) = 0.(54)

We next want to prove

∀η > 0 lim
k→∞ lim sup

ε→0
P

(
ε�(k, x, ε) > η

) = 0.(55)

To that end, observe that for any u,u′ ∈ τ̃ x
ε , d(TrT̃ x

ε
(u),TrT̃ x

ε
(u′)) ≤ d(u,u′).

Then if we set

�′(k, x, ε) = max
u∈τ̃ x

ε

d
(
u; {∅,U1(x, ε), . . . ,Uk(x, ε)}),

we get

�(k, x, ε) ≤ �′(k, x, ε)(56)

and we control �′(k, x, ε) thanks to Lemma 3.6 (the following argument is directly
inspired from the proof of Theorem 20 of [3]): With any l ∈ {0, . . . ,#τ̃ x

ε − 1} we
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associate the index i(l) ∈ {0, . . . , k + 1} such that Ui(l) is the smallest element
y ∈ {0,1,U1, . . . ,Uk} such that l ≤ �y#τ̃ x

ε 	. Check that

�′(k, x, ε) ≤ max
0≤l<#τ̃ x

ε

(
Hl(τ̃

x
ε ) + H�Ui(l)#τ̃ x

ε 	(τ̃ x
ε ) − 2 inf

l≤j≤�Ui(l)#τ̃ x
ε 	Hj(τ̃

x
ε )

)
.

Lemma 3.6 implies that the right member of the previous inequality converges in
distribution to

sup
0≤s≤ζx

(
D(x)

s + D
(x)
Ui(s)ζx

− 2 inf
s≤r≤Ui(s)ζx

D(x)
r

)
,(57)

where we denote by Ui(s)ζx the smallest element y ∈ {ζx,U1ζx, . . . ,Ukζx} such
that s ≤ y (recall that ζx stands for the lifetime of the process D(x) as defined
before Proposition 3.5). We easily check that (57) converges to 0 in probability
when k goes to infinity since

sup
0≤s≤ζx

(
ζxUi(s) − s

) ≤ max
0≤i≤k

U(i+1) − U(i) −→
k→∞ 0

in probability. Thus, it implies (55) by (56). Finally, as a consequence of (53), (54)
and (55) we get

∀η > 0 lim
k→∞ lim sup

ε→0
P

(
εw0(k, x, ε) > η

) = 0.(58)

Then, check that on the event

E(k, x, ε, δ) =
{

min
0≤i≤k

ε2(
V p(i+1)(x, ε) − V p(i)(x, ε)

)
> δ

}
the following inequality holds a.s.:

ω
(
H(x, ε), δ

) ≤ 3w0(k, x, ε).(59)

Use Lemma 3.7 to get

min
0≤i≤k

ε2(
V p(i)(x, ε) − V p(i+1)(x, ε)

) −→
ε→0

ζx

2γ
min

0≤i≤k

(
U(i+1) − U(i)

)
in distribution. Thus,

∀ k ≥ 1 lim
δ→0

lim inf
ε→0

P(E(k, x, ε, δ)) = 1.

Easy arguments combined with (58) and (59) achieve the proof of (T2) and at the
same time the tightness for H(x, ε), ε > 0. �

It remains to prove that (2D
(x)
γ s ; s ≥ 0) is the only possible weak limit for the

processes H(x, ε), ε > 0. Tightness for the H(x, ε)’s, ε > 0, and Lemma 3.6 im-
ply that the joint distributions of (H(x, ε),2ε2#τ̃ x

ε ), ε > 0, are tight. Assume that
along a subsequence εp → 0 the joint convergence(

H(x, εp),2ε2
p#τ̃ x

εp

) (d)−→
p→∞(H ′, ζ ′)
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holds for some continuous process H ′ and some positive random variable ζ ′.
Lemma 3.7 implies(

H(x, εp);2ε2
p#τ̃ x

εp
;2ε2

pV 1(x, εp), . . . ,2ε2
pV k(x, εp)

)
(d)−→

ε→0
(H ′; ζ ′;U1ζ

′/γ, . . . ,Ukζ
′/γ ),

where the Ui’s are chosen independent of (H ′, ζ ′). Since Tr preserves height, we
get for any i ≥ 1

HV i(x,εp)(τ
x
ε ) = |Vi(x, εp)| = |Ui(x, εp)| = H�Ui#τ̃ x

εp
	(τ̃ x

εp
).

