The Annals of Probability

2005, Vol. 33, No. 4, 1302-1325

DOI 10.1214/009117905000000125

© Institute of Mathematical Statistics, 2005

CONSTRAINED BROWNIAN MOTION: FLUCTUATIONS AWAY
FROM CIRCULAR AND PARABOLIC BARRIERS
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Motivated by the polynuclear growth model, we consider a Brownian
bridgeb(¢) with b(£T) = 0 conditioned to stay above the semicirejg(r) =
VT2 — 2. In the limit of large T, the fluctuation scale db(r) — c7 () is
T1/3 and its time-correlation scale 2/3. We prove that, in the sense of
weak convergence of path measures, the conditioned Brownian bridge, when
properly rescaled, converges to a stationary diffusion process with a drift
explicitly given in terms of Airy functions. The dependence on the reference
point: =T, T € (—1, 1), is only through the second derivative &f () at
t =1t T. We also prove a corresponding result where instead of the semicircle
the barrier is a parabola of heigit’, y > 1/2. The fluctuation scale is
thenT 2=7)/3_More general conditioning shapes are briefly discussed.

1. Introduction and main results. We consider the Brownian bridge(z)
over the time interva[-T,T], T > 0, b(—T) = b(T) = 0, conditioned to lie
above the semicircler (t) = +/T2 —t2. Let b, (t) be the conditioned Brownian
bridge and letX 7 (r) = b, (¢t) — c7(¢) be the deviation ob, () away fromer (1),
see Figure 1. Clearl¥X7(t) > 0, X7 (—T) = X7 (T) =0, and the path measure of
the process is defined ai([—T, T],R) = C([-T, T]), the space of continuous
functions over the intervdl-T7, T'] equipped with the supremum norm. The issue
is to understand the statistical properties<gf(z) for largeT .

A well-studied special case is whefn () is replaced by the function zero.
The Brownian bridge is then constrained to stay positive, a stochastic process
known as Brownian excursion. In the limit of largeit converges to the three-
dimensional Bessel process. Time-dependent barriers, like the circle, seem to be
hardly studied. An exception is the parabgla(r) = T2 — ¢? for which some
properties have been established [4, 5]; see below. In this paper we resolve the
fluctuation problem for:

() the circlecr(z),
(ii) the family of parabolagr., = T" (1 — (t/T)?).

We also discuss briefly general shape functions of the fgrin) = Tg(t/T).
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FiG. 1. Brownian bridgeb4 (¢) conditioned to lie above the semicirale (¢).

Our problem arose rather indirectly in an attempt to understand a one-layer
approximation to the multilayer polynuclear growth model; see [6]. There one
has N + 1 independent copies of the Brownian bridge, denoted herg; @3,
lt| <T, j=0,-1,...,—N, such thath;(£7T) = j, and conditions them on
nonintersection, with the subsequent lilit— co. Of interest is the top lingy(¢),
|t] < T. Because of conditioning, typicallyg(r) has a shape of a semicircle.
Therefore the crude approximation consists in replacing all lower-lying Brownian
motions, that is,b;(r) with j = —1,-2,..., by the semicirclecy. As we
will prove, this approximation preserves the scaling behavior, in the sense that
transverse fluctuations are of orde¥2 and longitudinal correlations decay over a
time span of ordeT?/3. However, finer details are not accounted for. For example,
in our problemX7(r), on the scalel'?/3, is exponentially mixing, whereas the
covariance of top linég(z) on the same scale has only power law decay [2, 10].

To state our main result we define ttationarydiffusion process(¢) through
the stochastic differential equation

(1.2) dA() =a(A®@))dt +db,
with b, the standard Brownian motion and drift
Al'(—w1 + x)
1.2 =
(1.2) a0 = e

where—w; is the first zero of the Airy function Ai [1]. The relevant asymptotic is
a(x) =x"1for x - 0" anda(x) = —/x for x — oo. Thus (1.1) admits a unique
stationary measure which is given by

d _Ai(—w1 +x)2

A(t) has continuous sample paths and the smbkhavior of the drift implies that
P(A(t) > 0forallr) =1.

]1[x>0]-
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THEOREM 1.1. Let b, (¢) be the Brownian bridgé(¢) conditioned on the
set{b(t) = cr(t) forall t e [-T,T1} and letX7(¢t) = b4 (¢t) —cr(t), |t| <T.The
rescaled process close to the reference poifitis defined through

(1.4) > Ar(t) = v X7 (T + h 1),
with vy = 2/3(1 — ¢2)~127%3 h = v2. Then
(1.5) lim Az = A,

T—0o0

in the sense of weak convergence of path measurégjeav, N]), forany N > 0.

For the polynuclear growth model, the same rescaling leads to the Airy process,
which has ar—2 decay of correlations as is known from the rather intricate
explicit solution given in [2, 10]. This behavior should be seen in contrast to the
exponential mixing of the diffusion process(t).

To prove Theorem 1.1, we rely on the fact that some reasonably explicit
expressions are available in case the semicircle is replaced by a parabola of the
form

(1.6) gry () =T"(1—(/T)?).

THEOREM1.2. Letby ,(¢) be the Brownian bridgé(r) conditioned on the
set{b(t) > gr,,(t) forallt e [-T,T1]} and letX7 , (t) = by , () — g7,,,(t). The
rescaled process is defined through

1.7) t> A7, (1) = v, X7, (tT +h ),
with vy = T =2/341/3 b =22 Thenfor y > 1/2,
(1.8) lim A7, = A,
T—o00
in the sense of weak convergence of path measurégfeav, N]), forany N > 0.

The limit (1.7) has the, at first sight surprising, feature that the limit proggsp
does not depend on the scaling expongntFor y = 2, that is, the standard
parabolagr 2(t) = T? — t?, the fluctuations are of order 1, whereas for- 2
they actually decrease 85— oo. The conditiony > 1/2 reflects the fact that
asy — 1/2 the time-scalingf ~2¥~2/3 s T In other words, fory = 1/2 the
interior is correlated with the end-points and no stationary distribution is reached
locally. Fory < 1/2, gr,,,(t) can be replaced by the function zero and the limit
process is the Brownian excursion.

