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HAMMERSLEY'S PROCESS WITH SOURCES AND SINKS

BY ERIC CATOR AND PIET GROENEBOOM
Delft University of Technology

We show that, for a stationary version of Hammersley’s process, with
Poisson “sources” on the positiveaxis, and Poisson “sinks” on the positive
y-axis, an isolated second-class particle, located at the origin at time
zero, moves asymptotically, with probability 1, along the characteristic of
a conservation equation for Hammersley's process. This allows us to show
that Hammersley’s process without sinks or sources, as defined by Aldous
and DiaconisProbab. Theory Related Fields 10 (1995) 199-213] converges
locally in distribution to a Poisson process, a result first proved in Aldous
and Diaconis (1995) by using the ergodic decomposition theorem and a
construction of Hammersley’s process as a one-dimensional point process,
developing as a function of (continuous) time on the whole real line. As a
corollary we get the result th&L (¢, )/t converges to 2, as— oo, where
L(t,t) is the length of a longest North-East path frgf 0) to (¢,¢). The
proofs of these facts need neither the ergodic decomposition theorem nor the
subadditive ergodic theorem. We also prove a version of Burke’s theorem for
the stationary process with sources and sinks and briefly discuss the relation
of these results with the theory of longest increasing subsequences of random
permutations.

1. Introduction. Let L, be the length of a longest increasing subsequence
of a random permutation of the numbers.1,n, for the uniform distri-
bution on the set of permutations. As an example, consider the permuta-
tion (5,3,6,2,8,7,1,4,9). Longest increasing subsequences €&3e6,7,9),
(3,6,8,9), (5,6,7,9) and (5, 6, 8, 9). In this example the length of a longest in-
creasing subsequence is equal to 4.

In Hammersley (1972) a discrete-time interacting particle process was intro-
duced, which has at theth step a number of particles equal to the length of
a longest increasing subsequence of a (uniform) random permutation of length
This process is defined in the following way.

Start with zero particles. At each step, let, according to the uniform distribution
on [0, 1], a random particld/ in [0, 1] appear; simultaneously, let the nearest
particle (if any) to the right ot/ disappear. Then, as shown in Hammersley (1972),
the number of particles aftersteps is distributed ak,,. Hammersley (1972) uses
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880 E. CATOR AND P. GROENEBOOM

this discrete-time interacting particle process to show that/./n converges to
a finite constant > 0, which is also the limit in probability [and, as noticed later by
H. Kesten in his discussion of Kingman (1973), the almost sure limif},of,/n.
To prove thatEL, //n converges to a finite constant> 0 is the first part of
“Ulam’s problem,” the second part being the determination. of

Aldous and Diaconis (1995) introduce a continuous-time version of the
interacting particle process in Hammersley (1972), letting new particles appear
according to a Poisson process of rate 1, using the following rule:

EVOLUTION RULE. At times of a Poisson (rate) process in time, a poirt
is chosen uniformly on0, x], independent of the past, and the particle nearest to
the right of U is moved toU, with a new particle created &t if no such particle
exists in[0, x].

For our purposes the following alternative description is most useful. Start with
a Poisson point process of intensity 1[@%;. Now shift the interval0, x] vertically
through (a realization of) this point process, and, each time a point is caught,
shift to this point the previously caught point that is immediately to the right. Let
L(x, y) be the number of particles in the intenj8l x] after shifting to height.
Then, by Poissonization of the length of the random permutation, we get

D
Ly, , =Lx.y),
where
ﬁx,y = #{points of Poisson point process[ity x] x [0, y]} 2 Poissorixy).

In an alternative interpretatior, (x, y) is the maximal number of points on a
North-East path frond0, 0) to (x, y) with vertices at the points of the Poisson point
process in the interior &2 , where the length of a North-East path is defined as the
number of vertices it has at the points of the Poisson point process in the interior
of Ri. The reason is that a longest North-East path from the origiw tp) has
to pick up a point from each space-time path crossing the rectghglex [0, y].
Aldous and Diaconis (1995) call the evolving point process L(-, y), y > 0, of
newly caught and shifted poinkkammersley’s interacting particle process.

We can also introduce the evolving point process- L(x,-), x > 0, running
from left to right. Analogously to the description above of the process running up,
we shift in this case an interv@l), y] on the y-axis to the right through the point
process in the interior of the first quadrant, and, each time a point is caught, shift to
this point the previously caught point that is immediately below this point (if there
is such a point). By symmetry, it is clear that the processesL(-, y), y > 0, and
x = L(x,-), x >0, have the same distribution.

A picture of the space—time paths corresponding to the permui&tiGn6, 2, 8,

7,1, 4,9) is shown in Figure 1. In this ca$6, x] x [0, y] contains nine points, and
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FiG. 1. Space-time paths of Hammersley's process, contained in [0, x] x [0, y].

one can check graphically that there are four longest North-East paths (of length 4)
from (0, 0) to (x, y), corresponding to the subsequen¢®ss, 7, 9), (3,6, 8,9),
(5,6,7,9) and (5, 6, 8, 9). Following a terminology introduced in Groeneboom
(2001), we call the points of the Poisson point process in the interideLof
a-points and the North-East corners of the space—time paths of Hammersley’s
process3-points. In fact, the actuat-coordinates of the-points in the picture are
different from the numbers, 8, ..., but the ranks of these-coordinates are given

by 3, 6, and so on, if we order the-points according to the second coordinate.

We use a further extension of Hammersley's interacting particle process, where
we have not only a Poisson point process in the interiorRéf, but also,
independently of this Poisson point process, mutually independent Poisson point
processes on the- and y-axis. We call the Poisson point process on thaxis
a process of “sources,” and the Poisson point process op-txs a process of
“sinks.” The motivation for this terminology is that we now start the interacting
particle process with a nonempty configuration of “sources” onctiagis, which
are subjected to the Hammersley’s interacting particle process in the interior
of Ri, and which “escape” through sinks on theaxis, if such a sink appears
to the immediate left of a particle (with no other particles in between). Figure 2
shows how the space—-time paths change if we add two sources and three sinks
(at particular locations) to the configuration in Figure 1.