Then Lemmas 3.6 and 3.7 imply for any k ≥ 1(
H2ε2

pV 1(x,εp)(x, εp), . . . ,H2ε2
pV k(x,εp)(x, εp);

2ε2
p#τ̃ x

εp
;2ε2

pV 1(x, εp), . . . ,2ε2
pV k(x, εp)

)
−→
ε→0

(
2D

(x)
U1ζx

, . . . ,2D
(x)
Ukζx

; ζx;U1ζx/γ, . . . ,Ukζx/γ
)

in distribution. Consequently,(
H ′

U1ζ
′/γ , . . . ,H ′

Ukζ
′/γ ; ζ ′;U1ζ

′/γ, . . . ,Ukζ
′/γ

)
(law)= (

2D
(x)
U1ζx

, . . . ,2D
(x)
Ukζx

; ζx;U1ζx/γ, . . . ,Ukζx/γ
)
.

It implies (H ′
s; s ≥ 0)

(law)= (2D
(x)
γ s ; s ≥ 0), which achieves the proof of (45).

3.3. Proof of Lemma 3.7. We introduce the notation

Ui(x, ε) = ∑
v∈U

v≤Vi(x,ε)

Zv(T̃
x

ε )

and we first prove the following convergence in probability:

ε2(
Ui(x, ε) − Ui#τ̃ x

ε

)−→
ε→0

0.(60)

PROOF. Deduce from (44):{
u ∈ τ̃ x

ε : TrT̃ x
ε
(u) < Vi(x, ε)

} ⊂ {u ∈ τ̃ x
ε :u ≤ Ui(x, ε)}

⊂ {
u ∈ τ̃ x

ε : TrT̃ x
ε
(u) ≤ Vi(x, ε)

}
which implies

0 ≤ Ui(x, ε) − �Ui#τ̃ x
ε 	 ≤ ZVi(x,ε)(T̃

x
ε ).(61)
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Then observe that for any v ∈ U,

P
(
Vi(x, ε) = v|T̃ x

ε

) = Zv(T̃
x

ε )

#τ̃ x
ε

.

Thus, (61) and the Cauchy–Schwarz inequality imply

E[|Ui(x, ε) − Ui#τ̃ x
ε |] ≤ 1 + E

[
1

#τ̃ x
ε

∑
v∈U

Zv(T̃
x

ε )2

]

≤ 1 + E

[
1

(#τ̃ x
ε )2

∑
v∈U

Zv(T̃
x

ε )2

]1/2

E

[∑
v∈U

Zv(T̃
x

ε )2

]1/2

.

Since #τ̃ x
ε = ∑

v∈U Zv(T̃
x

ε ), we get
∑

v∈U Zv(T̃
x

ε )2 ≤ (#τ̃ x
ε )2 and

E[|Ui(x, ε) − Ui#τ̃ x
ε |] ≤ 1 + E

[∑
v∈U

Zv(T̃
x

ε )2

]1/2

.(62)

Remark 3.1 and (43) imply that τ̃ε is a GWI-tree with immigration distribution
ν = µ, so that

g(x) = f (x) = u

1 − dx
and g(j)(1) = j !

(
d

u

)j

, j ≥ 1.

Then, by Proposition 3.4(iii),

E

[∑
v∈U

Zv(T̃
x

ε )2

]
≤ Kaxε

1 − d/u
= Kax

ε2

(
1 + o(1)

)
.

Thus,

E[ε2|Ui(x, ε) − Ui#τ̃ x
ε |] ≤ Ka,xε

(
1 + o(1)

)
and (60) follows. �

Then, Lemma 3.7 is a consequence of the convergence in probability:

ε2
(
V i(x, ε) − 1

γ
Ui(x, ε)

)
−→
ε→0

0.(63)

PROOF OF (63). We need several preliminary estimates (Lemmas 3.8 and 3.9)
whose proofs rely on Propositions 3.3 and 3.4. We first consider a random marked
GW-forest with l elements Fε = (ϕε; (µu,u ∈ ϕε)) as defined in Proposition 3.3:
Recall that ϕε = (τ1, . . . , τl) is a forest of l i.i.d. GW(µ)-trees and that the marks
(µu,u ∈ ϕ) are i.i.d. conditional on ϕε , their conditional distribution being given
by a. Set T1,ε = (τ1; (µu,u ∈ τ1)) and define