We outline the strategy to prove Theorem 1.1. Note #iatr) is Markov, in
the sense that upon conditioning &n- (¢g) the future and the past path measures
are independent. Let us fix then the time wind¢wN, N] for the rescaled
processAr(t).
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() The first step is to show that the entrance/exit law, that is, the joint distribution
of (A7 (—N), A7 (N)) is close to the corresponding entrance/exit law of the limit
diffusion processA. To achieve such a result the true shape functip(y) is
piecewise approximated by parabolas. Parabolas are chosen because for them
reasonably explicit expressions for the transition probability are available.

(i) For the interval[—N, N] we use the limit entrance/exit law and use a
suitably chosen parabola as conditioning shape, such that the resulting process
is identical toA(?), |t| < N. Thus the claim of Theorem 1.1 follows from the fact
that inside[— N, N] the circle and the parabola differ at mostd@yr —1/4).

Following this strategy, in Section 2 we consider the parabolic constraint and
prove Theorem 1.2. In Section 3 we establish a result needed to control the
joint entrance/exit law for the time window under consideration. With this input
we prove Theorem 1.1 in Section 4. In Section 5 we discuss other shapes. The
Appendix contains estimates on the transition probability for the conditioning
parabolic constraint and some monotonicity results required in Section 4.

2. Parabolic constraint. We plan to prove Theorem 1.2 and first state a
result on the transition density for Brownian motion conditioned to remain below
a parabola—%gm(t + T). This result was first obtained by Groeneboom; see
(2.23) and (2.24) in [5]. In a different way it was derived by Salminen; see
Proposition (3.9) of [8]. We were led to the explicit formula in Lemma 2.1
below from Frachebourg and Martin, page 330 of [4], where the references
to [5, 8] are given. Since the result holds for an arbitrary diffusion coefficient, by
Brownian motion scaling we can easily deduce the transition density for Brownian
motion conditioned to remain aboye , (¢). The result is reported in Lemma 2.1
below. The vertical and horizontal scaling depends only orgtﬂj]gz(t); therefore
we define

. ngT,y(t)
=
Let W(x2, r2|x1,%1) be the transition probability density for Brownian mo-
tion »*>"1(r) conditioned to start at; from g7, (r1) + x1 and ending atz in
gr,y (t2) + x2,

(2.1) =272,

d
(2.2) W (x2, t2|x1, 1) = d—XZIP’(Y(tz) <x2|Y(t) = 0,1 € [11, 12])
whereY (t) = b*"1(t) — g7, (1).
LEMMA 2.1. Letus define the vertical and horizontal scaling as
(2.3) v =203, hy= (2075
Then

(2.4) W (x2, t2lx1, 1) = W (x2, ta|x1, 11) €Xp(F (x2, t2|x1, 1))
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with

o (ta—tpyhy 2 A (VX1 — @) Al (VX2 — i)

(2.5) W(xz. talx1,11) =) vse A’ (—wy) A’ (—awx)

k>1

and

F(x2, t2lx1, 11) = x187 , (t1) — x287 , (12)
(2.6)

1
SE g7, (11)° — g7, (12)°].

Here —w1, —wo, ... are the zeros of the Airy functiopB < w1 < w2 < - - -.

Let X7, (t) be the process of Theorem 1.2. Furthermord.lee the backward
generator of the diffusion proces§(t),

142 d
2.7) (Lo)x) = dffj ) b at) fziX)

as acting on smooth functiogs () has the invariant measug(x)2 with

2.8 Q@) = w x>0, Q(x)2dx = 1.
Al'(—w1) R,

Through the ground-state transformatidly = —Q(LQ 1¢) (see, e.g., Chap-
ter V.16 of [9]), one obtains

1d?
(2.9) (Hp)(r) == d‘fff Ly 00— Ep(x).  x=0.

H is understood with Dirichlet boundary conditionxat= 0 andE = %wl implies
HSQ =0. Denote byG (x, y; t) the integral kernel o6; = ¢~ that is,

(2.10) (e p)(x) = / G(x, y: Do) dy.
Ry

We remark thatf has purely discrete spectrum. Its eigenvalues and eigenfunc-
tions are given by

Al (—wp41+ x)
A’ (—wg+1)
Note that we use the notatidd = Qq, sinceQ2g reappears frequently throughout

the paper.
Before proving Theorem 1.2 we explain how is related to a conditioned
Brownian motion.

(2.11) Ep = Jwrt1. Qi (x) = , x>0,k=0,1,....
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PROPOSITION2.2. Let Z(¢), |t| < N, be Brownian motion conditioned to
stay aboves(r) = %(NZ — 1% and such that the joint probability density of
(Z(=N), Z(N)) is given by

(2.12) pz(1, —N; &2, N) = Q(82)G (52, 51: 2N)Q2 (81).

ThenZ 2 A +5onC(=N, N]).
PROOF DenoteW(t) = Z(r) — s(¢); then the transition density o¥ (¢) is

pO.tiva = | [, devdeapr e ~Niga, V)
« G(E2, v: N — )G (v, x: f — 1)

(2.13) x G(x,&1;u + N)G (&2, &1; 2N)1]
x| [, dsrdszpater —N:ga M)

-1
x G2, x; N —u)G(x,81;u + N)G (82, §1; 2N)_l}

for x,y >0 and—N <u <t < N. But sincepz(&1, —N; &, N) = Q(&2) x
G (&2, &1; 2N)Q (&), it follows that

(2.14) p(y.tlx,u) =GN )G (y, x: 1 —u) [ (GN-u£2) (X).

