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KREIN’S SPECTRAL THEORY AND THE PALEY–WIENER
EXPANSION FOR FRACTIONAL BROWNIAN MOTION

BY KACHA DZHAPARIDZE AND HARRY VAN ZANTEN

Center for Mathematics and Computer Science and Vrije Universiteit Amsterdam

In this paper we develop the spectral theory of the fractional Brownian
motion (fBm) using the ideas of Krein’s work on continuous analogous of
orthogonal polynomials on the unit circle. We exhibit the functions which
are orthogonal with respect to the spectral measure of the fBm and obtain an
explicit reproducing kernel in the frequency domain. We use these results to
derive an extension of the classical Paley–Wiener expansion of the ordinary
Brownian motion to the fractional case.

1. Introduction. Let X = (Xt)t≥0 be a fractional Brownian motion (fBm)
with Hurst indexH ∈ (0,1), that is, a continuous, centered Gaussian process with
covariance function

EXsXt = 1
2(s2H + t2H − |s − t |2H).

Say the process is defined on the probability space(�,F ,P), and for some fixed
time horizonT ≥ 0, define the linear spaceHT as the closure inL2(P) of the
(complex) linear span of a collection of random variables{Xt : t ∈ [0, T ]}.

So-called linear problems for the fBm are problems in which it is required
to find elements of the Hilbert spaceHT with certain specific properties. In the
1960’s the basic linear problems like prediction, interpolation, moving average
representation etc. were treated by various authors; see Molchan (2003) for an
overview of these contributions. However, these results did not become widely
known. Many of them were rediscovered during the last decade when new
application areas like telecommunication networks and mathematical finance
stimulated a renewed interest in the fBm. Recent contributions dealing with
linear problems can be found, for instance, in Gripenberg and Norros (1996),
Decreusefond and Üstünel (1999), Norros, Valkeila and Virtamo (1999), Nuzman
and Poor (2000) and Pipiras and Taqqu (2001).

There exist several representations of the fBm that give insight into the structure
of the linear spaceHT . An important example is the spectral representation

EXsXt =
∫

R

(eiλt − 1)(e−iλs − 1)

λ2 µ(dλ) = 〈et , es〉µ,
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where µ(dλ) = (2π)−1 sin(πH)�(1+ 2H)|λ|1−2H dλ is the spectral measure
of the fBm andet (λ) = (eiλt − 1)/iλ [see, e.g., Yaglom (1987), page 407 or
Samorodnitsky and Taqqu (1994), page 328]. If we defineLT as the closure
in L2(µ) of the (complex) linear span of the collection of functions{et : t ∈ [0, T ]},
this representation gives rise to an isometry betweenHT and the function
spaceLT , determined by the relationXt ←→ et . We can use this spectral isometry
to reformulate a linear problem for the fBm in spectral terms. It then becomes a
linear problem in the function spaceLT , which has the advantage that we have
mathematical tools like Fourier-type techniques, at our disposal.

In this paper we present new results regarding the fine analytical structure of
the frequency domainLT . In particular, we exhibit certain “orthogonal functions”
with respect to the spectral measureµ of the fBm and we obtain an explicit
reproducing kernel forLT , turning it into a reproducing kernel Hilbert space
(RKHS). To illustrate the significance of these new frequency domain results for
the fBm, we apply them to derive a generalization to the fractional case of the
classical Paley–Wiener expansion of the ordinary Brownian motion [cf. Paley
and Wiener (1934)]. In spectral terms, obtaining a series expansion translates to
finding an orthonormal basis of the spaceLT . We achieve this by using the RKHS
structure and the explicit expression that we have for the reproducing kernel.

It is well known that orthogonal polynomials on the unit circle are very useful in
the spectral analysis of stationary time series. They can be used to solve problems
like prediction and interpolation, and are also useful in connection with likelihood
estimation and testing [see, e.g., Grenander and Szegö (1958)]. In a classical paper,
Krein (1955) introduced certain continuous analogues of orthogonal polynomials
on the unit circle. We refer to Akhiezer and Rybalko (1968) for a more elaborate
treatment, including detailed proofs of Krein’s statements. As was shown by
Kailath, Vieira and Morf (1978), Krein’s orthogonal functions play the same role in
the spectral theory of continuous-time processes with stationary increments as the
orthogonal polynomials do in times series theory. For a certain class of processes
with stationary increments, Kailath, Vieira and Morf (1978) pointed out how the
orthogonal functions describe the structure of the frequency domain. In the present
paper we develop the spectral theory of the fBm along the same lines.

The results of Akhiezer and Rybalko (1968) and Kailath, Vieira and Morf
(1978) highly depend on the “signal plus white noise” structure of the processes
that they consider. It turns out, however, that Krein’s ideas are also applicable
for the fBm, which is not of the latter type. The key point is that the fBm can
be “whitened” in the sense that integration of an appropriate deterministic kernel
with respect to the fBm yields a continuous Gaussian martingale, the so-called
“fundamental martingale.” This was first proved in the 1960’s by Molchan [cf.
Molchan (2003)]. For alternative, more recent approaches see also Decreusefond
and Üstünel (1999), Norros, Valkeila and Virtamo (1999), Nuzman and Poor
(2000), Pipiras and Taqqu (2001) or Dzhaparidze and Ferreira (2002). Conversely,
it is well known that by integrating a certain deterministic kernel with respect to
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the fundamental martingale, we can recover the fBm. Since these results play an
important role in this paper, their precise statements will be recalled in Section 2.

The whitening and moving average formulas for the fBm provide us with the
starting point for the development of the spectral theory. They give rise to a
Hilbert space isometryU betweenLT and the spaceL2([0, T ],V ), whereV is
the variance function of the fundamental martingale. In the ordinary Brownian
caseH = 1/2 this isometry is simply the Fourier transform. We will show that,
for H �= 1/2 it is also a Fourier-type integral transformation, and obtain an explicit
expression for the Fourier kernel in terms of Bessel functions. Using this Fourier
kernel, we then introduce a functionST that will turn out to be a reproducing
kernel onLT . An explicit expression for this kernel will be derived in a number of
steps. First we shall use the Bessel differential equation to prove that the properly
normalized Fourier kernels satisfy Krein’s continuous version of the recurrence
relation for orthogonal polynomials. It will then be rather straightforward to obtain
a Christoffel–Darboux-type formula forST . In combination with the expression for
the Fourier kernel, this will lead to an explicit formula for the reproducing kernel
onLT . This program is carried out in Sections 3–6.

