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We study systems of particles on a line which have a maximum, are
locally finite and evolve with independent increments. “Quasi-stationary
states” are defined as probability measures, orstladgebra generated by
the gap variables, for which joint distribution of gaps between particles
is invariant under the time evolution. Examples are provided by Poisson
processes with densities of the forpidx) = e 5*sdx, with s > 0, and
linear superpositions of such measures. We show that, conversely, any quasi-
stationary state for the independent dynamics, with an exponentially bounded
integrated density of particles, corresponds to a superposition of Poisson
processes with densities(dx) = e $*sdx with s > 0, restricted to the
relevanto-algebra. Among the systems for which this question is of some
relevance are spin-glass models of statistical mechanics, where the point
process represents the collection of the free energies of distinct “pure states,”
the time evolution corresponds to the addition of a spin variable and the
Poisson measures described above correspond to the so-called REM states.

1. Introduction. Competitions involving large numbers of contestants are
an object of interest in various fields. One could list here the energy levels of
complex systems and the free energies of competing extremal states of spin-glass
models [10] and include a broad range of other examples. We are patrticularly
interested in dynamical situations where the competition continues in “time,”
though time may be interpreted loosely. For example, in the motivating example
of spin-glass models [10], a point process on the line represents the collection of
the free energies of distinct “pure states” of a system of many spin variables, and
the “time evolution” corresponds to the incorporation in the system of yet another
spin variable.

Influenced by the terminology of statistical mechanics, we use here the term
state to mean a probability measure on the relevaralgebra of subsets of the
space of the point process configurations. For much of the discussion which
follows, the relevance would be limited to the information concerning only the
relative positions of the points, relative to the one which leads at the given instant.
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As in the pictures seen in marathon races, often the point process describing the
relative positions appears to be time invariant. We refer to such states as quasi-
stationary.

In this paper we characterize the quasi-stationary states for the class of systems
in which the evolution occurs by independent identically distributed increments of
the individual contestants. The main result is that any such state, of a point process
with locally finite configurations with more than one point and exponentially
bounded density, corresponds to a linear superposition of Poisson processes with
densities of the form

(1.2) p(dx)=e"*sdx

with s > 0. This may be rephrased by saying, in the terminology coined by
Ruelle [11] (who invokes the work of Derrida [6]), that all quasi-stationary states
correspond to superpositions of the random energy model (REM) states.

REMARK. Our main result may have a familiar ring to it, since the above
distributions are known to describe the “Type-I” case of the extremal statistics [8].

REMARK. Itwould be of interest to see an extension of the classification of the
guasi-stationarity to a broader class of dynamics where the evolution may exhibit
correlations. One may note that the REM states have an extension, based on a
hierarchical construction, to the family of the GREM states [2, 11], which exhibit
guasi-stationarity under a broad class of correlated dynamics. Is that structure
singled out in some way by its broader quasi-stationary properties?

In the following section we introduce the concepts more explicitly. We refer to
the system as the Indy-500 model, ignoring the fact that for a number of obvious
reasons this is not a faithful description of the dynamics in that well-known car
race.

2. The Indy-500 modedl. The configuration space of the Indy-500 model is
the space? of infinite configurations of points on the line, which are locally finite
and have a maximum (in the order[j. Its elements € Q2 can also be described
as sequences, = {x, },=12,.., With

(2.2) x1>xp>--- and x, —> —oo.

(Variables written as;, should by default be understood to be ordered.) In the time
evolution considered here the points evolve by independent increments.

As is generally the case with stochastic evolutions, the dynamics can be
presented in two ways: as a stochastic map, in which the configuratiof
is changed in a random way—through the independent increments, or as a
reversible transformation taking place in a larger space, which encompasses the
full information about both the future and the past dynamics. Our terminology is
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based on the former view; however, the second perspective provides a useful basis
for the intuition guiding the analysis.

Thus, the time evolution is given by a stochastic map determined by the
collection of random variables= {h,},=1.2, . :

(2.2) T, {xn} = {%n} with X, = xm1, + hm,,,

whereh, are independent random variables with a common probability distribu-
tion g(dh) on R, andIl is a permutation oN, which depends on both andg,
aimed at recovering the monotonicity féy. In other words,IT = IT(w, ) is a
relabeling of the moving particles according to the new order.

For a given probability measuge(dw) on 2, we denote by« the correspond-
ing probability distribution of the one-step evolved configuratiogn}. To be ex-
plicit: the average over . corresponds to averaging over batlands.

One needs to pay some attention to thelgebras on which the measures
w andT u are to be defined. Since we are interested in the classification of states
which are onlyquasi-stationary, we allow those to correspond to probability
measures defined on a smalleralgebra than the one usually used for point
processes on a line. (Such a change makes the result only stronger.)

The standardo-algebra, which is natural for the state space of particle
configurations, is generated by the occupation numbers of finite intervals (see,
e.g., [4]). Let us denote it by. Measurable functions include afl : 2 — R of
the form

(2.3) V()= f(xn)

with bounded measurable functiofis R — R, of compact support. However, in
this work we are interested in probability measures on the small@igebras
generated by functions which are invariatit(Syw) = ¥ (w), under the uniform
shifts

(2.4) Sy {xn) > (Fa) With %, = x, + b.