Notice thati(x) = (Gy_Q)(x) = Q(x). Hence the process with transition
probability density (2.14) is the Dodbtransform; see Section 1V.39 of [7]. Thus
it follows that the proces¥ (¢) satisfies the SDE

(2.15) dW (1) =a(W(t))dt + db,

with the drifta(x) = dInk(x)/dx being equal to (1.2) anb, standard Brownian
motion. ThereforeW (r) and 4 (¢) satisfy the same SDE and, since they have the

same distribution at= —N, W (¢) 2 A@). O

We now prove Theorem 1.2 for the case of the parabolic constgaint The
strategy consists in first controlling the joint density (ef7,, (—=N), A7, (N)),
and then using the Markov property of Brownian motion together with Proposi-
tion 2.2 to determine the limit process &fr ,,. This strategy will be also the basis
of the proof of Theorem 1.1.

PROOF OF THEOREM 1.2. Consider the rescaled proceds , = v, x
X7, (T +h;Y), |t] < N, with vy = T =2/341/3 andh, = v2. The joint density
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of (A7, (=N), A7, (N)) is given by
pr(é1, —N; &, N) = !ii)noG(& £2; T(1—1)hy — N)G (&2, 15 2N)
(2.16)
x G(&1,&; T(A+t)hs — N)/G(g, €; 2T hy).

Sincey > 1/2, Thy ~ T?~D/3 5 50 whenT — oo. Using the estimate from
Lemma A.1, we have, for some constant O,

(2.17) G(e, &; 2Thy) = £2(14 O (e~Ths))
and

G(e, &2, T(1—1)hs — N)

(2.18) y
=¢e[QE) + O(min{sze—“”x, e~ 952(Thy) Nl
Therefore
lim pr (&, —N: &2, N) = ()G &2 11 2N)Q €D
(2.19) >

= pa(§1, —N; &2, N).

For any bounded, continuous functignon C([—-N, N1),
Ear, (f) = [, devdszpr &1, —Nig2, N)
R+
X Eaz., (flAT,, (=N) =£1, A1, ), (N) =&2)
(2.20) = [, derdszpater ~N:ig2 N)
RY
X Epp, (flAT,, (=N) =§&1, AT, ), (N) = £2)
+ Ri(T, N, f),
with R1(T, N, f) bounded by

RUT.N. )= 1f e [, déadez

(2.21)
x |pr (&1, —N; 2, N) — pa(§1, —N; &2, N)|,

which converges to zero a6 — oo, becauseor converges pointwise t@4
andpr, p.4 are densities with total mass 1 (Scheffé’s theorem; see, e.g., Appendix
of [3]). Finally, Proposition 2.2 implies that the nonvanishing term in (2.20)
iISE4(f). O
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3. Joint entrance and exit law. In a piecewise parabolic approximation of
the semicircle, or more generally of @mncavefunction, there are points with
discontinuities in the slope. In order to control the subleading terms we take a
continuous, piecewise parabolic shape such thadéniwative has negative jumps
at its discontinuity points. We call these poinidges

More precisely, let us consider a Brownian bridgér) conditioned to remain
above a continuous, concave, piecewise parabolic funaction starting from
s(tin) + xin at timetip and ending at (fin) + xfin at timefin, fin < tin, Where

2

(3.1) s(ty=aj +bjt — 3c;t fort efuj_1,u;l

with ¢; > 0, ug = fin andu 1 = tin. We want to study the process close te f,
with 7 very far away from the contact times, sayux -1 < 7 < ug. Define

(3.2) ve = (=23, k=12

N

thetimest; =u;for j=0,..., K —1,tj=u; 1for j=K+1,..., M, and

(3.3) Z‘KEI_=t~—NhS_1, IK+1EI+=I~+N}1S_1.
Denote
(3.4) v(t)) =s'(t]) —s't}) =0,

in particular,v(tg) = v(tg+1) =0, and

(3.5) v = (—ZS//((IJ‘ + lj_l)/Z))1/3, hj = UJZ-, Fj = lhj(tj — tj_l).

Finally, let ' = min;zx+1T";, assume thalC — oo as T — oo, and that

1/3 1/3
vaxin < 77>, varxein < Ty,

LEMmA 3.1. Fix N > 0and denote — X7 (¢) = b,(t) — s(¢). Then the joint
density of X7 (), X7 (t4)) witht_ = tx — Nh;1 andry = tg +Nh;1 is given by

pr{x,1_;Yy, — X,

(3.6) = 02Q (0,0 G (5, v,y 2N)Q (v y) L+ O 27
+Er(x,t_5y,1y),

for some constard > 0 and where the error ternE; converges pointwise t0
and its total mass is bounded by

(3.7) dx dy|Er(x,1_; y, 1) = O(e™T"),
B2
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PROOE Let us denote by; the position of the Brownian bridge abové;)
fori =0,..., M. Then the density (3.6) is given by

fRi”% [licsdzi ijzl Wi(zj, tjlzj-1,1j-1)
fRf—l ]_[iﬂiildzi 1—[?/1:1 Wi(zj, tjlzj-1.1j-1)
withJ={1,..., K -1, K+2,..., M — 1}. Explicitly

(3.8)  prlx,tsy.ty)=

W(zj,tjlzj-1,t-1) = Wz}, 1j12j-1, ;1)
(3.9) ! "

X eXFiijls/(tf_l) - ZjS'(t-_)]Q(lj, tj-1)

with ¢ a function independent af;, z;_1. When (3.9) is substituted in (3.8), the
product of theg’s simplifies. Moreover, eac contains a prefacton;e=11'/;
see (A.5). ThusV (z;, tjlz;—1,tj—1) in (3.8) can be replaced by

(3.10) v*le“’lrf W(zj.tlzj-1.tj-1) explzj—as (1 1) — 2;5'(t)]

and in additions’ (t ) ands’ (ty141) can be replaced by zero.
Let us first analyze the denomlnator of (3.8). It can be written

M-1 M
(3.11) /RMil [] (@z e~V [[(Qjz)Qjzj-1) + Rr;(vjz), vjzj-1)),
+ =1 j=1
whereRp. is the one in Lemma A.1. Denote

(312) 0=Q1z0Rwmzm) [ ] / dzi eV 0Q (0i2) Q (Vi 4120);
ieJ

then the expansion of (3.11) has the leading term

K+1

(3.13) 0 ]_[f dz; Q(v52:)Q (vy21) = Qv 2

plus 2 — 1 terms containing one or more factors @fs. The conditions
V1Xin < Fi/s andvy xfin < 1",1‘4/3 imply the bounds