In Sections 7 and 8 we use the new results on the structure of the spaceLT to
derive an extension to the fractional case of the classical Paley–Wiener expansion
of the ordinary Brownian motion. We will first use the reproducing kernel to find
a suitable orthogonal basis ofLT . By transporting of this basis to the spaceHT ,
we will prove that the fBm admits the series expansion

∑
n∈Z

e2iωnt − 1

2iωn

Zn, t ∈ [0,1],

where theωn are the real-valued zeros of the Bessel functionJ1−H and theZn are
independent, complex-valued Gaussian random variables with zero mean and a
variance that can be expressed explicitly in terms of Bessel functions and their real
zeros. Using the fact that

√
zJ1/2(z) = √

2/π sinz, it can be seen that forH = 1/2
this indeed reduces to

∑
n∈Z

e2inπt − 1

2inπ
Zn, t ∈ [0,1],

with theZn i.i.d., standard Gaussian. This is the expression that Paley and Wiener
(1934) used as the definition of the standard Brownian motion.

We will also briefly consider questions like the rate of convergence of the Paley–
Wiener expansion, and possible extensions to the fractional Brownian sheet. In
particular, we will argue that the expansion is rate-optimal, in the sense of Kühn
and Linde (2002). This is obviously a desirable feature if the expansion is used for
simulation purposes and is also relevant in connection with the small ball problem
for the fractional Brownian sheet [see, e.g., Li and Linde (1999) and Li and Shao
(2001) for the precise connections].
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2. Auxiliary facts and notation. The spectral representation can be used to
define a stochastic integral with respect toX of a large class of deterministic
integrands. In this paper we denote the indicator function1(0,t) of the interval(0, t)

simply by 1t . Using this notation, as well as the previous notationet (λ) =
(exp(iλt) − 1)/iλ, we may writeet = 1̂t . Here and elsewhere below we adopt the
usual convention to denote the Fourier transform of a functionf ∈ L2(R) by f̂ ,
that is,

f̂ (λ) =
∫

R

f (x)eiλx dx.

Now consider the class of functionsIT = {f ∈ L2[0, T ] : f̂ ∈ L2(R,B(R),µ)}
and endow it with the inner product〈f,g〉IT

= 〈f̂ , ĝ〉µ. Then the spectral
representation can be written asEXsXt = 〈1s,1t 〉IT

. In particular, the mapping
1t → Xt extends to a linear mapI :IT → HT with the property thatI (1t ) = Xt

and forf,g ∈ IT ,

EI (f )I (g) = 〈f̂ , ĝ〉µ.

We denote the random variableI (f ) by
∫

f dX or
∫ T
0 f (t) dXt , and call it the

integral off with respect toX. We note that, in general, not every element ofHT

can be represented as such an integral since forH > 1/2 the spaceIT is not
complete [see Pipiras and Taqqu (2001)].

Let us now introduce an integral with respect toX which plays an important
role in this paper. Fort ≥ 0, define the kernelmt by

mt(u) = 1

2H�(H + 1/2)�(3/2− H)
u1/2−H (t − u)1/2−H1t (u),(2.1)

where� denotes Euler’s gamma function. Then, for everyt ∈ [0, T ], it holds that
mt ∈ IT , and in view of Poisson’s integral formula for the Bessel function [e.g.,
Watson (1944), Section 3.3], it is not hard to see that the Fourier transformm̂t

of mt is given by

m̂t (λ) =




√
π

2H�(H + 1/2)

(
t

λ

)1−H

eiλt/2J1−H

(
λt

2

)
, λ �= 0,

√
π

2H�(H + 1/2)�(2− H)22−2H
t2−2H , λ = 0,

(2.2)

whereJ1−H is the Bessel function of the first kind of order 1− H [for details see
Dzhaparidze and Ferreira (2002), Proposition 2.2]. On evaluatingm̂t atλ = 0, one
has to take into consideration the basic property

z−νJν(z) → 1

2ν�(ν + 1)
asz → 0(2.3)
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of the Bessel function. For convenience, we introduce a special notationd2
H for

the constant that occurs in the second line of (2.2). In the literature this constant is
often given in an alternative form, namely,

d2
H = �(3/2− H)

2H�(H + 1/2)�(3− 2H)
.(2.4)

The identity of the two expressions is a result of Legendre’s duplication formula
for the gamma function.

Now, for t ∈ [0, T ], we can consider the random variable

Mt =
∫

mt(u)dXu =
∫ t

0
mt(u)dXu(2.5)

in HT . As is proved in Dzhaparidze and Ferreira (2002), Theorem 2.3, it holds that
EMsMt = 〈m̂s, m̂t 〉µ = m̂s∧t (0). This shows that the processM defined by (2.5)
is a continuous Gaussian martingale with bracket〈M〉 = m̂(0). For convenience,
this variance function will be denoted byV , so that due to (2.2), we have

Vt = EM2
t = d2

H t2−2H(2.6)

for all t ≥ 0. Following Norros, Valkeila and Virtamo (1999), we call the
processM the fundamental martingale.

Next we recall the moving average representation of the fBm, which is the
converse of (2.5). Letxt be defined by

xt (u) =
(
tH−1/2(t − u)H−1/2 −

∫ t

u
(t − v)H−1/2 dvH−1/2

)
1t (u).

Then it holds that

Xt =
∫ t

0
xt (u) dMu(2.7)

for all t ≥ 0, whereM is the fundamental martingale. More precisely, the process
on the right-hand side defines an fBm with Hurst indexH , so, in particular, we
have thatxt ∈ L2([0, T ],B[0, T ],V ) for all t ∈ [0, T ] and

EXsXt =
∫ s∧t

0
xs(u)xt (u) dVu = 〈xs, xt 〉V(2.8)

for s, t ∈ [0, T ]. We therefore consider the spaceKT , defined as the closure
in L2([0, T ],B[0, T ],V ) of the (complex) linear span of the collection of
functions {xt : t ∈ [0, T ]}. By construction, relation (2.8) shows that we have
an isometry betweenHT andKT , under which the correspondenceXt ←→ xt

holds true. Observe that under this isometry, we also haveMt ←→ 1t , so,
for every t ∈ [0, T ], the indicator function1t belongs toKT . It follows that
KT = L2([0, T ],B[0, T ],V ).

In the remainder of the paper we writeL2(µ) and L2([0, T ],V ) instead of
L2(R,B(R),µ) andL2([0, T ],B[0, T ],V ), respectively.
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3. The transformation KT → LT . We have now associated three isometric
Hilbert spaces with the fBm: the linear spaceHT , the frequency domainLT

and the space of integration kernelsKT . The aforementioned isometries between
HT andLT and betweenHT andKT , determined by the relationsXt ←→ et

andXt ←→ xt , respectively, induce a direct isometry between the function spaces
KT andLT . We denote the map fromKT to LT by U .

Our first result gives an explicit analytic description of the isometryU :KT →
LT . The theorem states that it is a Fourier-type integral transformation. The
integration kernel is defined in terms of the functionϕ :R → C, given by

ϕ(z) =

�(1− H)

(
z

4

)H

eiz/2
(
J−H

(
z

2

)
+ iJ1−H

(
z

2

))
, z �= 0,

1, z = 0.