The interacting particle process with sources and sinks was studied in Section 4
of Groeneboom (2002), where it was proved that, if the intensity of the Poisson
processes on the andy-axes are. and 1/, respectively, and the intensity of the
Poisson process in the interior]@ﬁ is 1, the process is stationary in the sense that
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FIG. 2. Space-time paths of Hammersley' s process, with sources and sinks.

the crossings of the space—time paths of the half-liResx {y} are distributed

as a Poisson point process of intensityfor all y > 0. The stationarity of the
process was proved by an infinitesimal generator argument. It also follows from
the computations in the Appendix of the present paper. The process is studied from
an analytical point of view in Baik and Rains (2000) (see Remark 3.1 in Section 3).

In Section 2 we compare Hammersley's interacting particle process, as
introduced in Aldous and Diaconis (1995), with the stationary extension of this
process, with sources on theaxis, and sinks on the-axis. However, as an
intermediate step, we introduce a process with Poisson sources on the positive
x-axis, but no sinks on the-axis. From Theorem 2.1 in the present paper we can
deduce that this particle process, with Poisson sources of intensityhe positive
x-axis, but no sinks on the-axis, behaves below an asymptotically linear “wave”
of slopeA? through thes-points as a stationary process.

In a coupling of the process with the stationary process, having both sources and
sinks, this wave can be interpreted as the space—time path of an isolated second-
class (or “ghost”) particle with respect to the stationary process. For the concept
“second-class particle” in the context of totally asymmetric simple exclusion
processes (TASEP), see, for example, Ferrari (1992) or Liggett [(1999), Chapter 3].
The second-class particle jumps to the previous position of the particle that exits
through the first sink at the time of exit, and successively jumps to the previous
positions of particles directly to the right of it, at times where these particles jump
to a position to the left of the second-class particle; see Figure 3. The space-time
path of the isolated second-class particle moves asymptotically, with probability 1,
along the characteristic of a conservation equation for the stationary process. Here
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FiG. 3. Path of isolated second-class particle in the configuration of Figure 2.

we establish a connection with the theory of totally asymmetric simple exclusion
processes. Although we use similar techniques as used for the study of the behavior
of second-class particles in TASEP, the situation is in a certain sense simpler in
our case, since we do not have to condition on having a second-class particle at the
origin at time zero.

In a similar way we prove that Hammersley’s process, with Poisson sinks of
intensity /A, A > 0, on the positivey-axis, but no sources on theaxis, behaves
asymptotically as a stationary procealsove a wave through the3-points of
slopex?, if the Poisson sinks on the positiyeaxis and the points of the Poisson
process (of intensity 1) in the interior di{i are independent. By a coupling
argument, these processes can be compared directly to Hammersley’s process, as
defined in Aldous and Diaconis (1995), which has empty configurations on the
x- andy-axis. The coupling argument gives a direct and “visual” proof of the local
convergence of Hammersley’s process to a Poisson point process with ingnsity
if one moves out along a “rayy = A2x, which is the main result Theorem 5 of
Aldous and Diaconis (1995). The convergence&df(z, t)/t to 2, ast — oo, then
also easily follows. This implies thd L, /./n converges to 2, a result first proved
by Logan and Shepp (1977) and Vershik and Kerov (1977).

In Section 3 we study thg-points of the stationary Hammersley process. For
these points we prove a “Burke theorem,” showing that these points inherit the
Poisson property from the-points. This allows us to show, using a time reversal
argument, that in the stationary version of Hammersley’s process, a longest
“weakly” North-East path (allowing horizontal and vertical pieces along the
x- or y-axis) only spends a vanishing fraction of time on ther y-axis.
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2. Path of an isolated second-class particle and local convergence of
Hammerdey’'s process. Fix A > 0, and letr — L, (-,r) be Hammersley's
process, now considered as a one-dimensional point process, developingsin time
generated by a Poisson process of sources on the pasitiwés of intensitya,

A > 0, a Poisson process of sinks on the time axis of intengityahd a Poisson
process of intensity 1 ilR2 , where the Poisson process on ihaxis, the Poisson
process on the time axis and the Poisson process in the plane are independent. It is
helpful to switch from time to time the point of view of Hammersley’s process

as a process of space—time pathsJRifJ and Hammersley’s process as a one-
dimensional point process, developing in time. This is somewhat similar to the two
ways one can view the Brownian sheet. Since the second coordinate can (mostly)
be interpreted as “time” in the sequel, we will denote this coordinateibgtead

of y, although, with slight abuse of language, we will continue to call the vertical
axis the ‘y-axis,” following standard terminology.

We add an isolated second-class particle to the process, which is located
at the origin at time zero. A picture of the trajectory of the isolated second-
class particle for the configuration shown in Figure 2 is shown in Figure 3.
Theorem 2.1 shows that the space—time path of the second-class particle is
asymptotically linear with slop2?. This is to be expected from results on totally
asymmetric simple exclusion processes (TASEP), as given in, for example, Ferrari
(1992). For TASEP Burgers’ equation is the relevant conservation equation in a
continuous approximation to the process. The analogue of Burgers’ equation for
a macroscopic approximation to Hammersley’s process (with neither sources nor
sinks) is
du(x,t) t)_zau(x, t)

ar Ut ax

where u(x, t) is the intensity of the crossings &t,7); see Liggett [(1999),
page 316], where the corresponding equation is given for the integrated intensity.
This leads us to expect that, analogously to the TASEP results,

(2.1) 0,

71X, 23102 1> oo,

whereX;, is thex-coordinate of the second-class particle, and whéte denotes
almost sure convergence, since in this case the {gath) = (t/A2,1):t > 0} is a
characteristic for (2.1); compare to, for example, (12.1) in Section 12 of Ferrari
(1992).