2/3
IR, (v1xin)| < Q(v1xin)@(e T2 /2),
(3.14)

2/3
IRR (vmxtin)| < Q(upxsin) O (e /2),

Using Lemma A.2, we can replace eaRlﬁ by @ in the integration variables

up to a multiplicative facto(?(e‘”rm). Summing up all these contributions, the
denominator is given by

(3.15) denominator 0f3.8) = « Qv 2(1+ @(e—zaﬁl/S))
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wherea # 0 is a constant coming from the replacements described before (3.11).
The numerator is obtained similarly, but the variablemdy are not integrated
out, with the result

(3.16) numerator 0f3.8) = ¢ Q2 (vs )G (vsy, vsx; 2N)Q2 (v5x) + E1(x, y)

where the first is the term with no factor ffandE1(x, y) is the error term, which
is bounded by

|E1(x, y)| <@ QG (vsy, vsx; 2N)
(3.17) x [Q(usx) R (vsy) + Q) RR (vx) + R2(v5) R (v5 )]

x (1+ O (e 24T

with Rg given in (A.6). From (3.15) and (3.16) it follows that

prx, 1=y, 1) = V22 (WY G (0,y, vex; 2N)Q0,) (L + O (e > T))
(3.18)
+ E2(x,y)

with Ex(x, ) = E1(x, y)/ Quy A1+ 0 (=2,

The expression oRIQ implies thatRlQ(y) < e‘“rm, converges pointwise to 0,
and decays exponentially in for large y. On the other handG (v, x; 2N) is
uniformly bounded irnx andy for any N > 0. Therefore

=13
(3.19) /RgrdxdylEz(x,y)lf(Q(e atty -

4. Proof of Theorem 1.1. In order to prove the theorem we first control
the entrance/exit law for the intervd T — Nh; L, T 4+ Nh; 1], for which we
use Lemma 3.1. Therefore one has to find a lower and an upper approximation
satisfying its hypotheses.

4.1. Upper and lower approximating shapes foe= —t7T. The piecewise
parabolic approximations, are constructed with the parabolas

(4.1) fitt) =a; +bit — Scit?  fort e [ui—1, u;]

for -T =up <u1 <--- <uy—1 <u, =0, where the choice of the;’s is
discussed below. We set.(t) = s1(—t) for ¢+ € [0, T] (although this is not
required for the result). Since we want to apply Proposition 2.2, we also determine
vj = (2c))t3 and T = J(u; — u;_1)h; with h; = v?. In caser = 0, we set
b;=0.
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4.1.1. Upper approximationt = 0. This is the easiest case and one needs
only a single parabola, that is,= 1,

4.2) A =T-3i17%2
s1(t) = f1(t) > cp(¢) for all ¢. Sinceug=—T, u1 =0,
(4.3) vy =2Y31-Y3 1y =27137153

4.1.2. Lower approximation r = 0. In this case one needs = 2. We
define uy = —T%4. The parabola from(—7,0) to (u1, cr(u1)) is given by
(4.1) witha; = T(A — T~Y2)=Y2 and ¢; = 2T~ + 9(T~3/?). The parabola

from (u1, cr(u1)) to (0,T) hasay =T andcy = T~ + O(T~32). Then for
te[-T,T],s—(@) <cr(),with

4.4 wu=22Pr"BLoT>%, =231 oaV?
and
@5) v=21"1B4Lo@ >, T.=23rV24 o113
s_(¢) has aridge attu1.
4.1.3. Upper approximationt < 0. In this case the construction requires

n = 3. For convenience we defing =1—t2andf = —t > 0. Letu; = —tT
and let the parabol#; (r) be defined by

filt) = fa(t) = er(zT) + e (cT)(t — tT)

(4.6) 1 1/4 2
+ i @A -T Y0 —<1)%

We defineu™ to be the first intersection time after; of fo(r) with cr(z).
We estimater* = —8T + A, 81734 + 9(TV/?). Let

(4_7) f*(t) —af — %C*l‘z

be the parabola which passes through, cr(t1)) and (u*, cr(u™)). Some
computations lead ta* = A7 Y271 + O(T~54). Since f*(t) < cr(r) for
t €[ug, u*] and fa(t) > cr(¢) for t € [ug, u*], there is a timeiz € (11, u*) such
that f3(u2) = f*'(u2). We obtainup = —BT + 3. 71734 + O(TY?). Finally
one has to define the third piece of parabola. Sifite) > cr(¢) for t > u*, and
f2(t) = cr () for t € [u1, u*], we definefs(r) by

(4.8) f3(0) = f*(@0) + (fo(u2) — f*(u2)).
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This construction satisfies (1) > cr(¢) fort € [T, T], has aridge at= 0, and
the second derivative is discontinuous at +u»>. Moreover one has

vy = 21/3/\;1/2T‘1/3 +O(T 712,

I =231 -3+ 011,

V2 = vy,
(4.9)

=243 L7Y12 4 (17~ Y8),

va = 21/3Ar—1/6T—1/3 + o712,

Pg =231t p Y3113 4 o (1Y),

4.1.4. Lower approximationt < 0. In this case the construction requires

n =4. Also here letg = —t and A, = 1 — t2. We defineup = —tT and the

parabolafz(¢) by
f20) = f3@) =cr(xT) +cp(tT)(t —T)
(4.10)
+ 4@+ T Y4 —T)2

f2(¢) has an intersection witla; () for some timer < up, which we define
to beu1, and remains belowr(¢) for ¢ € [uz, 0]. Some computations lead to
up=—PBT — 1 B~1T%* + 9(TY?). Moreover let

(4.11) f1(t) =a1 — %Cltz

be the parabola passing throu¢hT, 0) and (u1, cr(#1)). It hascy = 2);1/2 X
71+ ©(1~°%). Finally we defineis = —8T (1 — T~%4) and

(4.12) fa(t) = ag — jcar®
such thatfa(uz) = fa(uz) and f}(uz) = f}(uz). We obtaincg = A7 /*7-1 +
O(T 4.