(3.1)

Here, as before,� is Euler’s gamma function andJν is the Bessel function of the
first kind of orderν. Observe that, in fact,ϕ is defined on the whole complex plane.
Moreover, property (2.3) of the Bessel function implies thatϕ is an entire function.
Evoking the well-known property

d

dz
zνJν(z) = zνJν−1(z)(3.2)

of the Bessel function, one can easily see that the functionϕ evaluated atλt and
the earlier introduced Fourier transform̂mt(λ) are related by the identity

ϕ(λt) = dm̂t (λ)

dm̂t (0)
.(3.3)

We need the following simple estimates for the functionϕ. The notationa � b

means thata ≤ cb, wherec is positive constant that is universal or at least fixed
throughout the paper.

LEMMA 3.1. For every λ ∈ R, the function u �→ ϕ(uλ) belongs to KT and its
norm satisfies

‖ϕ(·λ)‖V �
{

1∧ |λ|H−1/2, H ≤ 1/2,

1∨ |λ|H−1/2, H > 1/2.
(3.4)

PROOF. The fact thatϕ is analytic implies that it is bounded in a neighborhood
of 0. Using also that

√
zJν(z) is bounded for|z| → ∞, we see that for realz,

|ϕ(z)| is of order |z|H−1/2 for large |z|. So for H ≤ 1/2 we have|ϕ(z)| �
1∧ |z|H−1/2, whence∫ T

0
|ϕ(uλ)|2 dVu �

∫ T

0
(u1−2H ∧ |λ|2H−1) du � 1∧ |λ|2H−1.
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ForH > 1/2, it holds that|ϕ(z)| � 1∨ |z|H−1/2, so∫ T

0
|ϕ(uλ)|2 dVu �

∫ T

0
(u1−2H ∨ |λ|2H−1) du � 1∨ |λ|2H−1.

This completes the proof.�

The following theorem gives a complete description of the isometryU :KT →
LT .

THEOREM 3.2. The linear transformation U :KT → LT is a Hilbert space
isometry. For f ∈ KT , it holds that

Uf (λ) =
∫ T

0
f (u)ϕ(uλ)dVu(3.5)

for µ-almost all λ ∈ R, where ϕ is given by (3.1).The class of functions

L′
T =

{
ψ ∈ LT :

∫
R

‖ϕ(·λ)‖V |ψ(λ)|µ(dλ) < ∞
}

(3.6)

is dense in LT and for ψ ∈ L′
T we have

U∗ψ(u) = U−1ψ(u) =
∫

R

ψ(λ)ϕ(uλ)µ(dλ)(3.7)

for V -almost every u ∈ [0, T ]. Here U∗ denotes the adjoint of U .

PROOF. By the Cauchy–Schwarz inequality and Lemma 3.1,∣∣∣∣
∫ T

0
f (u)ϕ(uλ)dVu

∣∣∣∣ ≤ ‖ϕ(·λ)‖V ‖f ‖V < ∞(3.8)

for everyλ ∈ R. Hence, the right-hand side of (3.5) defines a linear transformation
onKT . Let us denote this transformation byA.

Under the isometryKT → HT , the indicator function1t ∈ KT is mapped to
the random variableMt ∈ HT , given by (2.5). Under the spectral isometry,Mt is
mapped to the functionλ �→ m̂t (λ) in LT , given by (2.2). So to prove (3.5), we
have to verify that the mappingA, defined onKT by the right-hand side of (3.5),
coincides with the isometryU which is determined by the fact thatU1t = m̂t for
t ∈ [0, T ].

By (3.3), we have

m̂t (λ) =
∫ t

0
ϕ(uλ)dVu.(3.9)

So, indeed,A1t = m̂t for every t ∈ [0, T ] and by linearity,U coincides withA

on the set of simple functions inKT . Now take an arbitraryf ∈ KT . The
simple functions are dense inKT , whence we can choose a sequencefn of
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simple functions such thatfn → f in KT . Then sinceU is an isometry, we
haveAfn = Ufn → Uf in LT ⊆ L2(µ). On the other hand, (3.8) implies that
Afn → Af pointwise onR. But thenAf andUf must coincide forµ-almost all
λ ∈ R, which proves (3.5).

Both the isometryKT → HT and the spectral isometryHT → LT preserve
inner products, so the same holds for their compositionU :KT → LT . This
implies thatU is unitary, that is, thatU−1 = U∗, whereU∗ :LT → KT is the
adjoint of U , determined by the relation〈Uf,ψ〉µ = 〈f,U∗ψ〉V for all f ∈ KT

andψ ∈ LT . Using (3.5), we see that, forψ ∈ LT , we have

〈Uf,ψ〉µ =
∫

R

Uf (λ)ψ(λ)µ(dλ)

=
∫

R

(∫ T

0
f (u)ϕ(uλ)dVu

)
ψ(λ)µ(dλ).

Forψ ∈ L′
T , we may interchange the integrals, since by the preceding lemma and

Cauchy–Schwarz,∫
R

(∫ T

0
|f (u)||ϕ(uλ)|dVu

)
|ψ(λ)|µ(dλ) ≤ ‖f ‖V

∫
R

‖ϕ(·λ)‖V |ψ(λ)|µ(dλ),

which is finite by definition ofL′
T . It follows that

〈Uf,ψ〉µ =
∫ T

0
f (u)

(∫
R

ψ(λ)ϕ(uλ)µ(dλ)

)
dVu,

which proves (3.7).
It remains to prove thatL′

T is dense inLT . Let theS be the Schwarz space
of rapidly decreasing functions onR, that is,C∞-functionsf on R such that for
all m,n, the derivativef (n) satisfies|x|m|f (n)(x)| → 0 as|x| → ∞, and letST be
the space of Schwarz functions with support in[0, T ]. By the preceding lemma,
it clearly holds thatS ∩ LT ⊆ L′

T , so it is enough to show thatS ∩ LT is dense
in LT .

Fix t ∈ [0, T ] and choose a sequencewn of C∞ probability densities such that
supp(wn) ⊆ [0, t] and such that the associated probability measures converges
weakly to the dirac measureδt concentrated att . Define

fn(u) =
∫ t

0
1s(u)wn(s) ds =




∫ t

u
wn(s) ds, u ≤ t ,

0, u ∈ (t, T ].
Thenfn is a C∞-function with compact support, sofn ∈ ST . For fixedλ ∈ R,
the functions �→ 1̂s(λ) is bounded and continuous, whence the weak convergence
implies that

f̂n(λ) =
∫ t

0
1̂s(λ)wn(s) ds →

∫ t

0
1̂s(λ)δt (ds) = 1̂t (λ)
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for everyλ ∈ R. Observe also that, forλ ∈ R,

|f̂n(λ)|2 ≤
∫ t

0
|1̂s(λ)|2wn(s) ds � 1∧ 1

λ2 .