THEOREM 2.1. Let t — L,(-,¢t) be the stationary Hammersley process,
defined above, with intensities A and 1/ on the x- and y-axis, respectively. Let
X, be the x-coordinate of an isolated second-class particle wir.t. L, at time ¢,
located at the origin at time zero. Then

(2.2) 71X, 25102 1 oo,
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The proof of Theorem 2.1 is based on Lemma 2.1. To formulate this lemma
we first introduce some notation. Let, s > 0, be the stationary point process,
obtained by starting with a Poisson point process with intensity 0 in (0, co)
at time 0, and letting it develop according to Hammersley’s proces®,om),
with Poisson sinks of intensity/¥ on the y-axis, and a Poisson point process
of intensity 1 in the interior of the first quadrant. Furthermore, dgtr > 0,
be the stationary process, coupled#a: > 0, by using the same points in
the first quadrant as used fgr and starting with as/y)-“thickening,” § > y,
of the Poisson point process with intensity> 0 on thex-axis, obtained by
adding independently a Poisson point process of intedsityy, and lettingo;
develop according to Hammersley’s procesg@mo). To get stationarity for the
processs, we replace the sinks on theaxis by ay /§-thinned set, obtained by
keeping each sink with probability /6, independently for each sink. Then the
sinks on they-axis for the process have intensity 15. Finally, we lets — &; be
the process of second-class particleg vir.t. o, that is, the points of; denote the
locations where the point processhas extra particles w.r.t. the point process

We use the notation, [0, x] for the number of particles of, in the interval
[0, x] at timer, with the convention that particles, escaping through a sink in the
time interval[O, ¢], are located at zero. We defiag0, x] similarly. Furthermore,
we use the notation, (0, x] (o, (0, x]) for the number of particles of; (o;) in the
open half-open intervall, x] at timez. Finally we define the “flux"Fe (x, r) of &
throughx at timer by

(2.3) Fe(x,t) =0:[0, x] — 1[0, x].

The flux F¢ (x, t) is equal to the number of second-class particlg®in] at timet
minus the number of removed sinks in the segm@htx [0, ] (through which
space—time paths of second-class particles start moving to the right). Relation (2.3)
is in fact a conservation law.

A picture of the processes and ¢ is shown in Figure 4. In this case the
processo (inside the rectangl¢0, x] x [0, ¢]) is obtained from the process
by adding two sources at the locationg0) and z2(0) and removing a sink
at heightSp. The crossings of horizontal lines of the space—time paths of the
processo are the unions of the crossings of (the same) horizontal lines of the
space—time paths of the procesgemdé.

LEMmA 2.1. (i) Let n be Hammersley' s process, defined above, with sources
of intensity y > 0 and sinks of intensity 1/y, and let § > y. We add independently
a Poisson point process of intensity § — ¢ to the Poisson process of sources, and
performay /§-thinning of the Poisson point process of sinks of intensity 1/ onthe
y-axis. Let o be Hammersley's process, coupled to n, and having the augmented
set of sources with intensity 6 and the thinned set of sinks with intensity 1/5.
Finally, let Z, be, at time ¢, the location of the second-class particle for which
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FIG. 4. Processesn and &.

the space-time path starts moving to the right through the smallest removed sink.
Then

. Z; 1
im —=— as.
t—>o0 t 7/5

(i) Let n” represent Hammersley's process developing from left to right, with

sources (on the x-axis) of intensity y > 0 and sinks (on the y-axis) of intensity 1/y,
and let 0 < § < y. We add independently a Poisson point process of intensity
8§11 — y~1 to the Poisson process of sinks of intensity ¥ 1, and perform a
8/y-thinning of the Poisson point process of sources of intensity y on the x-axis.
Let o’ be the process developing from left to right, coupled to »’, and having the
augmented set of sinkswith intensity § 1 as sources and the thinned set of sources
with intensity § assinks. Finally, let Z; be the location of the second-class particle
of o’ wir.t. ', for which the space—time path leaves the x-axis through the smallest
removed source (of the original process n). Note that the smallest removed source
of n isaremoved sink for »". Then

ProoF (i) Letx > 0. We have

. 0, 1
lim M =—+xy a.s,
14

n—oo n

since 1, [0, nx] equalsn,(0,nx] plus the number of sinks for the process
contained in{0} x [0,n] (wheren is a positive integer), and sincg, (0, nx]
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and the number of sinks contained {8} x [0,n] have Poisson distributions
with parametersixy andn/y, respectively. Here we use the stationarity of the
process;, implying thatn, (0, nx] has a Poisson distribution with parametety .
Note that, for eacla > 0,

o
> P{Ina(0, nx] — nxy| > ne} < oo,
n=1

and hence, by the Borel-Cantelli lemma,
P{|n,(0,nx] — nxy| > ne infinitely often} =0,

implying the almost sure convergence 9f(0, nx]/n to xy, asn — oo. The
almost sure convergence tgyl of the number of sinks for the procegscontained
in {0} x [0, n], divided byn, follows in the same way.

Similarly,
. 0, 1
lim ul0, nxl =—-+x4 a.s.
n—00 n o)
Hence, by (2.3),
. Fge(mx,n) 1 1 1
2.4 im — = =—- — — S—y)=—(— — = a.s.
24  lim —— 5 5 TrEmm=— V){y(s x}

This limit is negative for O< x < 1/(y§) and positive fore > 1/(y3).

We can number the particles &faccording to their position at time 0, so that,
for i > 0, particlei is theith second-class particle to the right of the origin at
time 0. We then let;(r) be the position of théth second-class particle at time
t>0. Fori <0, we letz;(¢),i =0,—1,—-2,..., be the second-class particles at
time ¢, for which the space—time paths leave thaxis through the removed sinks
So, 81, ..., respectively, ordering these removed sinks according to the height of
their location on they-axis; note thaZ; = zo(¢) (see Figure 4).

HenceF: (x, t) has the representation

(2.5) Fe(x,t) =#{i >0:z;(t) <x} —#{i <0:z;(t) > x}.