1/γε = E[∑v∈U 1{Zv(T1,ε)>0}]
E[∑v∈U Zv(T1,ε)] .
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We also set

β(Fε) = ∑
v∈U

Zv(Fε) − γε1{Zv(Fε)>0}. �

LEMMA 3.8. (i) limε→0 γε = γ ,
(ii) for any l ≥ 1, 0 ≤ E[β(Fε)] ≤ Kal(l − 1),

(iii) E[β(Fε)
2] ≤ Ka

l4

1−d/u
and thus E[|β(Fε)|] ≤ Kal

2(1 − d/u)−1/2.

PROOF. Let us prove (i): First observe that

1/γε =
∑

v∈U 1 − fv(0)∑
v∈U f ′

v(1)
.

Then, Proposition 3.3 implies that for any v = m1 . . .mn ∈ U∑
v∈U

f ′
v(1) = ∑

v∈U

av(d/u)|v| = 1

1 − d/u

and also

1 − fv(0) = av

(
d

u

)|v|[(
d

u

)n

amn · · ·am1 +
(

d

u

)n−1

amn · · ·am2 + · · · + 1
]−1

.

Thus, we get

1/γε = E
[(

1 + X1
d

u
+ · · · + X1X2 · · ·XG

(
d

u

)G)−1]
,

where we recall that the sequence of random variables (Xn;n ≥ 0) is distributed
as specified after formula (1), and where G stands for an independent random
variable whose distribution is given by P(G = n) = (1−d/u)(d/u)n, n ≥ 0. Since
limε→0 d/u = 1, an elementary argument implies

lim
ε→0

1/γε = E[(1 + X1 + X1X2 + X1X2X3 + · · ·)−1] = 1/γ.

Let us prove (ii): Deduce from Proposition 3.3 that

E[β(Fε)] = ∑
v∈U

lf ′
v(1) − γε

(
1 − fv(0)l

)
.(64)

The definition of γε implies

l
∑
v∈U

f ′
v(1) − γε

(
1 − fv(0)

) = ∑
v∈U

lf ′
v(1) − lγε

(
1 − fv(0)

) = 0.

We then subtract this expression from (64) and we get

E[β(Fε)] = γε

∑
v∈U

fv(0)l − 1 + l
(
1 − fv(0)

)
.



LIMIT OF RANDOM WALKS ON TREES 2247

Then, use the elementary inequality (1 − x)l − 1 + lx ≤ l(l − 1)x2/2, x ∈ [0,1],
to get

E[β(Fε)] ≤ γεl(l − 1)

2

∑
v∈U

(
1 − fv(0)

)2
.(65)

Deduce from the explicit computation of 1 − fv(0) recalled above that

(
1 − fv(0)

)2 ≤
(

d

u

)2|v|
a2
v ≤ a

|v|
+ av.

Thus, ∑
v∈U

(
1 − fv(0)

)2 ≤ ∑
n≥0

an+
∑

m1,...,mn∈N∗
am1 · · ·amn ≤ (1 − a+)−1

and (ii) follows from (i).
It remains to prove (iii): For convenience of notation, we simply write β and Zv

instead of β(Fε) and Zv(Fε). Check that

E[β2] = E[E1] + E[E2],(66)

where

E1 = ∑
v,v′∈U

v∧v′ /∈{v,v′}

(
Zv − γε1{Zv>0}

)(
Zv′ − γε1{Zv′>0}

)

and

E2 = ∑
v,v′∈U

v∧v′∈{v,v′}

(
Zv − γε1{Zv>0}

)(
Zv′ − γε1{Zv′>0}

)

(note that in the two sums all but a finite number of terms vanish). Define for any
w ∈ U

βw = ∑
v∈U

Zwv − γε1{Zwv>0}.

E1 can be rewritten as follows:

E1 = ∑
w∈U

∑
i �=j∈N∗

βwiβwj .