By dominated convergence, it follows thatf̂n → 1̂t in L2(µ). Since the Fourier
transform mapsST into S, the functionsf̂n belong toS ∩ LT . So for every
t ∈ [0, T ], 1̂t is theL2(µ)-limit of a sequence of functions inS ∩LT . SinceLT is
the closure inL2(µ) of the linear span of the functionŝ1t , t ∈ [0, T ], this shows
thatS ∩ LT is, indeed, dense inLT . �

Observe that since we have

J1/2(z) =
√

2

πz
sinz, J−1/2(z) =

√
2

πz
cosz, z �= 0(3.10)

and�(1/2) = √
π , it holds thatϕ(z) = eiz in the standard Brownian motion case

H = 1/2. So in that case, the mapU is simply the Fourier transform. For general
H ∈ (0,1), we can view it as a fractional version of the Fourier transform.

It seems worth mentioning that fractional integration theory enters in the present
context via the simple observation that the Fourier transformm̂t of the kernelmt ,
defined by (2.1), is expressible in terms of the fractional integral of order 3/2− H

of the functionu �→ u1/2−H exp(iuλ). This can be seen by comparing (2.2) with
formula 9.1.10 of Samko, Kilbas and Marichev (1993). Specifically, we have that

m̂t (λ) = 1

�(H + 1/2)
I

3/2−H
0+ (u1/2−H eiuλ)(t).

By (3.3), it follows that, for the Fourier-kernel of the mapU , it holds that

V ′
t ϕ(λt) = 1

�(H + 1/2)
I

1/2−H
0+ (u1/2−Heiuλ)(t).

Hence, using fractional integration by parts, we see that, forf ∈ KT ,

Uf (λ) = 1

�(H + 1/2)

∫ T

0
t1/2−Heiλt I

1/2−H
T − f (t) dt

= 1

�(H + 1/2)
F

(
u1/2−HI

1/2−H
T − f (u)

)
(λ),

provided, of course, that the fractional integral of order 1/2 − H of f and
the Fourier transform (denoted byF ) exist. The composition rule of fractional
integration operators implies that, forψ ∈ LT ,

U−1ψ(t) = �(H + 1/2)I
H−1/2
T −

(
uH−1/2F −1ψ(u)

)
(t).
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Note, for instance, that for a deterministic integrandf ∈ IT , the latter expression
for U−1, in combination with the spectral isometry, yields the relation∫ T

0
f (u)dXu = �(H + 1/2)

∫ T

0
I

H−1/2
T −

(
uH−1/2f (u)

)
(t) dMt,

where M is the fundamental martingale. Forf = 1t , this reduces to the
moving average representation (2.7). In general, the expression of the operators
U andU−1, in terms of Riemann–Liouville operators, can be very useful for the
evaluation of the transforms in concrete cases, since many explicit formulas for
fractional integrals are known. We will, however, not need this connection in the
present paper. The proofs of our results do not use any fractional calculus.

Relation (3.5) gives an analytic description of the functions inLT . In particular,
it allows us to prove that every function inLT is the restriction toR of an entire
function. Strictly speaking, the elements ofLT are, of course, equivalence classes
of functions. Two functions represent the same element if they coincideµ-almost
everywhere. Theorem 3.2 implies that every equivalence class can be represented
by an entire function.

COROLLARY 3.3. Every element of LT has a version that is the restriction
to R of an entire function.

PROOF. Forf ∈ KT , consider the complex function

z �→
∫ T

0
f (u)ϕ(uz) dVu.(3.11)

Sinceϕ is entire, this function is well defined and easily seen to be continuous
onC. To prove that the function is analytic, consider a closed pathγ in the complex
plane. By Fubini’s theorem and Cauchy’s theorem,∮

γ

(∫ T

0
f (u)ϕ(uz) dVu

)
dz =

∫ T

0
f (u)

(∮
γ

ϕ(uz) dz

)
dVu = 0.

Hence, by Morera’s theorem, the function defined by (3.11) is entire.�

In the remainder of the paper, if we consider an elementψ ∈ LT , we will always
assume this to be the smooth version.

4. The reproducing kernel on LT . As was established in Theorem 3.2,
the transformationU is of Fourier-type, generated by the Fourier kernelϕ. This
motivates us to introduce the functionST on R × R, defined by

ST (ω,λ) =
∫ T

0
ϕ(uω)ϕ(uλ)dVu,

whereϕ is, of course, given by (3.1) again, andV by (2.6). The Cauchy–Schwarz
inequality and Lemma 3.1 imply thatST is well defined. Moreover, (3.5) implies
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that, for fixedω ∈ R, the functionλ �→ ST (ω,λ) is the image underU of the
function u �→ ϕ(uω). In particular, we see thatλ �→ ST (ω,λ) belongs toLT

for every ω ∈ R. It clearly holds thatST (ω,λ) = ST (λ,ω). Since ϕ(0) = 1,
relation (3.9) implies thatST (0,0) = VT andST (0, λ) = m̂T (λ).

The following theorem states thatST acts as a reproducing kernel on the spectral
spaceLT , turning it into an RKHS.

THEOREM 4.1. For every ψ ∈ LT , we have∫
R

ψ(λ)ST (ω,λ)µ(dλ) = ψ(ω),

for all ω ∈ R.

PROOF. Suppose first thatψ ∈ S ∩ LT , whereS is the Schwarz space of
rapidly decreasing functions. Then by Fubini’s theorem and Theorem 3.2,∫

R

ψ(λ)ST (ω,λ)µ(dλ) =
∫

R

ψ(λ)

(∫ T

0
ϕ(uω)ϕ(uλ)dVu

)
µ(dλ)

=
∫ T

0
ϕ(uω)

(∫
R

ψ(λ)ϕ(uλ)µ(dλ)

)
dVu

=
∫ T

0
ϕ(uω)U−1ψ(u)dVu

= U
(
U−1ψ(ω)

) = ψ(ω)

for µ-almost allω ∈ R. The interchanging of the integration order is justified by
the fact thatψ is rapidly decreasing.

Now let ψ ∈ LT be arbitrary. SinceS ∩ LT is dense inLT (see the proof
of Theorem 3.2), we can choose functionsψn ∈ S ∩ LT such thatψn → ψ

in L2(µ). By the remarks preceding the theorem, the functionλ �→ ST (ω,λ)

belongs toL2(µ) for fixedω ∈ R. So by Cauchy–Schwarz, we have∣∣∣∣
∫

R

ψn(λ)ST (ω,λ)µ(dλ) −
∫

R

ψ(λ)ST (ω,λ)µ(dλ)

∣∣∣∣
≤ ‖ψn − ψ‖µ‖ST (ω, ·)‖µ → 0

for everyω ∈ R. By the preceding paragraph, the first integral on the left-hand
side equalsψn(ω) for µ-almost everyω. So the functionsψn convergeµ-almost
everywhere to the function

ω �→
∫

R

ψ(λ)ST (ω,λ)µ(dλ),

and they converge inL2(µ) to ψ . Then the two limits must coincideµ-almost
everywhere. Since both functions are continuous (Corollary 3.3), the proof is
complete. �
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A first simple consequence of the RKHS structure is that the “kernel functions”
λ �→ ST (ω,λ) spanLT .

