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In this paper we develop the spectral theory of the fractional Brownian
motion (fBm) using the ideas of Krein’s work on continuous analogous of
orthogonal polynomials on the unit circle. We exhibit the functions which
are orthogonal with respect to the spectral measure of the fBm and obtain an
explicit reproducing kernel in the frequency domain. We use these results to
derive an extension of the classical Paley—Wiener expansion of the ordinary
Brownian motion to the fractional case.

1. Introduction. Let X = (X;);>0 be a fractional Brownian motion (fBm)
with Hurst indexH e (0, 1), that is, a continuous, centered Gaussian process with
covariance function

EX, X, = 5(s2H + 127 — |s — 1]?H).

Say the process is defined on the probability spgazef , P), and for some fixed
time horizonT > 0, define the linear spac#; as the closure irL2(P) of the
(complex) linear span of a collection of random varialflgs: ¢ € [0, T']}.

So-called linear problems for the fBm are problems in which it is required
to find elements of the Hilbert spack; with certain specific properties. In the
1960's the basic linear problems like prediction, interpolation, moving average
representation etc. were treated by various authors; see Molchan (2003) for an
overview of these contributions. However, these results did not become widely
known. Many of them were rediscovered during the last decade when new
application areas like telecommunication networks and mathematical finance
stimulated a renewed interest in the fBm. Recent contributions dealing with
linear problems can be found, for instance, in Gripenberg and Norros (1996),
Decreusefond and Ustiinel (1999), Norros, Valkeila and Virtamo (1999), Nuzman
and Poor (2000) and Pipiras and Tagqu (2001).

There exist several representations of the fBm that give insight into the structure
of the linear spacéfy. An important example is the spectral representation

(eiM . 1)(6—1')@ _ 1)
EX, X, = /H; " wdr) = (er, ey,
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where p(di) = (2n)~tsin(x H)I'(1+ 2H)|r|1~2H d) is the spectral measure

of the fBm ande; (1) = (¢! — 1)/iX [see, e.g., Yaglom (1987), page 407 or
Samorodnitsky and Taqqu (1994), page 328]. If we defihye as the closure

in L2(u) of the (complex) linear span of the collection of functidas ¢ € [0, T']},

this representation gives rise to an isometry betwegén and the function
spacelr, determined by the relatiaki, <— ¢;. We can use this spectral isometry

to reformulate a linear problem for the fBm in spectral terms. It then becomes a
linear problem in the function spacéy;, which has the advantage that we have
mathematical tools like Fourier-type techniques, at our disposal.

In this paper we present new results regarding the fine analytical structure of
the frequency domaiit 7. In particular, we exhibit certain “orthogonal functions”
with respect to the spectral measyreof the fBm and we obtain an explicit
reproducing kernel fotfr, turning it into a reproducing kernel Hilbert space
(RKHS). To illustrate the significance of these new frequency domain results for
the fBm, we apply them to derive a generalization to the fractional case of the
classical Paley—Wiener expansion of the ordinary Brownian motion [cf. Paley
and Wiener (1934)]. In spectral terms, obtaining a series expansion translates to
finding an orthonormal basis of the spate. We achieve this by using the RKHS
structure and the explicit expression that we have for the reproducing kernel.

Itis well known that orthogonal polynomials on the unit circle are very useful in
the spectral analysis of stationary time series. They can be used to solve problems
like prediction and interpolation, and are also useful in connection with likelihood
estimation and testing [see, e.g., Grenander and Szegd (1958)]. In a classical paper,
Krein (1955) introduced certain continuous analogues of orthogonal polynomials
on the unit circle. We refer to Akhiezer and Rybalko (1968) for a more elaborate
treatment, including detailed proofs of Krein's statements. As was shown by
Kailath, Vieira and Morf (1978), Krein’s orthogonal functions play the same role in
the spectral theory of continuous-time processes with stationary increments as the
orthogonal polynomials do in times series theory. For a certain class of processes
with stationary increments, Kailath, Vieira and Morf (1978) pointed out how the
orthogonal functions describe the structure of the frequency domain. In the present
paper we develop the spectral theory of the fBm along the same lines.

The results of Akhiezer and Rybalko (1968) and Kailath, Vieira and Morf
(1978) highly depend on the “signal plus white noise” structure of the processes
that they consider. It turns out, however, that Krein's ideas are also applicable
for the fBm, which is not of the latter type. The key point is that the fBm can
be “whitened” in the sense that integration of an appropriate deterministic kernel
with respect to the fBm yields a continuous Gaussian martingale, the so-called
“fundamental martingale.” This was first proved in the 1960’s by Molchan [cf.
Molchan (2003)]. For alternative, more recent approaches see also Decreusefond
and Ustiinel (1999), Norros, Valkeila and Virtamo (1999), Nuzman and Poor
(2000), Pipiras and Tagqu (2001) or Dzhaparidze and Ferreira (2002). Conversely,
it is well known that by integrating a certain deterministic kernel with respect to
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the fundamental martingale, we can recover the fBm. Since these results play an
important role in this paper, their precise statements will be recalled in Section 2.

The whitening and moving average formulas for the fBm provide us with the
starting point for the development of the spectral theory. They give rise to a
Hilbert space isometry/ betweens; and the spac&?([0, T], V), whereV is
the variance function of the fundamental martingale. In the ordinary Brownian
caseH = 1/2 this isometry is simply the Fourier transform. We will show that,
for H #1/2 itis also a Fourier-type integral transformation, and obtain an explicit
expression for the Fourier kernel in terms of Bessel functions. Using this Fourier
kernel, we then introduce a functiosy that will turn out to be a reproducing
kernel onLr. An explicit expression for this kernel will be derived in a number of
steps. First we shall use the Bessel differential equation to prove that the properly
normalized Fourier kernels satisfy Krein's continuous version of the recurrence
relation for orthogonal polynomials. It will then be rather straightforward to obtain
a Christoffel-Darboux-type formula f&t-. In combination with the expression for
the Fourier kernel, this will lead to an explicit formula for the reproducing kernel
on L7. This program is carried out in Sections 3—6.