Functions which are measurable with respecBtdepend on the configuration
only through the sequence of the distances of the particles from the leading one:

(2.5) Uy = X1 — Xp.

Thus, a probability measugeon (2, 8) is uniquely determined by the “modified
probability generating functional” (MPGFL)

(26) éu(f) ZE[I. (exp{_Zf(xl_xn)}>,

with f(-) ranging over smooth positive functions of compact support. [The regular
“probability generating functional” is defined withaut in (2.6).]

One can now formulate a number of distinct “steady-state” conditions, where
the termstate refers to a probability measure on a suitadtalgebra, which is not
always the same.
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DEFINITION. A stationary state is a probability measurg (dw) on (2, 8B)
which is invariant under the stochastic mBpthat is, T« = u, or more explicitly,

(2.7) Ey((Tw)) =E, (¢ (w))

for any 8-measurable, where the expectation functiornd), includes an average
over bothw (distributed byu) andT [determined throughy:,, }, as in (2.2)].

A steady state is a probability measurg (dw) on (2, 8) for which there is a
nonrandomV (= the “front velocity”) such thaf" u = Sy i, that is,

(2.8) Eu (W (T{xn}) =Epu(¥ ({xn + VD)

for all 8-measurable functiong.

A quasi-stationary state is a probability measuge(dw) on thecs-algebraB
(subo-algebra ofB) such that (2.7) restricted shift-invariant functionsy holds,
that is, for which

(2.9) Eu (¥ {ua))) =Eu (¥ {iin)))
with {u,} the gaps defined by (2.5), and,} the gaps for the configuration

o=To.

For an alternative characterization of quasi-stationary measures, in terms which
are more standard for point processes, let us note that each configuration is shift-
equivalent to a unique element of the set

(2.10) Qo = {{xn}lx1=0}.

The “normalizing shift’s : @ > S_,, @)@ induces a measurable map fref, B)
to (R2,, B) C (2, B), and thus also a map (for which we keep the synfathich
associates to each probability measuren (2, 8) a probability measursu on
(2, B), supported orr2,. The measureu is quasi-stationary if and only if the
corresponding measusg is invariant undetS 7 —the time evolution followed by
the normalizing shift.

Stationarity is a special case of the steady state, and the latter reduces to it
when viewed from a frame moving at a fixed speed. Quasi-stationarity is the less
demanding property of the three mentioned above, and is the condition of interest
if one follows only the relative positions.

Through a combination of the results in [9] and [3] one may conclude that any
steady state of the Indy-500 model, whose jump distribution satisfieadhiattice
condition (meaning that its support is not contained in any set of the form
a + bZ C R), is a Poisson process with a density of the for(dx) = se ™  dx.

These are the REM states which are discussed in the next section.

Our main result is that for the infinite systems discussed feasi -stationary
probability measures can only be linear superpositions (as probability measures)
of the above steady states restricteddto
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REMARK. The restriction, in the above statement, to infinite number of
particles excludes the trivial example ofgaasi-stationary state which is not
the projection of anysteady state, which is provided by a single point moving
on the line by independent increments. In this case the state looks stationary from
the perspective of the “leader”: there is always just one point, at the origin. There
is, however, no steady velociy such that (2.8) holds.

REMARK. Linear superpositions (of measures on the suitablalgebras)
preserve the property @juasi-stationarity though not that ofteady state—due,
in the latter case, to the possible variation in the front velocities.

3. The REM states. We recall that for a probability measupgdx) on R,
a Poisson process with the densjtyis a probability measure of€2, 8) for
which the occupation numbers for disjoint sditg” R form independent random
variables£(A; w) = £(A), with the Poisson distributions

A k
%e—p“‘) and mearE(£(A)) = p(A).
We denote by ;(dw) the Poisson process with densijty, (dx) = se S gx
onR.

The special role of the above states in the present context is already seen in the
following statement, which is based on known results.

(3.1) Proh&(A)=k) =

PropPoOsSITION 3.1 (Based on [3, 9-11]).For any nonlattice single-step
probability distribution g(dx), the collection of the steady states corresponding
to the evolution by i.i.d. increments {k,,} with the distribution g(dh), as described
by (2.2), consists exactly of the probability measures i, ;(dw) [0n (2, B)], with
s > 0, z € R. For each of these states, the corresponding front velocity V is the
solution of

(3.2) eV =/esxg(dx).

Furthermore, with respect to u, . (dw), the past increments also form an i.i.d.
sequence, however with a modified distribution: conditioned on {x, }, the variables
{hn,} forma sequence of i.i.d. variables with the probability distribution

eslg(dh)
Jre¥gdy)

Thus for these steady states the distribution of the increments changes
depending on whether one looks forward or backward in time (!). In other words,
the permutatiol], (w) transforms the sequence of i.i.d. variales} into an i.i.d.
sequence{t, }) with a different distribution. (Of course this is possible only in
infinite systems.)