This construction satisfies (1) < ¢y (t) fort € [T, T], has aridge at=0
and atr = +u1, and the second derivative is discontinuous at+u3. Moreover
one has

vy = 21/3)L;1/6T71/3 I (9(T*7/12),
Fl — 2—1/3(1 _ |T|))ur_1/2T1/3 + (9(T1/12),
vy = 21/3);1/2T_1/3 +O(TT1?),
FZ — 2_1/3|‘E|_1T1/12 + (9(T_1/6),
V3 = V2,

(4.13) I3 =2"Y3 e 7Y% L 91718,
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vg = Y3 YBT3y (7712,
My =27 Y3 pSY3TY3 L (112,
4.2. Joint densities. We compute now the joint entrance/exit law for the
process of Theorem 1.1.

Let b1 (¢) be the Brownian bridge fronts+(—7), —T) to (s+(T), T) condi-
tioned to stay above.. The processes we actually want to study are

(4.14) A7 (1) = ve[be (T +h;lt) — cr (xT 4 h;1r))
and Proposition 2.2 is concerned with the processes
(4.15) Yr.4(t) = vy [b(tT + htt) — so(cT + b))

Let us denote.7 + = vy, /v., and

(4.16) gr+(t) =vels(tT +h ) —cr (T +h )]
Then
(4.17) AT+ (1) = A7 Y1205 1) + gr.+(0).

We computerr 4 and boundgr +(¢) for t € [-N, N] with the result:

(a) Caser =0,

Arg =1, gr.+(t) = O(N4T—2/3),
(4.18) T.+ T, +
Ar_ =14+0(TY2), gr.— (1) = O(N?T~Y2),
(b) Caser <0,
(4.19) Are=14+0T Y4, gri(t)=0ON?T V4,

LEMMA 4.1. Let pr (61, —N; &, N) be the joint probability density of
(AT (=N), A7(N)), whereAr is defined in(1.4). Then

(4.20) T”_f)noo o1,cr (€1, —N; &2, N) = ps(€1, —N; &2, N)
with
(4.21) paEL, —N; &2, N) =Q(2)G (62, 61; 2N)R2(61).

PROOF Let pr.4(§1,—N;&,N) be the joint probability density of
(A1 +(—N), Ar +(N)). Then, since.r + — 1 andgr +(r) - 0 asT — oo,
(4.22)

= Q(62)G (82, &1, 2N)2 (61)-
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Denote Fr (81, —N; &2, N) = [, o dx1dx2pr «(x1, —N;x2,N), Where
x = {+, —, cr}. From the monotonicity properties of Propositions A.5 and A.6
it follows that

(423) FT,+(S.17 _Na 527 N) S FT,CT (517 _Nv 525 N) S FT,*(El! _Nv SZ» N)'
Taking the limit7T — oo in (4.23) and using (4.22) we obtain
Ilm FT,CT (517 _N7 525 N) = Fﬁ(sla _N’ '52’ N)

(424) 7%
EfdgcldX2pA($1, —N;&,N),
X <§;
thus also
(4.25) M _pr.ep (1, =N: 82, N) = pas, =N 52, N). 0

Finally we are in position to prove our main theorem on the circular constraint.

PROOF OFTHEOREM1.1. The process we have to analyze is
(4.26) A7 () = v, X7(tT 4 h )

where X7(¢) is defined in Theorem 1.1. We have to prove th&t D4
onC([—N, N)) inthe limit T — oo, which is done through

(4.27) AT+ 2> A+s
wheres is a fixed parabola angr is a (honrandom) function satisfying

(4.28) lim sup |cr(t) —s@)|=0.
T—00e[—N,N]

Then (4.27) implies

(4.29) A7+ —5 25 4,
since the mapping — x — s is continuous. Finally (4.28) combined with (4.29)

implies thatAr L, A asT — oo.
Now, let us prove (4.27). Definér(t) = ar(t — tT) 4+ Br to be the line
intersecting the circler at timest = t7 4+ h;1N. Moreover, let

(4.30) er() =vs(ereT +hyYt) — Ly (eT + htr))
and
(4.31) s(t) = 2(N? = 1?).

A simple calculation shows thaf (r) = s(t) + O(N3T~Y/3), t e [-N, N1].
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We now consider the proce¥s = A1 + ¢7. Let f be a bounded, continuous
function onC ([—N, N1). Using the Markov property,

Eiy () = [, derdgaprer €1, ~Ni 2, V)
RY
x By (f1¥r(~N) = &1, Y7 (N) = £2)
(432) = [, dard&2par —Ni 2. N)

X By, (fIY7(—N) =&, Y7(N) = &2)
+ Ri(T, N, f),
where the remainder ter®y (7, N, f) can be bounded by

RUT.N. )1 = 1f e [, dErdez

(4.33)

X |pr,er (61, —N; 62, N) — pa(E1, —N; &2, N)|
which converges to zero @& — oo, becauseor ., converges by Lemma 4.1
pointwise top.4, andpr ¢, , p.4 are densities with total mass 1 (Scheffé’s theorem;
see, e.g., Appendix of [3]).

Let Z(r) be the process defined in Proposition 2.2 with joint density of
(Z(=N), Z(N)) given by pz(é1, —N;&2, N) = pa(£1, —N; &2, N). For any
realizationw of Z, define xz, (w) = 1 if w(t) > ¢r(¢) for all t e [-N, N] and
xé; (w) = 0 otherwise. Then the leading term of (4.32) is

(4.34) Ez(f xer)/Ez(xer )
and we have to show that it converge®to( f x,) /Ez (xs) asT — oo. Notice that

the reference measure does not depend jdhe onlyT-dependent quantity & .
It is easy to see that

Ez(fx)  Ez(fxe)