Note that second-class particles:), i < 0, starting their space—time path to the
right at a removed source {0} x [0, ¢], and satisfying; (¢) € [0, x], do not give
a contribution to (2.5), since they give a contribution@0, x] as a particle
of n;, located at zero, and a contribution &0, x] as a particle ofb; in the
interval (0, x]. These two contributions cancel in (2.3). It is also clear from (2.5)
that, for fixedt, the flux F¢ (x, r) is nondecreasing im.

Relation (2.5) shows thaf:(Z,,n) = F:(zo(n),n) is equal to zero at each
timen, and sinceF: (nx, n) is nondecreasing in for fixed n, we get from (2.4),
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But, sinceZ; is nondecreasing in we then also have

(i) The result is obtained from part (i) by reflecting the processes w.r.t. the
diagonal, and noting that the reflected processes have the same probabilistic
behavior, but with the role of sources and sinks interchanged. The lifits1
changes tg§ because of the interchangexsfandy-coordinate. [

PrROOF OFTHEOREM2.1. We couple the process—> (L, (-, t), X;) with the
processt — (1, 0;), Where the processesando are defined as in part (i) of
Lemma 2.1, and wherg, (-,¢t) = n, andé > y = A. ThenZ, < X, for all ¢ > 0,
whereZ, is defined as in part (i) of Lemma 2.1. This is seen in the following way.

At time zero, we haveZg = Xo = 0. Since the process is obtained from the
process; by a thinning of the sinks and a “thickening” of the sources, and the
space—time path df; leaves the axi§0} x R, through the smallest removed sink,
it will leave this axis at a time which is larger than or equal to the time the space—
time path ofX, leaves the axis, since the space—time patki;ofill leave the axis
through the smallest sink in the original set of sinks. Note that sinbas less
sinks and more sources:

(2.6) n:(0, x] < 07(0, x], t>0,x>0.

This means that not onlg, becomes positive at a time that is at least as large as
the time thatX, becomes positive, but also moves to the right at a speed that is
not faster than that ok,. Also note that ifZ, jumps to a positionx > Z;_, an
n-particle jumps over it from a positian’ > x. Here and in the sequel we use the
notationZ; _ to denote liny4; Z,/, with a similar convention fok, .

If X, <xandZ,_ < X,_, X, will jump to x’. SinceZ, < x’, Z, can never
overtakeX,. Note that we can have’ > x if several second-class particles are
next to each other, without a first-class particle in between. In this£adees not
have to move to the position of thgparticle, but can move to the position of the
closest second-class particle to the right of it.

Hence we have, with probability 1,

Z, 1 1

. Xy .
liminf — > lm — = —=—.
t—o0o t T t—oo t ys A

Since this is true for any > A, we get

. 1
liminf — > —.
t—oo t )LZ
For the reverse inequality, we switch the role of the sources and the sinks,
and view Hammersley’s process as developing from left to right. This time we

add independently a Poisson point process of intedsity— y ~1 to the Poisson
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process of sinks of intensity—1, and perform &/ -thinning of the Poisson point
process of sources of intensiyon thex-axis, wherey =1 and 0< § < y, and
use the procesg ando’, defined in part (ii) of Lemma 2.1. Note that has the
same space-time paths as the progesiefined above. In the coupling we now
considerL; as a process developing from left to right and téker, -) = n;.

Let X! be an isolated second-class particle for the process running from left
to right in the same way a; is an isolated second-class particle for the process
running upward. Trajectories &f and X’ are shown in Figure 5.

We have

(2.7) X(X'(x)) <x, x>0,

writing temporarilyX’(x) instead ofX!. andX () instead ofX,,. Equation (2.7) is
equivalent to noting that the trajectory @, ¢) lies above the trajectory ¢k, X.)
(see also Figure 5). This follows from the fact thatXf,, ¢) hits a space—time path
at a point North-West of the point whete, X’) hits the same space-time path,
this must also be true for the next space—time path, since the first trajectory moves
up, and the second trajectory moves to the right.

By Lemma 2.1 and the argument above, now applied on the process moving
from left to right, we get the relation

/ /

X
(2.8) liminf £ > lim —&£ =64,

X—>00 x X—>00 x

with probability 1. But the almost sure relation lim jnf ., X’ /x > §A implies for

(07 t) (XM t) (xv t)

<&

__I Q

o
o Ty

o

o

o

o **********(gj,Xé)
% ok ok k

(0,0) (z,0)

Fic. 5. Trajectoriesof (X;, ) and (x, X/).
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the process — X, the almost sure relation

X

(2.9) lim sup tt <1/(520),

—>0o0

since we get for eachl > 1/(8A), with probability 1,

IimsupX(ti);) XX ) < lim N

t—00 t

<limsu

T oo /M Timoot/)N

’

using (2.8) in the first inequality and (2.7) in the second inequality.
Since (2.9) is true for an§ < A, we get, with probability 1,

limsu X _ 1
t—>oopl e

The result now follows. O

REMARK 2.1. The second-class particte, introduced at the end of the proof
of Theorem 2.1, plays the same role for Hammersley’s process, running from left
to right, as the second-class partidle plays for Hammersley’s process, running
up. It therefore has to satisfy

X/
(2.10) lim =% =22,

X—>00 x
with probability 1. Note that we get an interchange of trendr coordinate which
leads tor? in (2.10) instead of the /&2 in (2.2), but that the line along which
(x, X!) tends toco is in fact the same as the line along whicty, ¢) tends toco.

The following lemma will allow us to show that Theorem 2.1 implies both the
local convergence of Hammersley's process to a Poisson process and the relation
¢ = 2 [which is the central result Theorem 5 on page 204 in Aldous and Diaconis
(2995)].