COROLLARY 4.2. The space LT is the closure in L2(µ) of the linear span of
the collection of functions {λ �→ ST (ω,λ) :ω ∈ R}.

PROOF. We already noted in the beginning of the section that every func-
tion ST (ω, ·) belongs to LT , so the closure of the linear span of{λ �→
ST (ω,λ) :ω ∈ R} is certainly contained inLT .

To prove the inclusion in the other direction, takeψ ∈ LT and suppose thatψ is
orthogonal to every kernel functionST (ω, ·), that is,∫

R

ψ(λ)ST (ω,λ)µ(dλ) = 0

for all ω ∈ R. Then, by the reproducing property ofST , we see thatψ vanishes
µ-almost everywhere.�

It seems useful to briefly discuss the relation between the preceding frequency-
domain results and the so-called “time-domain RKHS.” The latter space is
constructed by associating to every elementH ∈ HT a function t �→ EHXt

on [0, T ]. These functions are the elements of the time-domain RKHS and the
inner product of two functionst �→ EHXt andt �→ EH ′Xt is defined asEHH ′.
By construction, the resulting Hilbert space is isometric toHT , and the covariance
functionr(s, t) = EXsXt is the reproducing kernel on the space.

The following theorem clarifies the relation between the two reproducing kernel
Hilbert space structures.

THEOREM 4.3. The time-domain RKHS is the closure of the linear span of
the collection of functions {t �→ 1̂t (λ) :λ ∈ R} with respect to the inner product

〈t �→ 1̂t (ω), t �→ 1̂t (λ)〉 = ST (ω,λ).

PROOF. The spectral isometry shows that the time-domain RKHS is given
by all functionst �→ 〈ψ, 1̂t 〉µ on [0, T ], whereψ runs throughLT , the inner
product of two elementst �→ 〈ψ, 1̂t 〉µ and t �→ 〈ξ, 1̂t 〉µ being given by〈ψ,ξ〉µ.
By Corollary 4.2, it follows that the time-domain RKHS is the closure of the linear
span of collection of functions{t �→ 〈ST (λ, ·), 1̂t 〉µ :λ ∈ R}. By the reproducing
property, we have〈ST (λ, ·), 1̂t 〉µ = 1̂t (λ) and the inner product between the
functionst �→ 1̂t (λ) andt �→ 1̂t (ω) equalsST (ω,λ). �

We note that the moving average representation of the fBm implies that the
inner products in the time-domain RKHS can be expressed in terms of Riemann–
Liouville fractional integration operators [cf., e.g., Hult (2003)]. Theorem 4.3 thus
yields an expression for the reproducing kernelST of LT in terms of fractional
integrals. In the present paper this connection plays no further role, however, and
we will now return to the frequency domain analysis.
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5. Differential equations. Our next intension is to obtain an explicit analytic
expression for the reproducing kernelST . This goal is achieved in Corollary 6.2
below. In this section we will show that the Fourier kernelϕ is subject to a
“recursion relationship” that is also encountered in the study of other types of
processes with stationary increments [see, e.g., Kailath, Vieira and Morf (1978),
where a short account can be found of the classical result of Krein (1955)
concerning the “signal plus white noise” model].

The Bessel functionJν satisfies the second order ordinary differential equation

J ′′
ν (z) + 1

z
J ′

ν(z) +
(

1− ν2

z2

)
Jν(z) = 0.(5.1)

In view of the representation (2.2), this yields the following differential equation
for the functionsm̂t ∈ LT .

LEMMA 5.1. For every λ ∈ R, we have

∂2m̂t (λ)

∂t2 = iλ
∂m̂t (λ)

∂t
− 2γt

(
∂m̂t (λ)

∂t
− iλ

2
m̂t (λ)

)
,

where γt = (H − 1/2)/t .

PROOF. By (2.2), we havem̂t (λ) = cλfν(z)Jν(z), where cλ is a constant
(depending onλ), z = λt/2, ν = 1−H andfν(z) = zν exp(iz). It is easily verified
that

∂

∂t
fν(z) = fν(z)(ν + iz)

t
,

∂2

∂t2fν(z) = fν(z)((ν + iz)2 − ν)

t2 .

The differential equation is now a straightforward consequence of (5.1).�

This differential equation for the functionst �→ m̂t (λ) gives rise to a differential
equation for the Fourier kernelϕ(tλ). We present this as a system of equations for
the functionP(t, λ), defined fort > 0 by

P(t, λ) = ϕ(tλ)
√

dVt/dt,(5.2)

and its reciprocal

P ∗(t, λ) = eiλtP (t, λ).(5.3)

Note that

ST (ω,λ) =
∫ T

0
P(t, λ)P (t, λ) dt.(5.4)

We also observe that since the functionsm̂t correspond to the fundamental
martingaleM under the spectral isometry, the functions∫ t

0
P(s, ·) ds
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correspond to an ordinary Brownian motion. In particular, we have that∫
R

∫ s

0
P(u,λ)du

∫ t

0
P(v,λ) dv µ(dλ) = s ∧ t.

If we interchange the integrals on the left-hand side and differentiate, we get the
formal expression ∫

R

P(s, λ)P (t, λ)µ(dλ) = δ(t − s).

In this sense, the functionsP(t, ·) are orthogonal with respect to the spectral
measureµ.

The following theorem shows that the orthogonal functions satisfy Krein’s
continuous analogue of the usual recurrence formulas for orthogonal polynomials
on the unit circle.

THEOREM 5.2. For every λ ∈ R, the function P(t, λ) and its reciprocal
P ∗(t, λ), defined by (5.2)and (5.3),satisfy the equations

∂P (t, λ)

∂t
= iλP (t, λ) − γtP

∗(t, λ)

and

∂P ∗(t, λ)

∂t
= −γtP (t, λ),

where γt = (H − 1/2)/t .

PROOF. First of all, let us expressP(t, ·) and P ∗(t, ·) in terms of the
functionm̂t given by (2.2). We havedm̂t (λ) = ϕ(tλ) dVt andVt = d2

H t2−2H [see
(3.3) and (2.6)], hence,

P(t, λ) = tH−1/2m̂′
t (λ)√

(2− 2H)d2
H

,(5.5)

where the prime denotes differentiation with respect tot . It follows that

P ∗(t, λ) = tH−1/2(m̂′
t )

∗(λ)√
(2− 2H)d2

H

,(5.6)

where(m̂′
t )

∗(λ) = exp(iλt)m̂′
t (λ) is the reciprocal ofm̂′

t . Observe that

m̂′
t (λ) − iλ

2
m̂t (λ) = eiλt/2 d

dt

(
e−iλt/2m̂t (λ)

)
,
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so that (
m̂′

t (λ) − iλ

2
m̂t

)∗
(λ) = eiλt eiλt/2 d

dt

(
e−iλt/2m̂t (λ)

)

= eiλt/2 d

dt

(
e−iλt/2m̂t (λ)

)

= m̂′
t (λ) − iλ

2
m̂t (λ).