In Sections 7 and 8 we use the new results on the structure of the gpate
derive an extension to the fractional case of the classical Paley—Wiener expansion
of the ordinary Brownian motion. We will first use the reproducing kernel to find
a suitable orthogonal basis gf;. By transporting of this basis to the spa#f,
we will prove that the fBm admits the series expansion

2iwpt
e e
= 2iwy,
where theaw, are the real-valued zeros of the Bessel functigny and theZ,, are
independent, complex-valued Gaussian random variables with zero mean and a
variance that can be expressed explicitly in terms of Bessel functions and their real
zeros. Using the fact thatzJ1/2(z) = +/2/m sinz, it can be seen that fdf =1/2
this indeed reduces to
2inwt
L, e,
2inm
nez
with the Z,, i.i.d., standard Gaussian. This is the expression that Paley and Wiener
(1934) used as the definition of the standard Brownian motion.

We will also briefly consider questions like the rate of convergence of the Paley—
Wiener expansion, and possible extensions to the fractional Brownian sheet. In
particular, we will argue that the expansion is rate-optimal, in the sense of Kiihn
and Linde (2002). This is obviously a desirable feature if the expansion is used for
simulation purposes and is also relevant in connection with the small ball problem
for the fractional Brownian sheet [see, e.g., Li and Linde (1999) and Li and Shao
(2001) for the precise connections].
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2. Auxiliary facts and notation. The spectral representation can be used to
define a stochastic integral with respectXoof a large class of deterministic
integrands. In this paper we denote the indicator functign, of the interval(0, ¢)
simply by 1,. Using this notation, as well as the previous notatigi) =
(exp(irt) — 1)/ix, we may writee, = 1,. Here and elsewhere below we adopt the
usual convention to denote the Fourier transform of a funcfianL2(R) by f,
that is,

Fo = fR £ dox.

Now consider the class of functiony = {f € L2[0, T]: f € L3R, B(R), u)}
and endow it with the inner productf, g)s, = <f,g>u. Then the spectral
representation can be written B X, = (1, 1,)4,. In particular, the mapping
1, — X, extends to a linear map: 47 — Fr with the property thaf (1,) = X;
andforf,gedr,

EI(H)T() = (f. &)u-

We denote the random variable /) by [ fdX or foT f(t)dX,, and call it the
integral of f with respect taX. We note that, in general, not every elemen##6f
can be represented as such an integral sincefor 1/2 the spacelr is not
complete [see Pipiras and Tagqu (2001)].
Let us now introduce an integral with respectXowhich plays an important
role in this paper. For > 0, define the kernek; by
1

_ 1/2-H,, _ \l/2-H
(2.1) i) = e rarE a0,

wherel” denotes Euler's gamma function. Then, for evegy[0, T1, it holds that
m; € 47, and in view of Poisson’s integral formula for the Bessel function [e.g.,
Watson (1944), Section 3.3], it is not hard to see that the Fourier trangfiorm

of m, is given by
NEd (f>l_H ) <“)
— | - ! _Hl = A£0
o H+12\s) ¢ G ) 70,
N [2-2H
2HT(H +1/2)I' (2 — H)22-2H
whereJ;_g is the Bessel function of the first kind of order1H [for details see

Dzhaparidze and Ferreira (2002), Proposition 2.2]. On evaluatjraf A = 0, one
has to take into consideration the basic property

(2.2) m;(A) =

) )\':01

1
2.3 Y —_— as 0
(2.3) 2" h(2) —> T+ D) 2
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of the Bessel function. For convenience, we introduce a special notﬁ,idnr
the constant that occurs in the second line of (2.2). In the literature this constant is
often given in an alternative form, namely,

'(3/2— H)
2.4 d? = .
(2.4) H™ 2HT(H +1/2)T'(3— 2H)
The identity of the two expressions is a result of Legendre’s duplication formula

for the gamma function.
Now, for ¢ € [0, T'], we can consider the random variable

(2.5) M, = /m,(u)qu =/;m,(u)qu

in #r. Asis proved in Dzhaparidze and Ferreira (2002), Theorem 2.3, it holds that
EM M; = (i, m;), = msn:(0). This shows that the proceds defined by (2.5)

is a continuous Gaussian martingale with bragiét = /(0). For convenience,

this variance function will be denoted B, so that due to (2.2), we have

(2.6) V, =EM? =d? 1?21

for all + > 0. Following Norros, Valkeila and Virtamo (1999), we call the
processM the fundamental martingale.

Next we recall the moving average representation of the fBm, which is the
converse of (2.5). Let, be defined by

t
x () = (tH_l/z(t — )12 —/ (t — v)H—l/Zde—l/Z)n,(u).
u
Then it holds that
t
@2.7) X, = / X, () dM,
0

for all t > 0, whereM is the fundamental martingale. More precisely, the process
on the right-hand side defines an fBm with Hurst indéx so, in particular, we
have thaty, € L2([0, T'], B[O, T, V) for all t € [0, T'] and

2.8) EX,X, = /0 X xe ) d Vi = (xg x1)y

for s,t € [0, T]. We therefore consider the spad€,, defined as the closure
in L2([O, T1,8[0,7T],V) of the (complex) linear span of the collection of
functions {x; :t € [0, T]}. By construction, relation (2.8) shows that we have
an isometry betweed¢; and X7, under which the correspondenge <— x;
holds true. Observe that under this isometry, we also hdye<— 1;, so,
for every ¢ € [0, T], the indicator functioni, belongs toXr. It follows that
KXr =L%(0,T], B[O, T], V).