LEMMA 2.2. Let L) be the stationary Hammersley process, defined in The-
orem 2.1. Furthermore, let L, be the process obtained from L; by omitting the
sinks on the y-axis, and let L;* be the process obtained from L; by omitting the
sources on the x-axis. L;y is coupled to L, by using the same point processin
the interior of R? , and the same set of sources on the x-axis, and L; * is coupled
to L;,, by using the same point process in the interior of R2 , and the same set of
sinks on the y-axis. Then:

(i) The processes L; and L~ have the same space-time paths below the
space-time path ¢ — (X;,t) of the isolated second-class particle X; for the
processt +— L, (-, 1).
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(i) The processes L, and L;* have the same space-time paths above the
space-time path ¢ — (¢, X;) of the isolated second-class particle X; for the
processt — L (t, -), running from left to right.

PrROOF Omit the first sink at locatiory; on they-axis. Then the path af;,
leaving through(0, y1) is changed to a path traveling up through gheoint with
y-coordinateys to the right of (O, y1) until it hits the next path of the original
process. At this level the path of the changed (by omitting the smallest sink)
process is going to travel to the left, and the next path will go up (instead of to
the left) through the closeg@-point to the right. And so on. The “wave” through
the B-points that is caused by leaving out the first sink is in fact the space—time
path of the isolated second-class partikle(see Figure 3).

We can now repeat the argument for the situation that arises by leaving out the
second sink. This will lead to a “wave” through-points that is going to travel
North of the first wave that was caused by leaving out the first sink. This wave
is the space—time path of an isolated second-class particle in the new situation,
where the first sink is removed. Below the first wave the space—time paths remain
unchanged. The argument runs the same for all the remaining sinks.

(ii) The argument is completely similar, but now applies to the process running
from left to right instead of up (see the end of the proof of Theorem 2I).

In the proof of Corollary 2.1 we will need the concept of a “weakly North-East
path,” a concept also used in Baik and Rains (2000).

DEFINITION 2.1. Inthe stationary version of Hammersley’s procesgakly
North-East path is a North-East path that is allowed to pick up points from either
the Poisson process on theaxis or the Poisson process on thexis before
going strictly North-East, picking up points from the Poisson point process in the
interior]R%r. The length of a weakly North-East path from (0, 0) to (x, ¢) is the
number of points of the Poisson processes on the axes and the inteIRiérami
this path from(0, 0) and (x, ¢). A strictly North-East path is a path that has no
vertical or horizontal pieces (and hence no points from the axes).

Note that the length of a longest weakly North-East path f(0n®) to (x, ¢) in
the stationary version of Hammersley’s process is equal to the number of space—
time paths intersectingp, x] x [0, ¢], just as in the case of Hammersley’'s process
without sources or sinks (in which case only strictly North-East paths are possible).

COROLLARY 2.1 [Theorem 5 of Aldous and Diaconis (1995)]Let L be
Hammersley's process on R, started from the empty configuration on the axes.
Then:
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(i) For each fixed a > 0, the random particle configuration with counting
process

y— L(t+y,at)— L(t,at), y > —t,

convergesindistribution, ast — oo, to a homogeneous Poisson process on R, with
int((a_n)sity Ja.
i

lim EL(t,t)/t=2.
—00

PROOF. (i) Fix ' > a, and let, forx = +/a/, L, > be Hammersley’s process,
starting from Poisson sources of intensityon the positivex-axis, and running
through an independent Poisson process of intensity 1 in the plane (without
sinks). Then we get from Theorem 2.1 and Lemma 2.2 that the counting process
y> L, (t+y,at) — L, (t,at) converges in distribution to a Poisson process of
intensityA, since the process, restricted to a finite interval, lies with probability 1 at
level ¢ to the right of the space—time path of the isolated second-class pd¥ticle
ast — oo.

If we couple the original Hammersley process and the prob§§3/ia the same
Poisson point process in the plane, we get that at any level the number of crossings
of horizontal lines of the proceds is contained in the set of crossings of these
lines of the procesg.; *, since the latter process has sources onxtais and
no sinks on they-axis. Hence, for a finite collection of disjoint intervdls, b;),

i =1,...,k, and nonnegative numbe#s, ..., 6;, we obtain

E exp

k
— > 6i{L(t +bi,ar) — L(t +a,~,at>}}
i=1

k
> Eexp!—Z@i{L;y(ter,-,at) —L;y(t+a,-,at)}}.

i=1
But the right-hand side converges by Theorem 2.1 and Lemma 2.2 to

k
exp{—Zub,- —a;){1— e—@'}},
i=1

so we get

k
liminf Eexp{— > 0Lt +bi,at) — L(t +a;, at)}}

t—>00 1
1=
(2.11)
> o~ Ll Mbi—ap{l—e~i}
A similar argument, but now comparing the procdssvith a process.; *,
having sinks of intensity . = 1/+/a’ on they-axis (which can be considered to
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be “sources” for Hammersley’s process, running from left to right), but no sources
on thex-axis, shows

k
limsupE expy — > " 60;{(L(t + b;, at) — L(t + a;, at)}}
I—0o0 l:1
(2.12)
< ¢~ Ticirbi—an(i-e%)

for anya’ < a, since in this case the crossings of horizontal lines of the pracess
are supersets of the crossings of these lines by the prégéss

That the crossings of horizontal lines of the procéssre supersets of the
crossings of horizontal lines by the procdss' can be seen in the following way.
Proceeding as in the proof of Lemma 2.2, we can, for the probgsemit the
sources one by one, starting with the smallest source. The omission of the smallest
source will generate the path of a second-class park¢jeand the paths of.
will, at the interior of a vertical segment of the pathXf, have an extra crossing
of horizontal lines w.r.t. the paths of the process with the omitted source. On the
other hand, the process with the omitted source will have extra crossinggioél
lines, since some particles will make bigger jumps to the left. We can now repeat
the argument by omitting the second source, which will lead to a further decrease
of crossings of horizontal lines, and so on.

Combining (2.11) and (2.12), we find

k
lim Eexpl — Y 6;{L(t+bi,at) — L(t +a;,at)} = ¢~ Xizabi—aail—e"y,

t—00 .
i=1

and the result follows.