Since m̂t is self-reciprocal, that is,̂m∗
t (λ) = exp(iλt)m̂t (λ) = m̂t (λ), the latter

identity implies that(m̂′
t )

∗(λ) = m̂′
t (λ) − iλm̂t (λ). Combining this with (5.6), we

find that

P ∗(t, λ) = tH−1/2(m̂′
t (λ) − iλm̂t (λ))√

(2− 2H)d2
H

.(5.7)

The first statement of the theorem now follows from differentiation of (5.5),
taking Lemma 5.1 and (5.5) and (5.7) into account. Similarly, the second statement
is obtained by differentiating (5.7).�

6. Christoffel–Darboux formula. As in the theory of orthogonal polynomi-
als and their continuous analogous, the “recurrence relations” presented in Theo-
rem 5.2 allow us to derive a closed-form expression for the reproducing kernelST

[cf., e.g., Grenander and Szegö (1958), Section 2.3, and Kailath, Vieira and Morf
(1978), formula (48)].

THEOREM 6.1. Let P(t, λ) and its reciprocal P ∗(t, λ) be defined by (5.2)
and (5.3).For all T > 0 and ω,λ ∈ R, we have

i(λ − ω)ST (ω,λ) = P(T ,ω)P (T ,λ) − P ∗(T ,ω)P ∗(T ,λ).(6.1)

PROOF. We view the left-hand side and right-hand side of (6.1) as functions
in T . Recall that we have (5.4). Using Theorem 5.2, a straightforward calculation
shows that

i(λ − ω)P (t,ω)P (t, λ) = ∂

∂t

(
P(t,ω)P (t, λ) − P ∗(t,ω)P ∗(t, λ)

)
.

This shows that the functions on both sides of (6.1) have the same derivative with
respect toT , which implies that their difference is independent ofT . So for every
T > 0, we have

i(λ − ω)ST (ω,λ) = P(T ,ω)P (T ,λ) − P ∗(T ,ω)P ∗(T ,λ) + C(ω,λ)(6.2)

for some constantC(ω,λ), and it remains to show thatC(ω,λ) = 0.
For H < 1/2, the functionst �→ P(t, λ) are bounded for everyλ ∈ R and it

holds thatP(0, λ) = 0. So in this case we can letT → 0 in (6.2) to see that
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C(ω,λ) = 0. Since the Bessel functionJν is analytic inν [see Watson (1944),
page 44], (6.2) shows that as a function inH , C(ω,λ) can be extended to an
analytic function on the open disc of diameter 1, centered at 1/2. We just saw
that it vanishes for allH in the interval(0,1/2), whence a standard result from
complex function theory implies that it vanishes on the entire disc [cf. Rudin
(1987), Theorem 10.19]. In particular,C(ω,λ) = 0 for all H ∈ (0,1). �

In combination with the explicit expression that we have for the orthogonal
functionsϕ(tλ), the preceding theorem yields an explicit analytic expression for
the reproducing kernelST .

COROLLARY 6.2. The reproducing kernel ST admits the following represen-
tation:

(i) For ω �= λ,

ST (2ω,2λ)

ST (0,0)
= (2− 2H)�2(1− H)

(
T 2ωλ

4

)H

eiT (λ−ω)

× J−H (T ω)J1−H (T λ) − J1−H (T ω)J−H (T λ)

T (λ − ω)
.

(ii) For ω ∈ R,

ST (2ω,2ω)

ST (0,0)
= (2− 2H)�2(1− H)

(
T ω

2

)2H

×
(
J 2

1−H (T ω) + 2H − 1

T ω
J−H(T ω)J1−H (T ω) + J 2−H (T ω)

)
.

PROOF. Part (i) follows by straightforward calculations from the preceding
theorem, the definition (5.2) ofP(t, λ), the explicit expression (3.1) forϕ and the
fact thatdVt/dt = (2− 2H)Vt/t .

To prove part (ii), we note thatSt is analytic and, in particular, continuous, so
we may derive an expression forSt (ω,ω) by lettingλ → ω in the expression that
we found in part (i). It suffices to observe that asλ → ω, we have

J−H (tω)J1−H (tλ) − J1−H (tω)J−H (tλ)

λ − ω

= J−H (tω)
J1−H (tλ) − J1−H (tω)

λ − ω
− J1−H (tω)

J−H (tλ) − J−H(tω)

λ − ω

→ J−H(tω)
∂

∂ω
J1−H (tω) − J1−H (tω)

∂

∂ω
J−H (tω)

= t

(
J 2

1−H (tω) + 2H − 1

tω
J−H(tω)J1−H (tω) + J 2−H (tω)

)
.
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In the last step we have used the recurrence formulae

d

dz
Jν(z) = ν

z
Jν(z) − Jν+1(z)(6.3)

and

Jν+2(z) = 2ν + 2

z
Jν+1(z) − Jν(z)(6.4)

[see Watson (1944), page 45].�

7. Orthonormal basis in LT . By the reproducing property, the inner product
of the kernel functionsλ �→ ST (2ω,λ) and λ �→ ST (2ω′, λ) in LT is given by
ST (2ω,2ω′). Hence, by Corollary 6.2, these functions are orthogonal inLT if T ω

andT ω′ are different zeros ofJ1−H . In this section we prove that if we letT ω

range over all zeros ofJ1−H , we obtain an orthogonal basis ofLT .
We first recall some facts about the zeros of the Bessel function of the first

kind [see, e.g., Erdélyi, Magnus, Oberhettinger and Tricomi (1953), Section 7.9].
For ν > −1, the Bessel functionJν has a countable number of positive zeros that
can be ordered according to magnitude. We denote them byλν,1 < λν,2 < · · · .
For positiveν, the functionJν satisfiesJν(0) = 0 and its negative zeros are given
by −λν,1 > −λν,2 > · · · . Hence, forν ≥ 0, the zeros ofJν can be ordered as
· · · < λν,−1 < λν,0 = 0 < λν,1 < · · · . To prove the completeness of the system of
orthogonal functions, we need the following lemma, which is a consequence of
the multiplicative decomposition of the Bessel function, or, more precisely, of the
formula

Jν+1(z)

Jν(z)
=

∞∑
k=1

2z

λ2
ν,k − z2

;(7.1)

see Erdélyi, Magnus, Oberhettinger and Tricomi [(1953), formula 7.9.3].