In the remainder of the paper we wriie?(x) and L2([0, T'], V) instead of
L%R, B(R), n) andL3([0, T, B[O, T, V), respectively.
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3. Thetransformation K1 — £7r. We have now associated three isometric
Hilbert spaces with the fBm: the linear spagér, the frequency domaintr
and the space of integration kernéty . The aforementioned isometries between
Fr and L7 and between#r and X7, determined by the relation¥; <— ¢;
andX; <— x;, respectively, induce a direct isometry between the function spaces
K1 andLr. We denote the map frodr to L1 by U.

Ouir first result gives an explicit analytic description of the isométryKXr —
L7. The theorem states that it is a Fourier-type integral transformation. The
integration kernel is defined in terms of the functipnR — C, given by

B L R CC ) N
L z=0.

Here, as beford,' is Euler's gamma function andl, is the Bessel function of the
first kind of orderv. Observe that, in facl is defined on the whole complex plane.
Moreover, property (2.3) of the Bessel function implies th& an entire function.
Evoking the well-known property

d
(3.2) —z2" () =2"Jv-1(2)

dz
of the Bessel function, one can easily see that the funeiiemaluated aks and
the earlier introduced Fourier transforin()) are related by the identity
_dm(X)
 dmy(0)
We need the following simple estimates for the functjorThe notatioru < b

means that: < cb, wherec is positive constant that is universal or at least fixed
throughout the paper.

(3.3) @(AL)

LEmMmA 3.1. For every A € R, thefunction u — ¢(ul) belongsto K7 andits
norm satisfies

A2 H<1/2,
3.4 Mv <
(3.4) lpClv {lv WHY2 H s 12,

PrROOFE The fact thaty is analytic implies that it is bounded in a neighborhood
of 0. Using also that/zJ,(z) is bounded forz] — oo, we see that for read,
lp(z)| is of order |z|”=1/2 for large |z|. So for H < 1/2 we have|p(z)| <
1A |z|7-1/2, whence

T T
/ @A) 2dV, < f W21 A Py du S 1A a2HL,
0 0
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For H > 1/2, it holds thatg(z)| <1V |z|7 12, so

/O g av, < fo LR P S 1y
This completes the proof.(d

The following theorem gives a complete description of the isom@tnKr —
Lr.

THEOREM 3.2. The linear transformation U : X7+ — L7 is a Hilbert space
isometry. For f € X, it holds that

T
(35) ure)= [ ruewrav,
for u-almost all A € R, where ¢ is given by (3.1). The class of functions

(3.6) °C/T:{WEcCT:A;”‘P(‘)\)”V“ﬁ()hﬂl/«(d)h)<OO}

isdensein L7 and for ¢ € L}, we have

(3.7) Uy ) = U~y (u) = /R ¥ (Dg@R(di)

for V-almost every u € [0, T]. Here U* denotes the adjoint of U.

ProOF By the Cauchy—Schwarz inequality and Lemma 3.1,

T
(3.8) Vo F@ewr)dVy| <lle(Mvifllv <oo

for everyx € R. Hence, the right-hand side of (3.5) defines a linear transformation
on Xr7. Let us denote this transformation By

Under the isometryKr — Hr, the indicator functiori, € KX is mapped to
the random variablés, € F#r, given by (2.5). Under the spectral isomet#y; is
mapped to the function — m, (1) in L7, given by (2.2). So to prove (3.5), we
have to verify that the mapping, defined onX; by the right-hand side of (3.5),
coincides with the isometryy which is determined by the fact thatl, = m, for
tel0,T].

By (3.3), we have

t
(3.9 mt(k)z/() our)dV,.

So, indeed A1, = m, for everyt € [0, T] and by linearity,U coincides withA
on the set of simple functions ikK7. Now take an arbitraryf € Kr. The
simple functions are dense 7, whence we can choose a sequengeof
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simple functions such thaf, — f in K. Then sinceU is an isometry, we
have Af, = Uf, — Uf in L7 € L?(w). On the other hand, (3.8) implies that
Af, — Af pointwise onR. But thenAf andUf must coincide fo-almost all

A € R, which proves (3.5).

Both the isometryKr — F#7 and the spectral isometi§t; — L1 preserve
inner products, so the same holds for their compositionKr — L. This
implies thatU is unitary, that is, thaU—! = U*, whereU*: £ — X is the
adjoint of U, determined by the relatiotUf, ¥), = (f, U*y)y for all f € Xr
andyr € L7. Using (3.5), we see that, far € L7, we have

Uf. 0= [ UF TR

-/ ( | ' f(u)<p(uk)qu)Wu(dA)-

For v € £/, we may interchange the integrals, since by the preceding lemma and
Cauchy-Schwarz,

T
/(/ |f(M)||§0(W»)|qu)W()»)W(d)»)S ||f||V/ oM llv v () ndr),
r\Jo R

which is finite by definition of£’.. It follows that

Wf = [ Tf(u)< [ Wgo(m)u(dx))dvu,

which proves (3.7).

It remains to prove thai’. is dense inr. Let the 8 be the Schwarz space
of rapidly decreasing functions dR, that is,C°°-functions f on R such that for
all m, n, the derivativef ™ satisfiegx|™| f ™ (x)| — 0 as|x| — oo, and let§7 be
the space of Schwarz functions with suppor{@7]. By the preceding lemma,
it clearly holds thatS N L7 € £, so it is enough to show thatN L7 is dense
inLyp.

Fix t € [0, T] and choose a sequenag of C*° probability densities such that
suppwy,) C [0, ¢] and such that the associated probability measures converges
weakly to the dirac measupe concentrated at Define

t
/ wn(s)ds7 uft!
u

0, ue,T]

Then f, is a C*-function with compact support, sfj, € 87. For fixedx € R,
the functions — 1,()) is bounded and continuous, whence the weak convergence
implies that

t
fn(“)=/(; ]].S(I/l)wn(s)dS:{

A t A t A A
£o0) = /0 Ty (M) wn(s)ds — fo 1,008, (ds) =1, ()
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for everyi € R. Observe also that, fare R,
~ 2 ro, 5 1
02 < /0 LG5 ds S1A 5.