(i) Since the length of a longest strictly North-East path is always smaller than
or equal to the length of a longest weakly North-East path, in the situation of
a stationary process with Poisson sources on the posiasds and Poisson sinks
on the positivey-axis, both with intensity 1, we must have, for each 0,

EL(t,t)/t <2,

since the expected length of a longest weakly North-East path {@o6) to (z, 1)
is 2¢ for the stationary process.

The latter fact was proved in Groeneboom (2002), and comes from the simple
observation that the length of a longest weakly North-East path 0) to (z, 7)
is equal to the total number of paths crossf@ipx [0, r] and[0, ¢] x {z}. Since the
number of crossings d0} x [0, ] has a Poissam) distribution by construction,
and the number of crossings [@f, 1] x {¢} also has a Poissn distribution, this
time by the stationarity of the procegs, wherei = 1 in the present case, we get
that the expectation of the total number of crossings of the left and upper edge is
exactly 2.
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To prove conversely that limipf. .o EL(z,1)/t > 2, we first note thaL (z, 1) is
in fact the number of crossings of Hammersley's space—time paths with the line
segmenfO, ¢] x {¢t}. Take a partition 0t/ k,2t/k, ..., t of the interval[O, ¢], for
some integek > 0. Then the crossings of the space—time patilsaffthe segment
[ —D)t/k,it/k] x {t} contain the crossings of this line segment by the paths of a
Hammersley procesB;ix with sinks of intensity YA; =1/./a;, a; < k/i, on the
y-axis, but no sources on theaxis.

But, by Theorem 2.1 and Lemma 2.2, the crossings of the prdc;gf‘swith the
segmen{(i — D)t/k,it/k] x {¢t} belong, ag — oo, to the stationary part of the
process with probability 1, sinee < k/i.

We now have

)\‘.
. -1 —Xx — . i
t|l>moot E{L;"(it/k,t) = L; (G0 = Dt /k, z)}:?,

by uniform integrability Oft_lL;ix(yt, 1),y €(0,i/k], t > 0, using, for example,

the fact that the second moments are bounded above by the second moments of
the corresponding stationary process with sources of intensignd sinks of
intensity I/;. Hence we get, by summing over the intervals of the partition,

_ 1&
“ﬂg EL(t,1)/t > . l;ﬁ
Lettinga; 1 k/i, we obtain (still for fixedk)

k
liminf EL(1,1)/1 = > 1YVik=2(1+ 0(1/k)).
i=1

and (i) follows by lettingk — oc in the latter relation. [J

3. Burke's theorem for Hammerdley’'s process. In this section we show
that, in the stationary version of Hammersley’'s process with sources on the
x-axis and sinks on the-axis, the 8-points inherit the Poisson property from
the «a-points. One could consider this as a version of Burke's theorem for
Hammersley’s process. Burke’s theorem [see Burke (1956)] states that the output
of a stationaryM /M /1 queue is Poisson. An interesting generalization of Burke’s
theorem is discussed in O’Connell and Yor (2002). A version of Burke’s theorem
for totally asymmetric simple exclusion processes is given in Ferrari [(1992),
Theorem 7.1]. Burke’s theorem is essentially based on a time-reversibility property
and for our result on thg-points this is also the case. Our version of Burke’s
theorem runs as follows.

THEOREM 3.1. Let L, be a stationary Hammersley process on [0, T1] x
[0, T»], generated by a Poisson process of “sources’ of intensity A on the positive
x-axis, a Poisson process of intensity 1/ of “sinks’ on the positive y-axis and
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a Poisson process of intensity 1 in R2, where the three Poisson processes are
independent. Let Lf denote the point process of g-pointsin [0, 71] x [0, T>], that
is, the North-East corners of the space-time paths of the process L;, restricted
to [0, T1] x [0, T»], Li{‘ the entries of the space-time paths on the East side of
[0, T1] x [0, T>] and Lg’“t the exits of the space-time paths on the North side. Then
Lf is a homogeneous Poisson point process with intensity 1 in [0, T1] x [0, T>],
LI" is a homogeneous Poisson process of intensity 1/ and L9 is a homogeneous
Poisson process of intensity A, and all three processes are independent.

PROOF We define a state spadeas the possible finite point configurations
on[0, T1], SOE =| |2 E,, Where

En:{(xl""vxn):ofxlf"'anST].} (”21)

and Eqg = {@}, the empty configuration. We endow eaél with the usual
topology, which makesE into a locally compact space. We define a Markov
process X, )o<:<7, ON E such thatX, is the point configuration of the Hammersley
processL on the line[0, T1] x {¢}. In particular we have thaXg is distributed
according to a Poisson process with intensity From the definition of the
Hammersley process it is not hard to see that the geneé€atof this Markov
process is given by

4\ 1 1
Grw = [ Ry dr+ 3 ) - (X + Tl)ﬂx)

where f € Co(E), £ corresponds to an exit to the left arR} corresponds to an
insertion of a new Poisson pointatso

£1E—>E:°Cx:{(x2"-"x”)’ if xeE, (n>2),

a, if xe Egu Eq,

and for O< ¢ < 771,

(xlv oo 9xi—17 tv xl+17 . 9xl‘l)’
R E— E:Rix = if x,_1<t<x; (x €E,),
(X1, ..., X, 1), if x, <t (x € E,).

Here we use the convention that= 0. To prove thatG is indeed the generator,
we fix f € Co(E) andx € E and consider the transition operators

Pfx)=E(f(X)|Xo=x) (t=0).

We will consider the process for a time interv@l 4] (7 | 0) and callA; the
number of Poisson points in the stiip, 71] x [0, 2] and S;, the number of sinks
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in {0} x [0, k]. Then
Py f(x) = f(x)P(A, =0andS, =0)

T
+ i/ " F(Ryx)dt - P(Ay =1andS, =0)
Tr Jo
+ f(£Lx)P(A, =0andS, =1) + O(h?)