Deduce from Proposition 3.3 that conditional on (Zwi,Zwj ) (with i �= j ) the ran-
dom variables βwi

and βwj
are independent and distributed as β with, respectively,

l = Zwi and l = Zwi . Use (ii) to get

E
[
βwi

βwj
|(Zwi,Zwj )

] = E
[
βwi

|Zwi

]
E

[
βwj

|Zwj

]
≤ KaZwi(Zwi − 1)Zwj (Zwj − 1).
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By Proposition 3.3 again, we get

E[xZwi yZwj |Zw] = f (1 − ai − aj + aix + ajy)Zw.

Recall that

dkf n

dxk
(x) =

(
d

u

)k (n + k − 1)!
(n − 1)! f (x)n+k.(67)

Then,

E[Zwi(Zwi − 1)Zwj (Zwj − 1)|Zw] = a2
i a

2
j

(
d

u

)4

(Zw + 3)4 ≤ 12Z4
w.

Thus, by Proposition 3.3,

E[E1] ≤ KaE

[ ∑
w∈U

Z4
w

]
≤ Ka

l4

1 − d/u
.(68)

We get a similar upper bound for E[E2] by first noting that

E2 ≤ 2
∑
w∈U

(
Zw − γε1{Zw>0}

)
βw.

Apply Proposition 3.3(i) and Lemma 3.8(ii) to get

E
[(

Zw − γε1{Zw>0}
)
βw|Zw

] ≤ KaZ
3
w.

By Proposition 3.3(iii) again

E[E2] ≤ KaE

[ ∑
w∈U

Z3
w

]
≤ Ka

l3

1 − d/u
.(69)

Then (iii) follows from (66), (68) and (69). �

We need similar estimates for a marked GWI(µ, r)-forest F0,ε whose distri-
bution is the same as in Proposition 3.4: Recall that r is some fixed repartition
probability measure on {(k, l) ∈ N

∗ × N
∗ : l ≤ k}. We denote by ν the corre-

sponding immigration probability measure given by ν(k − 1) = ∑
1≤l≤k r(k, l),

k ≥ 1, and we set g(r) = ∑
k≥0 ν(k)rk . We define F0,ε as (ϕ0,ε; (µu,u ∈ ϕ0,ε))

where ϕ0,ε = (τ0, τ1, . . . , τl), the τi’s are mutually independent, τ1, . . . , τl are i.i.d.
GW(µ)-trees, τ0 is a GWI(µ, r)-tree and conditional on ϕ0,ε the marks µu are i.i.d.
random variables distributed in accordance with a. Recall notation

u∗
n = u∗

n(ϕ0,ε), v∗
n = TrF0,ε

(u∗
n), Sp = {

v∗
ni, i ∈ N

∗ \ {
µu∗

n

}
, n ≥ 0

}
,

and recall that S is the σ -field generated by the random variables (µu∗
n
;n ≥ 0) and

(Zw(F0,ε),w ∈ Sp). For any n ≥ 1 we also set

Sp(n) = {w ∈ Sp : |w| ≤ n} ∪ {v∗
n}.

We set

βw

([F0,ε]u∗
n

) = ∑
v∈U

Zwv

([F0,ε]u∗
n

) − γε1{Zwv([F0,ε]u∗
n
)>0}.
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LEMMA 3.9. For any n ≥ 1,

E

[
sup

A⊂Sp(n)

∣∣∣∣∣ ∑
w∈A

βw

([F0,ε]u∗
n

)∣∣∣∣∣
]

≤ Kan(l + 1)2(1 − d/u)−1/2 max
(
1, g′(1)2, g′′(1)2)

.

PROOF. To simplify notation we write βw and Zw instead of βw([F0,ε]u∗
n
)

and Zw([F0,ε]u∗
n
). We also denote by ES the S-conditional expectation. Let

A ⊂ Sp(n). From Proposition 3.4(i) we deduce that conditional on S the (βw;w ∈
Sp(n)) are independent random variables and that for each w ∈ Sp(n), conditional
on Zw = l, βw is distributed as the random variable β(Fε) defined at Lemma 3.8.
Apply Lemma 3.8 to get

ES

[∣∣∣∣∣ ∑
w∈A

βw

∣∣∣∣∣
]

≤ ∑
w∈A

ES[|βw|]

≤ Ka(1 − d/u)−1/2
∑

w∈Sp(n)

Z2
w.