By dominated convergence, it follows that — 1, in L2(x). Since the Fourier
transform maps$r into 4, the functionsfn belong to$ N L. So for every
t €[0, T, 1, is the L2(w)-limit of a sequence of functions ifiN L. SinceLr is
the closure inL?(w) of the linear span of the functiorts, 7 € [0, T, this shows
that8 N L7 is, indeed, dense i€y. O

Observe that since we have

[2 . | 2
(3.10) J1/2(2) =/ — singz, J_1/2(2) =,/ — cosz, z#£0
Tz TZ

andI'(1/2) = /7, it holds thatp(z) = /% in the standard Brownian motion case
H =1/2. So in that case, the mdpis simply the Fourier transform. For general
H € (0, 1), we can view it as a fractional version of the Fourier transform.

It seems worth mentioning that fractional integration theory enters in the present
context via the simple observation that the Fourier transfagnof the kernekn,,
defined by (2.1), is expressible in terms of the fractional integral of ord2r3H
of the functionu — uY?=H exp(iu)). This can be seen by comparing (2.2) with
formula 9.1.10 of Samko, Kilbas and Marichev (1993). Specifically, we have that

_ 3/2—H
I'(H+1/2) %

By (3.3), it follows that, for the Fourier-kernel of the mé&p it holds that

(ul/Z_Heiu)‘)(t).

ey

1 12—H, 12-H ;i
VoOt) = —— ] /2= H jiudypy
z‘ﬂ( ) T'(H+1/2) 0+ (u e M)

Hence, using fractional integration by parts, we see thatf ferXr,

Uf(r) = Y2-H it 12 H £y g

1 T
T'(H +1/2) /o !
1

BCESTM (2= pa)),

provided, of course, that the fractional integral of ord¢ + H of f and
the Fourier transform (denoted %) exist. The composition rule of fractional
integration operators implies that, fgre L1,

U™l (t) =T (H + 1/ 172 (=28 "Ly () (o).
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Note, for instance, that for a deterministic integrghd 17, the latter expression
for U1, in combination with the spectral isometry, yields the relation

T T
/0 Fw)dXy =T(H +1/2) /o THY2(, =12 £ () (1) M,

where M is the fundamental martingale. Fof = 1,, this reduces to the
moving average representation (2.7). In general, the expression of the operators
U andU ™1, in terms of Riemann—Liouville operators, can be very useful for the
evaluation of the transforms in concrete cases, since many explicit formulas for
fractional integrals are known. We will, however, not need this connection in the
present paper. The proofs of our results do not use any fractional calculus.
Relation (3.5) gives an analytic description of the functiong€in In particular,
it allows us to prove that every function ifir is the restriction taR of an entire
function. Strictly speaking, the elements.6tf are, of course, equivalence classes
of functions. Two functions represent the same element if they coincidienost
everywhere. Theorem 3.2 implies that every equivalence class can be represented
by an entire function.

COROLLARY 3.3. Every element of L1 has a version that is the restriction
to R of an entire function.

PROOF For f € X7, consider the complex function

T
(3.11) zr—>fo fwe(uz)dVv,.

Sinceg is entire, this function is well defined and easily seen to be continuous
onC. To prove that the function is analytic, consider a closed patithe complex
plane. By Fubini's theorem and Cauchy’s theorem,

?g(/or f(u)fp(uz)dvu)dz:/OT f(”)<7€€0(”2)dZ>qu —0.

Hence, by Morera’s theorem, the function defined by (3.11) is entire.

In the remainder of the paper, if we consider an elenjeat.Lr, we will always
assume this to be the smooth version.

4. The reproducing kernel on £Lr. As was established in Theorem 3.2,
the transformatiorV is of Fourier-type, generated by the Fourier kerpellhis
motivates us to introduce the functisiz onRR x R, defined by

T
Sr(w, 1) = fo ouw)pun)dV,,

whereg is, of course, given by (3.1) again, akdby (2.6). The Cauchy—Schwarz
inequality and Lemma 3.1 imply that is well defined. Moreover, (3.5) implies
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that, for fixedw € R, the functioni — S7(w, A) is the image undet/ of the
function u — ¢(uw). In particular, we see that — Sr(w, A) belongs toLy
for every w € R. It clearly holds thatSy (w, ) = S7(A, w). Since p(0) = 1,
relation (3.9) implies thas; (0, 0) = Vy andS7 (0, A) = m7(A).

The following theorem states th&t acts as a reproducing kernel on the spectral
spaceLr, turning it into an RKHS.

THEOREM4.1. For every ¢ € L1, we have
[ #0957 B = y@)
for all w € R.

PROOF  Suppose first thatr € § N L7, where§ is the Schwarz space of
rapidly decreasing functions. Then by Fubini’s theorem and Theorem 3.2,

A; ¥ 00 ST (@, Mi(dh) = /R e ( /O Tgo(uw>mdvu>u(dx>

-/ " (o) ( [ wmgo(ux)u(dx)) av,

T
- fo o)UY ) dV,

=U(U (o) =¥ (0)

for u-almost allw € R. The interchanging of the integration order is justified by
the fact that/ is rapidly decreasing.

Now let ¢ € L7 be arbitrary. Since$ N L7 is dense inLr (see the proof
of Theorem 3.2), we can choose functiottg € § N L7 such thaty,, — ¢
in L2(u). By the remarks preceding the theorem, the functior> S7(w, 1)
belongs tol.2() for fixed w € R. So by Cauchy—Schwarz, we have

‘ / Y ) ST (@, M (dh) — f ¥ ()87 @, Mu(dA)
R R

< 1¥n = ¥llullSt (@, )lw — 0

for everyw € R. By the preceding paragraph, the first integral on the left-hand
side equals), (w) for u-almost everyw. So the functiong);,, convergeu-almost
everywhere to the function

o> fR ¥ O)ST (@, M (dh),

and they converge iL?(x) to ¥. Then the two limits must coincidg-almost
everywhere. Since both functions are continuous (Corollary 3.3), the proof is
complete. O
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A first simple consequence of the RKHS structure is that the “kernel functions”
A St(w, L) spanLr.