1 T h
_ f(x)<1— Toh — Xh) +h/0 S AR dE + (LX) + 0.
This shows that for every € Co(E) and every € E,

Pif(x)=Gf(x).

dtli—o
SinceX; is clearly a homogeneous Markov process, we get [0, 73],
d
(3.1) —| P f(x)=GP f(x).
ds |s=;

Now we note thaG is a continuous operator afy(E), soe'“ exists and is also a
continuous operator. Since

d ,
oo e =G f (),
S ls=t
(3.1) together with the uniqueness of solutions of a differential equation proves
that

Pif(x)=¢"“ f(x).
The key idea to prove the theorem is to consider the time-reversed process
}?s = Il/T XTz—s’ ()?Tz = XO)-
S 3S

We take the left-limit of the original proces¥ to ensure the cadlag property
of (Xs)o<s<1,- Since, givenX;, the past of the procesX is independent
of the future, it follows immediately thak is a Markov process, possibly
inhomogeneous. However, if we defineas the probability measure dhinduced
by a Poisson process of intensitythenXo ~ 1 andpu is a stationary measure for
the generator5, which implies thatX also is stationary and homogeneous. The

stationarity ofX was shown in Groeneboom (2002), but will also be a consequence
of calculations done in the Appendix. Now consider the transition operators

Pfx)=E(f(X)|Xo=x) (=20
for the time-reversed process. Then, fog € Co(E) andh > 0,
E(f(Xi1n)8(X0) = E(g(X)E(f (Xe4n)1X1))
= E(Pnf(Xng(Xy))

= [ Pir@gton.
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We also have

E(f(Xi+n)8(X0) = E(f Xe+n) E(g(X)| X141))
= E(f (Xe48) Prg(Xi+1))

= [ r@Pigon.

We use that, due to the stationarity of the proc&ssX, and X,,, both have
marginal distribution.. Combining these results gives

(3.2) /E P f (0)g(x)p(dx) = fE £ Prg(o)do).

In the Appendix we calculate the operatet, defined by the equation

(3.3) /E Gf()g()u(dx) = fE FG*g(udy)  forall f.g € Co(E).

It is shown there that

. _(h 1 1
B4 G0 = [ eLds+ ey - <X 4 Tl)g@),

where in an analogous way as before we defineZ — E as an exit to the right
and.L;:E — E as a new point at such that the point directly to the left of
moves to the right.

We will use (3.4) several times. First of all, siné&1 =0, it shows thaj is a
stationary measure. Second, we see thagferL. > (u)

N 1
1G* g0 < Z(X + Tl)ugnoo,

which proves thatG is in fact a continuous operator abi(x), as well as a
continuous operator o6g(E). SinceP; = ¢'%, P, is also a continuous operator
on Ll(u). Therefore, (3.2) now shows th§; =P = ¢'%" . so in fact, using the
same argument as befol@,= G*. So the reversed process has the genefator

Now we define a reflected Hammersley proc&ss as follows: we take the
original stationary Hammersley process and reflect all the space—time paths with
respect to the line segme(‘% T1} x [0, T»]; call this avertical reflection. So all
points now move to the right and exit on the East side. One verifies that the
generator forX" is given by G* in the same way we did it for the proce&s
and asX" also starts with a Poisson distribution of intensityit has the same
distribution asX . Note that if one wishes to make a picture of the space—time paths
of X, one can take the original Hammersley process and reflect all the space—time
paths with respect to the line-segm@mit7y] x {%Tz}, ahorizontal reflection.

Since in XV all the jumps in(0, T1) x (0, T») are made toward a point of
a vertically reflected Poisson process, and in the pro&essi these jumps are
made to the horizontally reflectegtpoints of the original Hammersley process,
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we have proved that thg-points are distributed according to a Poisson process
with intensity 1. Furthermore, in the process’ paths exit on the East side
according to a Poisson process with intensify,land this corresponds tb",
horizontally reflected. The proces§Y, also horizontally reflected, corresponds to
the entries ofXV at thex-axis, and is therefore Poisson with intensityFinally,

the independence of the three processes follows from the fact that this is true (by
construction) forxV. O

Theorem 3.1 allows us to show that a longest weakly North-East path
from (0, 0) to (¢/A2, 1) only spends a vanishing proportion of time on either the
x- or y-axis. For the concept of longest weakly North-East path, see Definition 2.1.

COROLLARY 3.1. Under the same conditions as Theorem 3.1, a longest
weakly North-East path from (0, 0) to (z/A2, ) spends a vanishing proportion of
time on either the x- or y-axis, in the sense that the maximum distance from (0, 0)
of the point where alongest weakly North-East path leavesthe x- or y-axis, divided
by ¢, tends to zero with probability 1, as¢ — oo.

PROOF.  Consider a longest weakly North-East path fre@0) to (1/2, 7).
Such a path can be associated with a path of a second-class particle fido)
to (0, 0) for the time-reversed process, running through the saseints as the
longest weakly North-East path, but for which the rolesrefand g-points are
interchanged. This means that for the reversed process the associated path lies
below or coincides with the path of the second-class particle that starts moving
through the crossing of the upper ed@er/12] x {t}, closest ta(t /A2, 1), moves
down to the firstx-point on the path of the crossing, then moves to the left until it
hits the path below the highest path crossing the rectgfglga?] x [0, ], then
moves down again, and so on. Similarly this path lies above or coincides with the
path of the second-class patrticle that starts moving to the left through the crossing
of the right edgdr/22} x [0, t], closest ta(t /A2, 1), starts moving down when it
hits thea-point on the path of the crossing, moves to the left when it hits the next
path, and so on.