Next, use Proposition 3.4(ii) to get

E

[ ∑
w∈Sp(n)

Z2
w

]
≤

n−1∑
k=0

∑
i∈N∗

E
[
Z2

v∗
k i

]
≤ Kan(l + 1)2 max

(
1, g′(1)2, g′′(1)2)

,

which achieves the proof of the lemma. �

We now come back to the proof of (63) and we apply the previous results to the
marked sin-tree T̃ε = (τ̃ε; (µ̃u, u ∈ τ̃ε)). For convenience of notation, we fix i and
we set

U = Ui(x, ε), V = Vi(x, ε), U = Ui(x, ε), V = V i(x, ε).

We keep the notation u∗
n = u∗

n(τ̃ε), v∗
n = TrT̃ε

(u∗
n), Sp, Sp(n) and S. Recall that

T̃ x
ε = [T̃ε]u∗

xε
and that for any v ∈ U that is not a descendant of v∗

xε

Zw(T̃ x
ε ) = Zw(T̃ε).(70)

For convenience of notation, we set for any w ∈ U

Zw = Zw(T̃ x
ε ) and βw = ∑

v∈U

Zwv − γε1{Zwv > 0}.

Since limε→0 γε = γ , we only have to show

ε2(U − γεV ) = ε2
∑
v≤V

Zv − γε1{Zv>0} −→
ε→0

0(71)
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in probability. To that end, we first introduce the random word

W = max{w ∈ Sp(xε) :w ≤ V },
where the maximum is taken with respect to the lexicographical order on U. There
are two cases:

(1) If V /∈ �∅, v∗
xε−1�, then we can find V ′ ∈ U such that V = WV ′ and we set

in that case A = {w ∈ Sp(xε) :w < W }.
(2) If V ∈ �∅, v∗

xε−1�, then we set A = {w ∈ Sp(xε) :w ≤ W }.
Then, check that U − γεV = e1(ε) + e2(ε) + e3(ε) with

e1(ε) = ∑
v∈�∅,v∗

xε−1�

v≤V

Zv − γε1{Zv>0},

e2(ε) = ∑
w∈A

βw,

e3(ε) = 1{V /∈�∅,v∗
xε−1�}

∑
v≤V ′

ZWv − γε1{ZWv>0}.

The limit (71) is then implied by the following convergences:

ε2E[|e1(ε)|] −→
ε→0

0,(72)

ε2E[|e2(ε)|] −→
ε→0

0,(73)

ε4E[e3(ε)
2] −→

ε→0
0.(74)

PROOF OF (72). Use Proposition 3.4(ii) with p = 1, l = 0, n = xε − 1 and
g(x) = f (x) = u/(1 − dx) to get

E[|e1(ε)|] ≤
xε−1∑
i=0

E
[
Zv∗

i

] + (xε − 1)γε

≤ Kad(xε − 1)/u + (xε − 1)γε ≤ Ka,xε
−1

which obviously implies (72). �

PROOF OF (73). We use Lemma 3.9 with n = xε , l = 0 and g(x) = f (x) =
u/(1 − dx) and thus g(j)(1) = j !(d/u)j , to get

E[|e2(ε)|] ≤ Kaxε(1 − d/u)−1/2 ≤ Ka,xε
−3/2

which implies (73). �
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PROOF OF (74). It requires more complicated arguments. Let w0 ∈ U and let
l be a positive integer. We define E(w0, l) as the event {W = w0;Zw0 = l}. We
first get an upper bound for

ξ(w0, l) = E[e3(ε)
2|E(w0, l)].

Let F = (ϕ; (µu,u ∈ ϕ)) be a marked GW-forest with l elements as defined
in Proposition 3.3. Pick uniformly at random a vertex U(F ) in ϕ and de-
fine V(F ) ∈ U by V(F ) = TrF (U(F )). As a consequence of Propositions
3.3(i) and 3.4(i), we get the following identity:(

Zw0v, v ∈ U;V ′) under P
(· | E(w0, l)

) (law)= (
Zv(F ), v ∈ U;V(F )

)
.(75)

Let G be the function on F defined by

G
([F ]U(F )

) = ∑
v≤V(F )

Zv(F ) − γε1{Zv(F )>0}.

Then, (75) implies

ξ(w0, l) = E
[
G

([F ]U(F )

)2] = E

[
1

#ϕ

∑
u∈ϕ

G([F ]u)2

]
(76)

≤ (1 + γε)E

[∑
u∈ϕ

|G([F ]u)|
]
,(77)

since for any u ∈ ϕ,

1

#ϕ
|G([F ]u)| ≤ 1 + γε

#ϕ

∑
v≤TrF (u)

Zv(F ) ≤ 1 + γε.