COROLLARY 4.2. Thespace L7 istheclosurein L2(u) of the linear span of
the collection of functions { — S7(w, 1) :w € R}.

PROOF We already noted in the beginning of the section that every func-
tion S7(w,-) belongs to L7, so the closure of the linear span @& —
S7(w, 1) :w € R} is certainly contained i 7.

To prove the inclusion in the other direction, takes L7 and suppose that is
orthogonal to every kernel functia$y (w, -), that is,

/R Y O)ST @ Dp(dr) =0

for all w € R. Then, by the reproducing property §f, we see thai/ vanishes
wn-almost everywhere. [

It seems useful to briefly discuss the relation between the preceding frequency-
domain results and the so-called “time-domain RKHS.” The latter space is
constructed by associating to every eleméhte #r a functiont — EH X,
on [0, T']. These functions are the elements of the time-domain RKHS and the
inner product of two functions— EH X, andr — EH'X, is defined asH H'.

By construction, the resulting Hilbert space is isometri¢ép, and the covariance
functionr (s, r) = EX; X, is the reproducing kernel on the space.

The following theorem clarifies the relation between the two reproducing kernel
Hilbert space structures.

THEOREM 4.3. The time-domain RKHS is the closure of the linear span of
the collection of functions {r — 1,(A) : A € R} with respect to the inner product

(t> 1, (w), 1~ 1,(0)) = Sp(w, 1).

PROOF.  The spectral isometry shows that the time-domain RKHS is given
by all functions? — (v, 1;),, on [0, T], wherey runs throughL7, the inner
product of two elementsi— (v, 1,),, andz — (£, 1,), being given by(y, £),,.

By Corollary 4.2, it follows that the time-domain RKHS is the closure of the linear
span of collection of function& — (St (1, -), fl,)u : A € R}. By the reproducing

property, we have(Sr(x,-),1,), = 1,(1) and the inner product between the
functionst — 1,(1) ands > 1, (w) equalsSt (w, ). O

We note that the moving average representation of the fBm implies that the
inner products in the time-domain RKHS can be expressed in terms of Riemann—
Liouville fractional integration operators [cf., e.g., Hult (2003)]. Theorem 4.3 thus
yields an expression for the reproducing kerSglof L7 in terms of fractional
integrals. In the present paper this connection plays no further role, however, and
we will now return to the frequency domain analysis.
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5. Differential equations. Our next intension is to obtain an explicit analytic
expression for the reproducing kern®l. This goal is achieved in Corollary 6.2
below. In this section we will show that the Fourier kerrelis subject to a
“recursion relationship” that is also encountered in the study of other types of
processes with stationary increments [see, e.g., Kailath, Vieira and Morf (1978),
where a short account can be found of the classical result of Krein (1955)
concerning the “signal plus white noise” model].

The Bessel functiod, satisfies the second order ordinary differential equation

2
(5.1) J' (@) + }J;(z) + <1 — V—2>Jv(z) =0.
Z Z

In view of the representation (2.2), this yields the following differential equation
for the functionsn; € L.

LEMMA 5.1. For every A € R, we have

9211, (A A1 (A (L) QA
ra"[z( 'oin matt( )—2%( il )—’—n%m),

at 2
wherey, = (H — 1/2)/t.

PrROOF By (2.2), we havern, (L) = ¢, f1(z)J,(z), wherec, is a constant
(dependingon.), z=xr/2,v=1— H and f,(z) = z” exp(iz). Itis easily verified
that

fo(@) W +iz) 9% H@(+iz)2—v)

d
afv(z)=f, ﬁfv(z)z 12

The differential equation is now a straightforward consequence of (5.1).

This differential equation for the functioms— i, (1) gives rise to a differential
equation for the Fourier kernel(z)). We present this as a system of equations for
the functionP (¢, A), defined forr > 0 by

and its reciprocal
(5.3) P*(t,1) =M P(1, M.
Note that
T
(5.4 St(w, A) =/ P(t,\)P(t, 1) dt.
0

We also observe that since the functiofis correspond to the fundamental
martingaleM under the spectral isometry, the functions

/Ot P(s,)ds
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correspond to an ordinary Brownian motion. In particular, we have that

A;fosP(u,k)du/otmdvu(d)\):s/\t.

If we interchange the integrals on the left-hand side and differentiate, we get the
formal expression

/RP(S, MNP, A)pu(dr) =56 —s).

In this sense, the functionB(z, -) are orthogonal with respect to the spectral
measureu.

The following theorem shows that the orthogonal functions satisfy Krein's
continuous analogue of the usual recurrence formulas for orthogonal polynomials
on the unit circle.

THEOREM 5.2. For every A € R, the function P(¢, 1) and its reciprocal
P*(z, 1), defined by (5.2) and (5.3), satisfy the equations

aP(t, 1)
at

=iAP(t, ) =y P*(t, ))

and

JP*(t, )
o =—yP@{, ),

wherey, = (H — 1/2)/t.
PrROOF First of all, let us expressP(¢,-) and P*(z,-) in terms of the

functions, given by (2.2). We havésii, (1) = ¢(t1) dV; andV, = d4 1>~ [see
(3.3) and (2.6)], hence,

—1/2.~
tH=Y20 (0

J@—2m)d?

where the prime denotes differentiation with respeact tbfollows that

(5.5) P(t,)) =

tH_l/Z(n%;)*()»)
J@-2ma?