According to Theorem 2.1 and Remark 2.1, now applied on the reversed
process, the 8 waves” of the lower and upper path are asymptotically linear
along the line through the origin with slope?. This implies the statement of
Corollary 3.1. O

REMARK 3.1. ltis proved in Baik and Rains (2000) that/3{L; (, r) — 21},
whereL, (z,t) is the length of a longest North-East path frgdn0) to (¢, ¢) in the
stationary Hammersley process (as defined in Theorem 3.13with), converges
in distribution to a distribution functiotky, which is related to, but different from
the Tracy—Widom distribution function. This has the interesting consequence that
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the correlation between the number of points on the left edge and the number of
crossings of the upper edge of the squéxe]? tends to—1, ast — oo. Otherwise
the variance oL, (¢, r) would be larger thams, for somen > 0, instead of being
of order O (t%/3). We do not need their result in our argument, however. Baik and
Rains (2000) use an analytical approach, applying the Deift-Zhou steepest descent
method to an appropriate Riemann—Hilbert problem (after using a representation
of the distribution function in terms of Toeplitz determinants). This approach is
rather different from the approach taken here.

As noted in Baik and Rains (2000), the stationary process is a transition between
two situations: if the intensities of the Poisson processes on-thes andy-axis
are strictly smaller than 1, we get that/3{L; (¢, 1) — 2¢} converges in distribution
to the Tracy—Widom distribution. On the other hand, if one of these intensities is
bigger than 1 (but the intensities are not equal), we get convergentg(aft)
to a normal distribution, with the usuat/? scaling (and a different centering
constant).

REMARK 3.2. In Groeneboom (2001) a signed measure prodgswas
introduced, countingx- and B-points contained in regions of the plane. The
V;-measure of a rectangl®, x] x [0, y] is defined as the number af-points
minus the number gB-points in the rectanglg, rx] x [0, ¢ty], divided byz. The
V;-process has the property that

Vi(§) = V(S),

almost surely, for rectangles in the plane, wheré’ is a positive measure with
density

2

C
oxdy’ V=g
Here we use the notatioW (x, y) to denote theV-measure of the rectangle
[0, x] x [0, y]. Likewise we writeV;(x, y) for the V;-measure of the rectangle
[0, x] x [0, y]I.

The problem of proving part (ii) of Corollary 2.1 of the present paper was
reduced to showing that

(3.5) Sv(x,y) & x,y>0.

@6 [ VvV 2 [ Vivdvi. =iy,
where
Vt(u,v)zf dviu',v).
[0,u]x[0,v)

Although (3.6) indeed has to hold, the argument for it, given in Groeneboom
(2001), is incomplete, and needs a result like Theorem 2.1 of the present paper to
be completed. [The difficulty is caused by the locally unbounded variation of the
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measuré/;, ast — oo, which has to be treated carefully to explain why we néed

as integrand in the integral in the left-hand side of (3.6) instead of,.gwhich

leads to an integral that is asymptotically twice as large.] But since Theorem 2.1
allows us to prove both the local convergence to a Poisson process and convergence
of EL(¢,t)/t to 2, we did not pursue the approach in Groeneboom (2001) any
further in the present paper.

APPENDIX
The purpose of this Appendix is to prove (3.4). Remember that
o
E=||Ex
n=0
whereEqg = {@} and

E,={(x1,...,x,):0<x1<--- <x, <T1}.

A Poisson process of intensityinduces a probability measuge on E. Denote
by w, the restriction ofu to E,, SO u,(dx) = Ae %T1dx. The generator was
given by

n 1 1
G:Co(E) = ColE):Gf () = [ f(R)di + 5 f(£x) - (x + Tl)f<x>.

Define G.f = Gf + (1/A» + T1)f; we will calculate the dual ofG. Let
/. 8 € Co(E):

/E G f(0)g(x)pu(dx)
=G f(@)5(@)+ Y [ Gaf gmad)
n=1 n
L o [T
=M f(@)g(2) + e f F(g(@)dr
0
00 Ty
—AT1 n n—1
+e ;[x /E/O F(Rx)g(x)dtdx + A /Enf(cﬁx)g(x)dx}
T
= e‘”l%f(@)g(@) +e M / " F(g(@)de
0

oo n
—AT:
Fe Yy | FOL X1 1 )

n=1li=1 {x€Ep,xi—1<t=xi}

X g(x)dxdt
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xe€E, t>x,}

0
—I—e_mZ)»"/ f(x1, ..., x5, 0)g(x)dx dt
n=1 {
o0
+e N Z A"_le flx2,...,x)gx)dx.
n=1 n

Now we make a change of variable for each term in such a way that w& gget
in each of the integrals:

[E G f(0)g(x)u(dx)

— el p (o)) 4 T / " re@)d
= Iy g 0 Y)8 y

0 n
ey szn/

f(y)g(YI, e Vi—1, 8,
n=1li=1 (yeE,,yi<s<yit1}

yi+la ce ey yn)dy dS

0
+e My / FOEOL, -\ ) dy
n=1 En+l

00
—ATy n—1
+e A /
nX::l {y

}f(y)g(& }’1, 7yn71)dyds

€Ey_1,5<y1

1 1
= [ (@)8@)o(Eo) + /E FOIg@)a(a)

+y > }f(y)g(yl,...,yi,l,s,

n=1i=1" VEERYiSS=<Yiq1

Vidls -5 V) Un(dy) ds

0
> FOIZE Y1 - Y in(dy) ds
n=0 {y€En,s<y1}

<1
+ ngzx fE FO)EODL s YD) in(dY)

g [ n f(y)< / T1g<£sy>ds)un<dy> +§0% [ TR ey)

i 1
f f(y)</ g(Lsy)ds + —g(eﬂy)>u(dy)-
E 0 A
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Here we defingr as an exit to the right and; as a new point at such that the
point directly to the left ok moves to the right, that is,

R:E_)E:Rx:{(xl,...,xn_l), ?fern(nEZ),
g, if xe Egu Eq,
and for O< s < T,
X1y ey Xim1, 8, Xik 1y« - -5 Xn),
Ly E— E:Lgx = if x;, <s <xj41(x € Ey),
(S, X1, ..., Xn), if s <x1(x€kE,).

SinceG*g = G% g — (1/A + T1)g, we have shown that

Ty 1 1
G*g(y) = fo S ds +Zg(RY) - (X + Tl)g(w.
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