We now estimate the right member of (77) thanks to (4): Recall the notation ϕ�

for a size-biased forest with l elements, that is, a GWI(µ, r)-forest with l elements
where r is given by r(k, j) = udk/µ̄, 1 ≤ j ≤ k, with µ̄ = ∑

k≥0 kµ(k) = d/u.
Thus the corresponding immigration distribution is ν(k) = (k+1)u2dk , k ≥ 0, and
its generating function is g(r) = u2/(1 − dr)2. Let us define the random marked
GWI-forest F� as (ϕ�; (µ�

u ∈ ϕ�)) where conditional on ϕ� the µ
�
u’s are i.i.d. with

distribution a. Deduce from (4) that

E

[∑
u∈ϕ

|G([F ]u)|
]

= ∑
n≥0

l

(
d

u

)n

E
[∣∣G([F�]u∗

n(F�)

)∣∣].(78)

Set as usual v∗
n(F�) = TrF�(u

∗
n(F�)) and observe for any n ≥ 0

G
([F�]u∗

n(F�)

) = ∑
v<v∗

n(F�)

Zv(F�) − γε1{Zv(F�)>0}

= ∑
w∈A�

βw(F�) +
n−1∑
i=0

Zv∗
i
(F�) − γε
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where we have set

βw(F�) = ∑
v∈U

Zwv(F�) − γε1{Zwv(F�)>0}

and A� = {w ∈ Sp� :w < v∗
n(F�)} with

Sp� = {
v∗
k−1(F�)i; i ∈ N

∗ \ {
µu∗

k(F�)

}
, k ≥ 1

}
.

Then,

E
[∣∣G([F�]u∗

n(F�)

)∣∣] ≤ E

[∣∣∣∣∣ ∑
w∈A�

βw(F�)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
n−1∑
i=0

Zv∗
i
(F�) − γε

∣∣∣∣∣
]
.

Use Lemma 3.9 with g(x) = u2/(1 − dx)2 to get

E

[∣∣∣∣∣ ∑
w∈A�

βw(F�)

∣∣∣∣∣
]

≤ Kanl2(1 − d/u)−1/2

and use Proposition 3.4(ii) with p = 1 and g(x) = u2/(1 − dx)2 to get

E

[∣∣∣∣∣
n−1∑
i=0

Zv∗
i
(F�) − γε

∣∣∣∣∣
]

≤ Kanl.

These inequalities imply

ξ(w0, l) ≤ Kal
3(1 − d/u)−1/2

∑
n≥0

n

(
d

u

)n

≤ Ka
l3

(1 − d/u)5/2 .(79)

We now come back to the proof of (74): by (79), we get

E[e3(ε)
2] = ∑

w0∈U,

l≥1

ξ(w0, l)P(W = w0;ZW = l)

≤ Ka

(1 − d/u)5/2 E

[ ∑
w0∈Sp(xε)

Z3
w0

1{W=w0}
]
.

Then, set for any w0 ∈ Sp(xε), ζw0 = ∑
v∈U Zw0v and observe that P(W =

w0|S) = ζw0/#τ̃ x
ε . Thus the previous inequality implies

E[e3(ε)
2] ≤ Ka

(1 − d/u)5/2 E

[ ∑
w0∈Sp(xε)

Z3
w0

ζw0

#τ̃ x
ε

]

≤ Ka

(1 − d/u)5/2 E

[ ∑
w0∈Sp(xε)

Z6
w0

]1/2

E

[ ∑
w0∈Sp(xε)

ζ 2
w0

(#τ̃ x
ε )2

]1/2

.
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But
∑

w0∈Sp(xε)
ζ 2
w0

≤ (#τ̃ x
ε )2 since 1 + xε + ∑

w0∈Sp(xε)
ζw0 = #τ̃ x

ε . Then, use
Proposition 3.4(ii) with p = 6, l = 0 and g(x) = f (x) to get

E[e3(ε)
2] ≤ Ka

x
1/2
ε

(1 − d/u)5/2 ≤ Ka,xε
−3,

which implies (74). �
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