where(m;)* (1) = exp(iAt)m; (1) is the reciprocal ofi;. Observe that

(5.6) P*(t,1) =

R ix . d, _. .
7 (h) — () = e’“/za(e 25, (M),
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so that

ok —
(ﬁli@) - %mf) () = e%zwza(e—lu/zmtm)

. d B . .
— elkl/za(e zkt/th()L))

. ir
=m;(X) — ?mz()t)-

Sincerm, is self-reciprocal, that isy; (1) = exp(irt)m,(A) = m;(1), the latter
identity implies that(rm;)* (1) = m; (L) — iAm,(1). Combining this with (5.6), we
find that

t7=12Gh () — idig (1))

J(@2—2H)d%

The first statement of the theorem now follows from differentiation of (5.5),
taking Lemma 5.1 and (5.5) and (5.7) into account. Similarly, the second statement
is obtained by differentiating (5.7).00

(5.7) P*(t,\) =

6. Christoffel-Darboux formula. As in the theory of orthogonal polynomi-
als and their continuous analogous, the “recurrence relations” presented in Theo-
rem 5.2 allow us to derive a closed-form expression for the reproducing k&rnel
[cf., e.g., Grenander and Szeg06 (1958), Section 2.3, and Kailath, Vieira and Morf
(21978), formula (48)].

THEOREM 6.1. Let P(z, 1) and its reciprocal P*(z, 1) be defined by (5.2)
and (5.3).For all 7 > Oand w, A € R, we have
(6.1) ih—w)St(w,A) = P(T, w)P(T,\) — P*(T,w)P*(T, 1).
PrROOF We view the left-hand side and right-hand side of (6.1) as functions

in T. Recall that we have (5.4). Using Theorem 5.2, a straightforward calculation
shows that

iA—w)P(t,w)P(t, 1) = %(P(t, w)P(t, 1) — P*(t,w) P*(1, 1)).

This shows that the functions on both sides of (6.1) have the same derivative with
respect tdl', which implies that their difference is independenofSo for every
T > 0, we have

(6.2) i(A—w)S7(w,A)=P(T,w)P(T, ) — P*(T,w)P*(T, 1) +C(w, A)

for some constanf (w, 1), and it remains to show th&t(w, A) = 0.
For H < 1/2, the functions — P(z, 1) are bounded for every € R and it
holds thatP (0, A) = 0. So in this case we can |8t — 0 in (6.2) to see that
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C(w, 1) = 0. Since the Bessel functiof, is analytic inv [see Watson (1944),
page 44], (6.2) shows that as a functionAh C(w, A) can be extended to an
analytic function on the open disc of diameter 1, centered/at We just saw
that it vanishes for alF in the interval(0, 1/2), whence a standard result from
complex function theory implies that it vanishes on the entire disc [cf. Rudin
(1987), Theorem 10.19]. In particula(w,r) =0forall H € (0,1). O

In combination with the explicit expression that we have for the orthogonal
functionse(z1), the preceding theorem yields an explicit analytic expression for
the reproducing kerndlr.

COROLLARY 6.2. Thereproducing kernel S admits the following represen-
tation:

(i) For w A,
St (2w, 2\ T2w)\? ...
72;(0, o ) _ 2—2myr2a- H)<T> /T~

o J_g(Tw)J1-p(TA) — Jl—H(Ta))]—H(T)L).
T —w)
(i) ForweR,
ST (2w, 2w)

B B 2.1 &)ZH
$70.0) =2-2H)Tr<1 H)(2

X (le_H(Ta)) + 2 J_g(Tw)J1_g(Tw) + JEH(Ta))>.

Tw
PROOF Part (i) follows by straightforward calculations from the preceding
theorem, the definition (5.2) @?(z, A), the explicit expression (3.1) f@r and the
factthatdV; /dt = (2—2H)V,/t.
To prove part (ii), we note thaf; is analytic and, in particular, continuous, so
we may derive an expression f8f(w, w) by lettingl — o in the expression that
we found in part (i). It suffices to observe thatias> », we have

J_g(tw)J1-g(Ar) — J1-g(tw)J_g (tA)
A—w
J1-g (@A) — J1-pg(tw) J_pg(@r) —J_pgtw)

=J_g(tw) P —J1-H(tw) P

0 0
—> J_pg(tw)—J1-g(tw) — J1-g(tw)—J_g(tw)
w w

2
= t(JlZ_H(ta)) + J_gtw)J1_g(tw) + JEH(ta))).

tw
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In the last step we have used the recurrence formulae

d
(6.3) (@) = Y1) = 11 (2)
< Z
and
2 2
(6.4) Joi2(z) = %le(z) — 1)

[see Watson (1944), page 45]1

7. Orthonormal basisin £7. By the reproducing property, the inner product
of the kernel functions. — S7 (2w, 1) and A — S7(2w', 1) in L7 is given by
St(2w, 20'). Hence, by Corollary 6.2, these functions are orthogonalinf 7w
andT o’ are different zeros of;_g. In this section we prove that if we l8tw
range over all zeros of;_ g, we obtain an orthogonal basis £f;.

We first recall some facts about the zeros of the Bessel function of the first
kind [see, e.g., Erdélyi, Magnus, Oberhettinger and Tricomi (1953), Section 7.9].
Forv > —1, the Bessel functiod, has a countable number of positive zeros that
can be ordered according to magnitude. We denote therm,hy< A, 2 < - --

For positivev, the functionJ, satisfies/, (0) = 0 and its negative zeros are given

by —A,1 > —%,2 > ---. Hence, forv > 0, the zeros of/, can be ordered as

cov <Ay —1<Xtyo=0<Ar,1<---.To prove the completeness of the system of
orthogonal functions, we need the following lemma, which is a consequence of
the multiplicative decomposition of the Bessel function, or, more precisely, of the
formula

Shi1(d) = X
(7.1) =Y
JU(Z) kzl )\'U,k —Z

see Erdélyi, Magnus, Oberhettinger and Tricomi [(1953), formula 7.9.3].