4.35 = Ro(s, ¢T,
(4.35) Bz  Ez(xe) | 2&en D)
with
E s(1— ir E 11—y r
Rats i, = S X ) 2/ o)
(436) Z\Xs ZXs
Ez(fxz) (EZ(X5T) - Ez(xs))
Ez(xé) Ez(xs) '
Equation (4.36) can be bounded as
2/ flloo
Rats.ér. Pl < 1 @) (6 (1= 30) +E2 (01— x21))
Ez(xs)
(4.37)
~ 2 fllso

= P K crf):
e (e # 1e)
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Let Br = {owlxs(@) # xer (@)}, then Pz({xs # x&)) = Pz(Br). Let
7 =SUR_n n 16T (1) —s(t)| = O(T~Y3); then By C Dr = {0|Xs—e; (0) #
Xs+er (@)}, In the limit T — oo, w € Br if w touches without crossing the
parabolas. Such paths have probability zero, therefore dimgEy, (f) =

Ez(fxs)/Ez(xs)-

We have proved thaY¥y = A7 + ¢r 2, Z asT — oo. By Proposition 2.2
Z2 4+ s, thus (4.27) holds. As discussed above, from (4.27) and the fact that
¢r — s asT — oo, it follows thatAr D24 O

5. Extensions. While the original motivation for our study came from the
circular constraint, the proof presented extends to more general shape functions.
We refrain from stating precise theorems. Still it should be instructive to the reader
to see how the Brownian bridge responds to a general constraint.

Let us then substitute the cirate by g7 (1) = Tg(¢t/T), whereg:[—1, 1] — R,

g(—1) = g(1) =0, g continuous, ang € C2([—1, 1]) piecewise. As before we fix
the reference pointT, T € (—1, 1), and study the fluctuations away frogmw for
times close ta T. To first approximation the fluctuation behavior is determined by
the sign ofg” (7). We list three “standard” caseg, denoting the convex envelope
of g.

(i) g"(r) <0: assume that, for&> 0, g € C? andg = g. on[r — 8, T + 8].

If ¢”(r) < 0, the fluctuations are as specified in Theorem 1.1, where now
vs = (=2¢"(x)Y3.

(i) g”’(r)=0:letg be linearin[z1, 2] and, foras > 0, letg = g., g’ <0, and
geC?on(t —8,11) U (t2, 12 + 8]. Then the fluctuations atT are of orderT'*,
w < 1/2, and inside the intervdt, T, t,T] of order 7Y/2. Thus the limit process
will be Brownian excursion over the intervial, 7,].

(i) g”(r) > 0: let [r1, 2] be an interval such that < 7 < 12, g(t) < g.(t)
for ¢t € (11,t2) andg(#;) = g.(¢;), i = 1, 2. Moreover assume that for sorfe- 0,
g=g.and isC? on [ty — 8, 11] U [t2, t2 + 8]. Then in(r1, 2) the constraint has
no effect on the Brownian motion and the limit process will be a Brownian bridge
over the intervalzq, 2].

Clearly there are intermediate cases to be discussed. However, a really novel
phenomenon appears if in case (i) we lift the assumption ghatcontinuously
differentiable at . We denote the right- (left-) hand limits bjtx*) = lim,, f(x)

and f(x7) =limg 4y, f(x).

(i.a) Ridge Assume (i) except at. Instead letg”(r*) < 0, ¢”(r7) < 0, and
v:=g'(t7) — g (z*) > 0. Then the fluctuations abovg (rT) are of order 1
and the probability density ok7(t7) equals 3v3x2™"* as T — oo. As a

consequence, (ii) and (iii) hold also if there is a ridge;and/orz,.
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(i.b) Curvature discontinuity Assume (i) except at. Instead letg’(t7) =
g () butg”(rt) # ¢”(z7) andg”(z%) < 0. In this case the fluctuations are of
orderT1/3 and the limiting probability density a7 (zT') is, up to normalization,
Qs (t)xTY3HQ(vg(rHx T3, with vg(rF) = (—2¢" () Y2 and Q(x)
givenin (2.8).

APPENDIX

A.l. Properties of the Airy function and its zeros. For the convenience of
the reader we list a few properties of the Airy function needed in the main text. We
follow the conventions in [1].

1. For largez,

. ~ 1 _223/2/3
(A.1) Ai(z) ~ N .

2. Ai(z) <0.54 for all z and the maximum is reachedzat —u ~ —1.02.
3. For largek, wi ~ (3Fk)%3 and for allk > 2

(A.2) W — w1 > K23,

4. |Ai'(—wy)| > Ai’'(—w1) wherewy >~ 2.34, A’ (—w1) ~0.70.
5. Forx € [0, —w1 + ],

. Al (—w1+ )
(A3) Al (—Cl)]_ + )C) > mx.
6. Forallx e Ry,
(A.4) Q(x) =Ai(—w1 +x) /A’ (—w1) < 6e™*, Q(x) <x.

A.2. Leading term of the transition density.

LEMMA A.1. LetD = 3(t> — t1)hs andy; = vyx;, i = 1, 2; then

Ai(—w1 + y)Ai(—w1 + y2)
Al (—w1)?

(A5)  W(xa, t2|x1, 11) = vy~ " [ + Rr(y1, Y2)}

with
|Rr(y1, y2)| < RE(yD) RS (y2),

(A.6) 0 _ 13
R2(y) = min{y exp(—aTl"), exp(—ayl'Y/3)}

for a constanta > 0 and I large enough Moreover for any fixedI' > 0,
W (x2, t2]x1, t1) is uniformly bounded in1, x».
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PROOF Let
o Ai(—wi + )
A7 ® = ¢ (@—01)T/2
(A.7) K(y)=e A o)
ThenRr(y1, y2) is given by
(A.8) Rr(y1,y2) = Y_ ®r(y1) Pi(y2)
k>2
and
(A.9) |Rr(y1. y2)| < D 19k (yD)| Y [@i(y2)]-
k>2 [>2

For largek, w ~ (37k)?/3, and for smallk the exact values ofv. are

known [1], from which we deduce thaty — w; > %k2/3, for all k > 2. Moreover
we havel1/Ai’ (wr)| < 1 and|Ai (—wi + y)| < |y||AI'(—wy)|. Therefore it follows
that

_12/3 _
(A.10) Yok =y Y e ¥ < ye 20y ()
k>2 k>2

with ¢1(I') = 3(WT + /7/2)I ~%/2,

This estimate is good except for very largeFor largey, the Airy function
becomes of order 1 fap ~ y, that is, fork ~ 2 y¥2. Letko(y) = y¥?/10. Then
we distinguish between the cases ot kg andk > ko.