LEMMA 7.1. Let Jν be a Bessel function of the first kind of nonnegative order
ν ≥ 0 and let · · · < λ−1 < λ0 = 0< λ1 < · · · be its real zeros. Then

Jν+1(z)

Jν(z)
− Jν+1(w)

Jν(w)
= ∑

n�=0

z − w

(λn − z)(λn − w)

for all z,w ∈ R, for which the expressions are well defined.

PROOF. Since the zeros ofJν satisfyλ−n = −λn for all n ∈ N, it holds that

∑
n�=0

z − w

(λn − z)(λn − w)
= ∑

n∈N

(
z − w

(λn − z)(λn − w)
+ z − w

(λn + z)(λn + w)

)
.
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Now observe that we have the identity

a − b

(c − a)(c − b)
+ a − b

(c + a)(c + b)
= 2a

c2 − a2 − 2b

c2 − b2 ,

for all a, b, c ∈ R for which the expression makes sense. It follows that
∑
n�=0

z − w

(λn − z)(λn − w)
= ∑

n∈N

2z

λ2
n − z2 − ∑

n∈N

2w

λ2
n − w2 .

By (7.1), the right-hand side is equal to

Jν+1(z)

Jν(z)
− Jν+1(w)

Jν(w)
,

and the proof of the lemma is complete.�

We can now present the orthonormal basis inLT and the associated expansion
formula.

THEOREM 7.2. Let · · · < ω−1 < ω0 = 0< ω1 < · · · be the real zeros of J1−H

and, for n ∈ Z, define the function ψn on R by

ψn(λ) = ST (2ωn/T ,λ)

‖ST (2ωn/T , ·)‖µ

,

and put

σ−2(ωn) = ST

(
2ωn

T
,

2ωn

T

)

=



(2− 2H)�2(1− H)

(
ωn

2

)2H

J 2−H(ωn)VT , ωn �= 0,

VT , ωn = 0.

(7.2)

The functions ψn form an orthonormal basis of LT and every function ψ ∈ LT

can be expanded as

ψ(λ) = ∑
n∈Z

σ(ωn)ψ

(
2ωn

T

)
ψn(λ),

the convergence taking place in L2(µ).

PROOF. By the remarks in the beginning of the section, the functionsψn are
orthogonal, and they have unit norm by construction. Let us prove that the system
is complete.

By Corollary 4.2, it suffices to show that every kernel functionλ �→ ST (ω,λ) is
in the closure of the linear span of theψn. We claim that, forω,λ ∈ R,

ST (2ω,2λ) = ∑
n∈Z

ψn(2ω)ψn(2λ).
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To prove this, note that we have
∑
n∈Z

ψn(2ω)ψn(2λ) = ST (2ω,0)ST (0,2λ)

ST (0,0)

(7.3)

+ ∑
n�=0

ST (2ω,2ωn/T )ST (2ωn/T ,2λ)

ST (2ωn/T ,2ωn/T )
.

By Corollary 6.2, the sum on the right-hand side equals

c

(
T 2λω

4

)H

J1−H (T λ)J1−H (T ω)eiT (λ−ω)
∑
n�=0

1

(ωn − T λ)(ωn − T ω)
,

wherec = (2 − 2H)�2(1 − H)VT . By the preceding lemma, the sum in the last
display equals

1

T (λ − ω)

(
J2−H (T λ)

J1−H (T λ)
− J2−H (T ω)

J1−H (T ω)

)
.

In view of (6.4), multiplication byJ1−H (T λ)J1−H (T ω) yields

J2−H (T λ)J1−H (T ω) − J2−H (T ω)J1−H (T λ)

T (λ − ω)

= J−H (T ω)J1−H (T λ) − J−H(T λ)J1−H (T ω)

T (λ − ω)

− 2− 2H

T 2λω
J1−H (T λ)J1−H (T ω).

Hence, using Corollary 6.2 again, we see that the sum on the right-hand side
of (7.3) equals

ST (2ω,2λ) − c

(
T 2λω

4

)H

eiT (λ−ω) 2− 2H

T 2λω
J1−H (T λ)J1−H (T ω).

Therefore, our claim follows from the fact that the second term in the last display
is equal to

ST (2ω,0)ST (0,2λ)

ST (0,0)
= m̂T (2λ)m̂T (2ω)

m̂T (0)

[recall thatST (0, λ) = m̂T (λ) andST (0,0) = VT = m̂T (0)]. To check this, evoke
expression (2.2).

So, indeed, the functionsψn form a complete, orthonormal system. It follows
that everyψ ∈ LT can be written asψ = ∑〈ψ,ψn〉µψn. By the reproducing
property,

〈ψ,ψn〉µ =
∫
R

ψ(λ)ST (2ωn/T ,λ)µ(dλ)

‖ST (2ωn/T , ·)‖µ

= ψ(2ωn/T )

‖ST (2ωn/T , ·)‖µ

.
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Another application of the reproducing property yields
∥∥∥∥ST

(
2ωn

T
, ·

)∥∥∥∥
2

µ

= ST

(
2ωn

T
,

2ωn

T

)
= σ−2(ωn).

The explicit expression in (7.2) of the normalizing factorσ(ωn) follows from the
second assertion of Corollary 6.2.�

We remark that, instead of the zeros ofJ1−H , we can also use the zeros ofJ−H

to obtain a second orthonormal basis ofLT . Since the reasoning is completely
analogous to theJ1−H case, we omit the details and mention only that all the
consequent results of this paper can be easily reformulated in terms of the zeros
of J−H [like in the caseH = 1/2 of the Brownian motion, where there exist
expansions in terms of the zeros of the sine and the cosine, cf., e.g., Yaglom (1987),
Section 26.1].

Using the isometryU :KT → LT , we can now easily obtain an orthonormal
basis of the function spaceKT = L2([0, T ],V ) and the corresponding series
expansion. Note that in the caseH = 1/2 it reduces to the Fourier series expansion,
given forf ∈ L2[0, T ] by

f (u) = 1

T

∑
n∈Z

f̂

(
2nπ

T

)
e−(2inπ/T )u.

COROLLARY 7.3. Let · · · < ω−1 < ω0 = 0 < ω1 < · · · be the real zeros
of J1−H and let ϕ be given by (3.1).Then the functions

u �→ ϕ((2ωn/T )u)

‖ϕ((2ωn/T )·)‖V

, n ∈ Z,

form an orthonormal basis of KT = L2([0, T ],V ). Every f ∈ KT can be
expanded as

f (u) = ∑
n∈Z

Uf (2ωn/T )ϕ((2ωn/T )u)

‖ϕ((2ωn/T )·)‖2
V

,

the convergence taking place in L2([0, T ],V ).