LEMMA 7.1. Let J, beaBesseal function of the first kind of nonnegative order
v>0andlet--- <A_1<Ag=0< A1 <---beitsreal zeros. Then

So+1(@) - o) z—w
Jy(2) Jy(w) 0 An —2)(Ap —w)

n#
for all z, w € R, for which the expressions are well defined.

PrROOF Since the zeros aof, satisfyr_,, = —, for all n € N, it holds that

Z—Ww Z—w Z—w
DB Z((xn 0w —w) <xn+z>(xn+w))'

n#0 neN
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Now observe that we have the identity
a—>b a—>b 2a 2b

(c—a)(c—Db) + (c+a)(c+Db) T2 a2 2_p

for all a, b, c € R for which the expression makes sense. It follows that
Z—w 2z 2w

,%(An—z)w —w) _,EZNA%—ZZ _g@%—wz'

By (7.1), the right-hand side is equal to
Joy1(z)  Soyr(w)
L@ hw)

and the proof of the lemma is completé.]

We can now present the orthonormal basisCifn and the associated expansion
formula.

THEOREM7.2. Let-- - <w_1<wg=0< w1 <---bethereal zerosof J1_y
and, for n € Z, define the function ,, on R by

St (2w, /T, )

V) = S e/ T,
and put
o 2(wy) = ST(Zﬂ, Zﬁ)
T T
(7.2)

2H
(2—2H)r2(1— H)(“’—;) P2 @0Vr,  on#0,

Vr, w, =0.

The functions v,, form an orthonormal basis of L7 and every function v € L7
can be expanded as

Wp

2
T

IGED SN < IO}

nez

the convergence taking placein L2(u).

PrROOFE By the remarks in the beginning of the section, the functigpsre
orthogonal, and they have unit norm by construction. Let us prove that the system
is complete.

By Corollary 4.2, it suffices to show that every kernel functior> Sy (w, 1) is
in the closure of the linear span of tijg. We claim that, fow, A € R,

ST (2w, 20) = ) Y (20) Y (21).

nez
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To prove this, note that we have
St (2w, 0)ST(0, 21)
S7(0,0)

St w, 2w,/ T)ST (2w, /T, 2).)
St (2w, /T, 2w,/ T)

D U Ro)yn(2h) =

nez

(7.3)

2

n#0
By Corollary 6.2, the sum on the right-hand side equals

1
— TN (w, — Tw)’

T2\ ,
c( 4“’) Ty (T T (Tw)e' TO—®)

wherec = (2 — 2H)I'?(1 — H) V. By the preceding lemma, the sum in the last
display equals

1 (Jz—H(T)») _ JZ—H(Tw))

TA—o)\J1-g(TY) J1-pg(Tw)/)

In view of (6.4), multiplication byJ;_ g (T A)J1—pg (T w) yields
Joog(TAN)J1-g(Tw) — Jo-g(Tw)J1-g(TX)

T(A—w)
I n(Tw)J1-g(T1) — J_g(TA)J1-n (Tw)
o T(h— o)

2—2H

- m-’l—H(T)h)Jl—H(TCU)-

Hence, using Corollary 6.2 again, we see that the sum on the right-hand side
of (7.3) equals

TZ)\' H 2—2H
w) i TO—0) J1—H (T2 J1- g (Tw).

T2\
Therefore, our claim follows from the fact that the second term in the last display
is equal to

St (2w, 21) — c<

St(20,0)87(0,21) _ rivy (20)1ivr (20)
S7(0,0) B sy (0)
[recall thatS7 (0, A) = m7(A) and Sy (0, 0) = V; = m7(0)]. To check this, evoke
expression (2.2).
So, indeed, the functiong, form a complete, orthonormal system. It follows
that everyy € L7 can be written as) = > (¢, ¥,) . ¥». By the reproducing
property,

) _ Je¥@)STQon /T Mp(dd) _ ¥ (2wn/T)
o I1ST2wn/ T, )l ST (2wn /T, )l




SPECTRAL THEORY FOR THEBM 639

Another application of the reproducing property yields

()
T T

The explicit expression in (7.2) of the normalizing facéqww,,) follows from the
second assertion of Corollary 6.2]

— =0 ).
17T @

n

We remark that, instead of the zeros/f 5, we can also use the zeros.bfy
to obtain a second orthonormal basis.£f. Since the reasoning is completely
analogous to the/;_y case, we omit the details and mention only that all the
consequent results of this paper can be easily reformulated in terms of the zeros
of J_g [like in the caseH = 1/2 of the Brownian motion, where there exist
expansions in terms of the zeros of the sine and the cosine, cf., e.g., Yaglom (1987),
Section 26.1].

Using the isometryU : X7 — L7, we can now easily obtain an orthonormal
basis of the function spac&r = L?([0, T], V) and the corresponding series
expansion. Note that in the caBe= 1/2 it reduces to the Fourier series expansion,
given for f € L?[0, T by

1 A 2nm ;
_ - —(2inmt/T)u
f(u)—THEGZf< T )6 :

COROLLARY 7.3. Let --- <w_1 <wpg=0< w1 < --- be the real zeros
of J1_p and let ¢ be given by (3.1). Then the functions
92wy /THu)
lo((wn/T)) v’

form an orthonormal basis of X7 = L2([0,T], V). Every f € K7 can be
expanded as

nez,

Ufwn/T)p((2w,/T)u)
>

1= 2 = o IR

’

the convergence taking placein L2([0, T], V).

PROOF Just note thaf (w, -) is the image under the isometty: X7 — L7
of the functionu — ¢(uw). O

8. Paley-Wiener expansion. In this section we use the orthonormal basis
of L7 to obtain a series expansion of the fBm. Paley and Wiener (1934) use
a series expansion to introduce the standard Brownian motion, which they call
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the “fundamental random function” [see also Lévy (1965), Section 13 of the
Complement]. They first consider the series

> ez,  tel0,2r],
nez

where theZ,, are i.i.d., complex-valued, standard Gaussian random variables. This
series corresponds to white noise, but the series does not converge in the usual
sense. So instead they consider its formal integral

int_l
Ze

nez n

Z,.