(@) 2<k < ko(y). In this case Ai—wr + y) ~ exp(—3(—wx + »)¥/?) <
exp(—%y3/2) and, with the same estimate for the exponential term, we obtain

(A-11) |04 (y)| < exp(—3k2/°T) exp(— 2%2).

(b) k > ko(y). For this case we use, — w1 > 3k%/3 and|Ai(—wy + y)| < 1
7
and obtain

(A.12) |k ()] < exp(—3k%3T).
Therefore for large we have
ko(y)
DDl =Y 1o+ Y, D)
k>2 k=2 k>ko(y)
(A.13) 23 32
< Ze—k F/Ze—y /3+ Z exq_%k2/3l—w)'
k>2 k>ko(y)

The first term on the right-hand side of (A.13) is bounded-byl") exp(—T"/2 —
y3/2/3), and the second one is bounded by

0
(A.14) / dk e ¥ T/2 < co(Tye~TV/2
ko(y)
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with c2(I') = 3(J/7/2 + /Ty /2)I ~3/2,

If we take I' large, we can apply the approximation for largeto the
y > T2/3 and use—*%/3 < e=TY°/3 {0 see that (A.6) holds. On the other hand,
from (A.10), (A.14) and the boundedness of the ground state, it follows that
W (x2, 2]x1, t1) is uniformly bounded inc1, x» for any fixedl’ > 0. O

A.3. Estimateof theintegral with error terms.

LEMMA A.2. Letus define

o
1(0, 00) = /O dx Qjx)Qjp1x)e ",
o0
(A.15) 1£(0, 00) = /o dx Qv jx)RIQHl(v jrax)e ",

(0,0)
I5£(0, 00) = fo dxRY (vj)RY, | (vj410)e ™"
Thenif v >0,
y

3
I£(0, 00) < 1(0, 00)Ce Vi1,
(A.16)

13, .1/3
IgE(0,00) < I1(0, oo)Ce_a(Fj +I5D)

for some constant' > 0, assuming’;, I'j 1 large enough

PROOF.  First we change variables as= v;x. Settingi = v;41/v; and
v =v/vj, then

1(0.00 = 1(0.00)0; = [~ dy @Gy,
(A17)  Tp(0,00) = I£(0, 0o)vj = /0 dyQRY, (e ™,

~ o) ~
Te£(0.00) = 10,000, = [ dyRE (ORE, (e ™.
To prove the lemma we have to find lower boundsfe, co) and upper bounds

for Iz (0, 00) and I (0, 00). We use essentially (A.6), (A.3) and (A.4). First let
us bound/ (0, co).

(@ A <1 Letd =Ai(—w1+ n)/[(—w1+ wAI’'(—w1)]. Then
1 -
(A.18) 7(0, 00) > fo dy 029206~ = 262 (V).

wherex () = 3 dx x%e~"*, It is easy to see that™* < 3« (x).
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(b) A > 1. By the change of variable= 1y, and then using the previous bound
we obtain

(A.19)  1(0,00) = %fow dx Qx)Q(x/1)e ¥ /* > A—]-ZQZK(ﬁ/k).
Next we compute some upper boundd pt0, co).
(@ r<1.
(A.20) I£(0,1) < /O ' dy ry2e Titte™Y = pe™Titix ()
and
(A.21) IE(1, 00) < /loo dy hye Title ™"V 6e™Y < BV pe i1,

(b) %> 1.

- 1/x 5 —alji1
(A22)  Ip(0,1/n) < dy Ay2eTit1e™"y = =
0

Kk(D/1)

and

- o] _ 1/3 - 4 13 -
(A.23) Ig(1/X, 00) 5/ dy ye MTit1e70y < 2¢ 1012,
11

Putting all together, we obtain

I£(0,00) _1£(0,%0) _ . —ar¥3,
1(0,00)  [(0,00) ~
for all » with C = 19/6? (andl'j 11 > 1).

(A.24)

Finally we bound/ £ (0, 00).
(@ r=<1.
(A.25) Igpp(0,1) < fo 1dyxy2e*a<r.f+rf+l>e*ﬁy:Ae*a“f”m)x(ﬁ)
and
(A.26) IgE(1, 00) < /100 dy )»yefarf“e_ayrfl‘/se*ﬁy < 4efﬁ)ne*“lﬂj+1e_”r/1‘/3.

(b) » > 1. By the change of variablec = Ay we obtain immediately

~ ~ - 1/3
Ige(0,1/2) = k—lze_“(Ferrj*l)K(ﬁ/)») and/gg(1/x, 00) < )\%e_”/ke_“rfe_arﬁl.
Putting all together, we see that for all

Igp(0,00) _ 1pp(0,00) _ Co—aT 4T

A.27 = = J+1
( ) 1(0, 00) 1(0, 00)
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A.4. Monotonicity on conditioning shapes. Let us consider a simple random
walk on Z conditioned to come back to the origin afteN 2steps, denoted
by £y = (En(i))?Y,. Let At = 55, Ax = +/At, and defineBy (1) by setting
By (kA1) = AxEn (k) fork =0, . 2N and by linear interpolation for the other
values oft € [0, 1]. The set of possible patiBy is calledl" . We denote byuy
the uniform measure on the continuous pakhs

In the sequel we consider two conditioning shages, such thaty1(r) < s2()
for t € [0, 1], s2(0) <0, s2(1) <0 ands2(r) < oo, and we denote byej{, the
path measure conditioned to remain abgvéhat is,uj{,(-) =un(|BN(@) > s5i(1),

t €[0,1]).LetS = C([0, 1]) be the set of bounded continuous functions fii@ni]
to R with sup norm, and define the set of increasing function by

(A28) M={feC(S)|f(b1) < f(b2) wheneveb1(t) < b(t) YVt €[0, 1]}.