PROOF. Just note thatST (ω, ·) is the image under the isometryU :KT → LT

of the functionu �→ ϕ(uω). �

8. Paley–Wiener expansion. In this section we use the orthonormal basis
of LT to obtain a series expansion of the fBm. Paley and Wiener (1934) use
a series expansion to introduce the standard Brownian motion, which they call
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the “fundamental random function” [see also Lévy (1965), Section 13 of the
Complement]. They first consider the series∑

n∈Z

eintZn, t ∈ [0,2π],

where theZn are i.i.d., complex-valued, standard Gaussian random variables. This
series corresponds to white noise, but the series does not converge in the usual
sense. So instead they consider its formal integral

∑
n∈Z

eint − 1

in
Zn.

The latter series is shown to converge almost surely and is taken as the definition
for the (complex-valued) Brownian motion.

We can now present the extension to the caseH �= 1/2 of this expansion. It
is natural to consider a complex-valued fBm. This is a centered, complex-valued
Gaussian processX with covariance structure

EXsXt = 1
2(s2H + t2H − |s − t |2H ).

THEOREM 8.1. Let · · · < ω−1 < ω0 = 0< ω1 < · · · be the real zeros of J1−H

and let Zn, n ∈ Z, be independent, complex-valued Gaussian random variables
with mean zero and variance E|Zn|2 = σ 2(ωn), where σ 2(ωn) is given by (7.2).
Then, with probability one, the series

∑
n∈Z

e2iωnt/T − 1

2iωn/T
Zn

converges uniformly in t ∈ [0, T ] and defines a complex-valued fBm with Hurst
index H .

PROOF. By Theorem 7.2, we have

1̂t (λ) = ∑
n∈Z

σ(ωn)1̂t

(
2ωn

T

)
ψn(λ),

whereψn is a complete orthonormal system inLT . It follows that, fors, t ∈ [0, T ],

〈1̂s, 1̂t 〉µ = ∑
n∈Z

σ 2(ωn)1̂s

(
2ωn

T

)
1̂t

(
2ωn

T

)
.(8.1)

By the spectral representation of the fBm, the left-hand side of the display equals
the covariance function of the fBm. Hence, the equality shows that the series in the
statement of the theorem converges in mean square sense for everyt ∈ [0, T ] and
defines a Gaussian process with the same covariance structure as the fBm.



SPECTRAL THEORY FOR THEFBM 641

The fact that the series converges uniformly with probability one can be deduced
from the Itô–Nisio theorem [cf., e.g., Ledoux and Talagrand (1991)]. See, for
instance, the proof of Theorem 4.5 of Dzhaparidze and Van Zanten (2004) for
details. �

ForH = 1/2, we haveωn = nπ [see (3.10)] andE|Zn|2 = 1/T , so, indeed, we
recover the classical Paley–Wiener expansion of the ordinary Brownian motion in
this case.

The Paley–Wiener theorem for the fBm shows that the (complex-valued) fBm
on [0,1] can be viewed as the formal integral of the process∑

e2iωntZn.

In view of (7.2) and the fact thatz �→ √
zJν(z) is bounded, the latter can be seen

as a random signal in which the weight of the component with frequencyωn is (up
to a constant) approximately equal toω

1/2−H
n .

The real-valued version of the expansion is as follows.

COROLLARY 8.2. Let X, (Yn)n∈N and (Zn)n∈N be independent, real-valued
Gaussian random variables with mean zero and variance

EX2 = 1

VT

, EY 2
n = EZ2

n = σ 2(ωn)

2
,

where σ 2(ωn) is given by (7.2).Then, with probability one, the series

tX +
∞∑

n=1

sin2ωnt/T

ωn/T
Yn +

∞∑
n=1

(cos 2ωnt/T − 1)

ωn/T
Zn

converges uniformly in t ∈ [0, T ] and defines a real-valued fBm with Hurst
index H .

PROOF. Note that the terms indexed byn and−n in the sum in equation (8.1)
are complex conjugates, hence,

〈1̂s, 1̂t 〉µ = σ 2(0)st + 2
∞∑

n=1

σ 2(ωn)�
(
1̂s

(
2ωn

T

)
1̂t

(
2ωn

T

))
.

Since

�
(
1̂s

(
2ωn

T

)
1̂t

(
2ωn

T

))

= sin2ωns/T

2ωn/T

sin 2iωnt/T

2ωn/T
+ (cos 2ωns/T − 1)

2ωn/T

(cos 2ωnt/T − 1)

2ωn/T
,

this shows that the series in the statement of the corollary converges in mean square
sense and that the resulting process has the same covariance structure as the fBm.
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Uniform convergence with probability one can be argued as in the proof of the
theorem. �

In the paper Dzhaparidze and Van Zanten (2005) we proved that a related series
expansion of the fBm is rate-optimal in the sense of Kühn and Linde (2002). This
means that the rate of uniform convergence isN−H

√
logN . Exactly the same

reasoning as in Dzhaparidze and Van Zanten (2005) can be used to prove the
optimality of the Paley–Wiener expansion of Theorem 8.1. The main idea is simply
to use the asymptotic propertiesωn ∼ nπ andJ 2−H (ωn) ∼ 2/nπ2 for n → ∞ [cf.
Watson (1944)] to estimate the size of the terms in the expansion. We omit the
details and just give the optimality result.

THEOREM 8.3. The expansion of the fBm of Theorem 8.1 is rate-optimal. It
holds that

E sup
t∈[0,T ]

∣∣∣∣∣
∑

|n|>N

e2iωnt/T − 1

2iωn/T
Zn

∣∣∣∣∣ � N−H
√

logN.

Let us mention that related optimal series expansions for the so-called odd and
even parts of the fBm, and, consequently, also of the fBm itself, can be found in
Dzhaparidze and Van Zanten (2004). Compared with the Paley–Wiener expansion
of Theorem 8.1, the representation of Dzhaparidze and Van Zanten (2004) has the
drawback that it requires both the positive zeros ofJ1−H and ofJ−H .

Another expansion optimal in the sense of Kühn and Linde (2002) is obtained by
Ayache and Taqqu (2005). Their construction is of a completely different type. It
involves a doubly indexed array of i.i.d. Gaussian random variablesZj,k , weighted
by functionst �→ 2−jH (�H(2j t − k) − �H(−k)), defined in terms of the Fourier
transform of an appropriate mother wavelet�.

Finally, we want to mention the possibility to extend the expansion results
to the fractional Brownian sheet (fBs). This can be achieved by taking suitable
tensor products like in the paper of Dzhaparidze and Van Zanten (2005), where
our earlier double series expansion [cf. Dzhaparidze and Van Zanten (2004)] is
extended to the fBs. On extending the Paley–Wiener expansion of Theorem 8.1,
the construction is analogous and even simpler because we now have only one
sequence of Bessel zeros. The resulting expansion of the fBs is again rate-optimal,
as can be shown by using the asymptotic properties of the Bessel function and its
positive zeros.

Acknowledgment. Thanks to Michael Lifshits for pointing out some silly
miscalculations.
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