The latter series is shown to converge almost surely and is taken as the definition
for the (complex-valued) Brownian motion.

We can now present the extension to the cHse 1/2 of this expansion. It
is natural to consider a complex-valued fBm. This is a centered, complex-valued
Gaussian process with covariance structure

EX, X, = 5?7 + 127 — |5 — 12,

THEOREMS8.1. Let---<w_1<wyg=0< w1 < --- bethereal zerosof J1_g
and let Z,, n € Z, be independent, complex-valued Gaussian random variables
with mean zero and variance E|Z,|2 = o%(w,), where o%(w,) is given by (7.2).
Then, with probability one, the series

eZia)nt/T -1
2iw, /T

n
nez

converges uniformly in ¢ € [0, T] and defines a complex-valued fBm with Hurst
index H.

PROOF By Theorem 7.2, we have

. . 20,
L(A)=Za(wn)1t( >

nez

)i,

wherey, is a complete orthonormal system.ity . It follows that, fors, r € [0, T'],

(8.1) i =3 az(wn)ﬂs<2—‘;”>ﬁ,(2"’”>.

nez r

By the spectral representation of the fBm, the left-hand side of the display equals
the covariance function of the fBm. Hence, the equality shows that the series in the
statement of the theorem converges in mean square sense for evgyy7' ] and
defines a Gaussian process with the same covariance structure as the fBm.
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The fact that the series converges uniformly with probability one can be deduced
from the It6—Nisio theorem [cf., e.g., Ledoux and Talagrand (1991)]. See, for
instance, the proof of Theorem 4.5 of Dzhaparidze and Van Zanten (2004) for
details. [J

For H =1/2, we havaw, = nn [see (3.10)] an@|2n|2 =1/T, so, indeed, we
recover the classical Paley—Wiener expansion of the ordinary Brownian motion in
this case.

The Paley—Wiener theorem for the fBm shows that the (complex-valued) fBm
on [0, 1] can be viewed as the formal integral of the process

ZeZiw,,th‘
In view of (7.2) and the fact that— ./zJ, (z) is bounded, the latter can be seen
as a random signal in which the weight of the component with frequepéy (up

to a constant) approximately equalcbé/ 2-H
The real-valued version of the expansion is as follows.

COROLLARY 8.2. Let X, (Y )neny and (Z,),en be independent, real-valued
Gaussian random variables with mean zero and variance

Vr 2

where o2(w,,) is given by (7.2). Then, with probability one, the series

tX+Zsm2w t/T e (cosZont/T—l)Z

+
n=1 wn/T & r;. a)n/T

converges uniformly in ¢ € [0, 7] and defines a real-valued fBm with Hurst
index H.

EX2 =

n

PROOF Note that the terms indexed lyand—r in the sum in equation (8.1)
are complex conjugates, hence,

o o0 - (205 (200
(]ls’]lt),u:aZ(O)st+ZZO‘2(a)n)§R<1( ;) )Jlt( ? ))

n=1

Since

A (20, ~ (2w
w(i(7) (7))
T T
_sin2a)ns/Tsin21'a),,t/T (cos2v,s/T — 1) (cos2v,t/T — 1)

2w,/ T 2w,/ T 2w,/ T 2w,/ T ’

this shows that the series in the statement of the corollary converges in mean square
sense and that the resulting process has the same covariance structure as the fBm.
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Uniform convergence with probability one can be argued as in the proof of the
theorem. [

In the paper Dzhaparidze and Van Zanten (2005) we proved that a related series
expansion of the fBm is rate-optimal in the sense of Kiihn and Linde (2002). This
means that the rate of uniform convergencevis” ./logN. Exactly the same
reasoning as in Dzhaparidze and Van Zanten (2005) can be used to prove the
optimality of the Paley—Wiener expansion of Theorem 8.1. The main idea is simply
to use the asymptotic properties ~ n andJ?,, (w,) ~ 2/n7? for n — oo [cf.
Watson (1944)] to estimate the size of the terms in the expansion. We omit the
details and just give the optimality result.

THEOREM 8.3. The expansion of the fBm of Theorem 8.1 s rate-optimal. It

holds that
<N JlogN.

Let us mention that related optimal series expansions for the so-called odd and
even parts of the fBm, and, consequently, also of the fBm itself, can be found in
Dzhaparidze and Van Zanten (2004). Compared with the Paley—Wiener expansion
of Theorem 8.1, the representation of Dzhaparidze and Van Zanten (2004) has the
drawback that it requires both the positive zerodnfy and of J_g.

Another expansion optimal in the sense of Kiilhn and Linde (2002) is obtained by
Ayache and Taqqu (2005). Their construction is of a completely different type. It
involves a doubly indexed array of i.i.d. Gaussian random varigb)gs weighted
by functionst > 27/ # (W (2/t — k) — Wy (—k)), defined in terms of the Fourier
transform of an appropriate mother wavelet

Finally, we want to mention the possibility to extend the expansion results
to the fractional Brownian sheet (fBs). This can be achieved by taking suitable
tensor products like in the paper of Dzhaparidze and Van Zanten (2005), where
our earlier double series expansion [cf. Dzhaparidze and Van Zanten (2004)] is
extended to the fBs. On extending the Paley—Wiener expansion of Theorem 8.1,
the construction is analogous and even simpler because we now have only one
sequence of Bessel zeros. The resulting expansion of the fBs is again rate-optimal,
as can be shown by using the asymptotic properties of the Bessel function and its
positive zeros.

eZiwnt/T -1
E sup —7Z
tel0.T] |HX>:N 2iwa /T "

Acknowledgment. Thanks to Michael Lifshits for pointing out some silly
miscalculations.
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