PROPOSITIONA.3. If s1 <sp,thenforall f € M,
(A.29) D un® b)Y < D uib) fb).

bel'y bel'y

PROOFE Equation (A.29) is equivalent to

0< Y w0 fuyby— Y wibuyb)f(br)

(A.30) (b1,bp)el'd (b1,bp)el'
| LS (fbo) — FO0) (U E b2 by) — b2 (b)),
(b1,b2)el'?,

Denote vy (b1, b)) = ,bL (bz)u (b1) — ;t (bz)u (b1). In what follows the
notationb1 # s1 means that there existsrasuch thatbl(t) < s1(¢). Similarly,
b1 > s1 means thab1(t) > s1(¢) for all . For the coupléb1, bo) there are different
possibilities:

(8) b1 # s1 andba # 51, thenvy (b1, b2) =0
(b) b1 = s1 andby > s2, thenvy (b1, b2) =0
(C) b1 > s1, ba > s2, butby # s2, then:

(cl) if b2 = b1, then f(b2) — f(b1) = 0 and vy(b1,b2) > 0 since
iR (by) =

(c2) otherwiseb; andb; intersect above,. In this case, leth], b,) be the
couple of random walks defined as follows. Take & 79 such that
b1(to) < s2(t0) and setb] (fo) = b1(to) andbs(to) = ba(to). Then for
all otherz fromg to 1, b/ andb,, are deflned by exchanging the paths
of b1 and b2 when they merge and/or divide. Similarly forfrom g
back to 0. By the Markov property we have (b1, b2) = vy (b}, b5),
and the new paths satish), > b1 andby > b}, and moreover if we
apply twice the transformation we obtain the original paths. Thus,
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f(b2)+ f (b)) — f(b1) — f(by) = 0, so that the contributions in (A.30)
coming from(by, b2) and from(b/ , b5) are positive.

(d) b2 > s1, b1 > s2. By symmetry the same conclusion is obtained in case (c)
holds. O

PROPOSITIONA.4 (Invariance principle). Let WP be the path measure of the
Brownian bridge from(0, 0) to (1, 0). ThenasN — oo, uy = W0, that is

(A.31) Jm S un@)f 6 = [ aw'e) ro)

bEFN

forall f e C(S).

PROPOSITIONA.5. Let 1% (b) = WO(b|b > s;) be the path measure for the
Brownian bridge conditioned to stay aboyg i = 1, 2. We assume thaf; are
continuouspiecewiseC!, andsy < s». Thenforall f € M,

(A.32) /S At (b) f (b) < /S dps2(b) £ (b).

PrROOF  Define K (s;)(b) = min;¢0,11 © (b(¢) — s;(¢)) with ® the Heaviside
function, and letDg(,) be the set of discontinuities ok (s;). We want to
show thatPyo(Dg;)) = 0. A pathb ¢ Dk, if Ve >0, 36 > 0 such that
|K (s;)(b) — K(s;)(b)| < &, for all b satisfying ||b’ — bl < 8. Observe that
K (s;)(b) € {0, 1}, thus a patlb ¢ D, if min,co,17(b() — si(¢)) # 0. Therefore
b € Dk, if b touchess; but does not cross it. Now, consider a patiwith
touchess; and letz (b) be the first time that happens. The shap&s continuous
and piecewis&l, therefore a.s. the pathwill cross s;, thusPy0(Dg(;)) =0
From this follows

(A.33)  lim Y un®) f(B)K (si)(b) = /dWO(b)f(b)K(sl)(b)

bel"

forall f € C(S). Since
2 pery UN (D) f(D)K (si)(b)

A.34 b) £ b ,
(A3 b;NM v O)= > bery UN(D)K (s;)(b)
(A.33) implies

(A35) Jm, X e = [ aw e 7).

Finally, using Proposition A.3 we conclude that (A.32) holdg]
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PROPOSITIONA.6. Let 1@ be the path measure for the Brownian bridge
from (0, z) to (1, 0) conditioned to stay above a continuous piecewi$eshapes.
If z>0,then

(A.36) /S dp© () f (b) < /S A (b) £ (b)

for all increasing functionsf € M.

PrROOF We have to show that
(A.37) [, du® 2 an® b (£ 2 - 1) 20,
For each coupléb1, bp) of Brownian bridges, let (b1, b2) = min¢[o,11(b1(t) =
ba(t)). Define ¢ : (b1, bo) — (b, b,) wherebi(t) = b;(tr) for t € [0, T(b1, b2)]
and b (1) = b3_;(r) for r € [t(b1,b2), 1], i = 1,2. Obviously (¢ (b1, b2)) =

(b1, b2) and by the Markov propertd @ (b2) dp® (b1) = du® (by) d @ ().
By constructiorb,, > by, by > b}, which implies

[, au® 2@ @2 (s 62 - £ G)
(A.38)
=1 [, dn b2 du® ) (£ (b2 — £ 5 + £05) ~ f(b0) = 0.

O

COROLLARY A.7. By linearity PropositionA.5 holds also if the initial and
final points have a given joint density independent of the path measure

COROLLARY A.8. Letg1, g2 be two probability densities such that

(A.39) f g1(x) dx < f g2(x) dx.
X=<Xx1 X<Xx1

Denote byu, the path measure of Brownian motibry) starting fromx. Then

f dy h(y) f dx 1)y (f1b(D) = )
(A.40)

< f dy h(y) / dx g2(x) 1 (F16(1) = y)

for any increasing functiorf € M, whereh denotes the probability density &f1).

PROOF By linearity we need to verify the assertion only for a fixed end-point.
Let Fi(x) = [, & (») dy, and lety; (y) = FY(y) if gi(y) > 0 andy(y) =0 if
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gi(y) =0. ¥1(x) < ¢¥ro(x) for all x. Therefore
1
[ dx g2t (160 = ) = | dz o (F1b0 =)
1
(A.41) < / dz Py o) (f1D(1) = y)
0
- / dx g1(0) it (f1b(L) = ). -
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