(3.3) g(dh) =
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PrROOF OFPROPOSITION3.1. The evolution by independent increments is
well known, and easily seen, to take a Poisson point process into another such
process with the density modified through convolutien-¢ o * g). Therefore,
just the steady-state property of the statgs is an elementary consequence
of the behavior of the exponential density under convolutions. However, for the
more complete statement made above it is useful to appreciate the following
observation, concerning two possible ways of viewing the collection of variables
@ = {(xn, hy)}. The following are equivalent constructions of a point process in
R x R:

(i) A collection of points{x,} is generated via a Poisson processRrwith
the densityp (dx), and then to each point is attached, by its ordeRpa random
variable{h,}, taken from an i.i.d. sequence with the distributg@h).

(i) The configuration is generated directly as a Poisson point procé&ssiR,
with the two-dimensional density(dx)g(dh).

The transition of the perspective from (ii) to (i) requires only the second factor
in the product measure d& x R to be normalizedy g(dh) = 1.

Now, the mapx, k) — (x +h, h) = (%, h) takes the Poisson process describing
o into another Poisson processrx R, which yields the joint distribution of the
“new” positions paired with the steps “just taken.” In caseot (dx) x g(dh), the
density of the new process i ~** dxg(dh) = se 5%~ dxg(dh). This can also

. ~ sh
be written as a produdtf e g(dy)]se 5% dx x %, where now the second
factor is properly normalized. By the previous observation it immediately follows

that:

(i) The positions after the jum{x,} are distributed as a Poisson proces®Ron
with the modified densitg (dx) = [[ Y g(dy)]se " di = se s V) d%, that is,
{x,} have the same distribution &s,} + V with V satisfying (3.2).

(i) When conditioned on the configuratiofx,}, the jumps just taken are
generated by an independent processRowith the probability density given
by (3.3), as claimed.

For the converse statement, that is, to prove that all steady states are of the
REM type, one may first note that ji(dw) is a steady state for the dynamics
corresponding t@(dx), with the front velocityV, thenu is stationary under the
dynamics corresponding to a shifted single-step distributier{dx) = g(d(x —

V)). The classification of stationary states, and hence also steady states, is found
in [9], where it is implied that any stationary measure is a superposition of Poisson
processes whose random density solves the equatiorp x g. As established

in [3], for nonlatticeg(dh) the only solutions in the space of positive measures
are measures of the for&dh) = [Ae~*" + B]dh. The condition that the typical
configurations be bounded on the positive side imply that0 andB =0. [

Having introduced the REM states, we are ready to formulate the main result.
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4. Classification of quasi-stationary states.

DEFINITION 4.1. A probability measurg on 2 is g-regular if for almost
everyTw = {w, {h, }n}, With respect tqu(dw) [1,,ez g(dh,), the point configura-
tion {x, + h,}, is locally finite, with a finite maximum.

The g-regularity of x means that with probability 1 the configuration obtained
through the independent increments has a maximum and can be ordered. This is a
preliminary requirement for the possible quasi-stationarity. oft is easy to see
that a sufficient condition fog-regularity is met in the situation discussed next.
The general sufficient condition is the finiteness, foradl R, of

(4.2) E(cardn:x, +h, > x}) =E, (Z Proky, (h, > x — xn)>.

In the following, to simplify the exposition and to avoid confusion we will
always assume that at= 0 the rightmost particle in the configuration isxat= 0
(we can do this without loss of generality); we will denoteAjythe positions of
the particles at = 0 and byy, the positions of the particles at=t.

Following is our main result:

THEOREM4.2. Let g be a probability measure with a density on R and let u
be a probability measure on (2, 8B), satisfying

4.2) /e”g(x)dx <00 VseR

and

E,.({g of particleswithin
(4.3) _ _ _ N
distance y of the leading particle}) < Ae™ Vy>0

for some A > 0and A < oo. If i is quasi-stationary with respect to the dynamics
corresponding to independent increments with the distribution g, then it is
supported on Poisson processes with densities se™* dx, s > 0.

The meaning of the theorem is that the probability sp@cean be split into
pieces and the process on each piec&dk a Poisson process with a density
se~* dx for a particulars.

In the proof we shall use the fact that point processes are uniquely determined
by their probability generating functionals (as discussed in [4]). Our derivation of
Theorem 4.2 proceeds along the following steps.

1. First we note that any quasi-stationary state can be presented as the result
of evolution of arbitrary durationz( which starts from a random initial
configuration, distributed by the given quasi-stationary state, and evolves
through independent increments.



CHARACTERIZATION OF INVARIANT MEASURES 89

2. Analyzing the above dynamics, we show that for larghe resulting distribu-
tion is asymptotic to Poisson processes with the corresponding (evolving) den-
sities. Thus, it is shown that the quasi-stationary meagucan be presented
as the limit of a superposition aindom Poisson processes, where the ran-
domness is in both the Poisson measure and the resulting particle configuration
(Theorem 5.1).

3. Applying a result from the theory of large deviations (Theorem A.1), and
some compactness bounds which are derived from quasi-stationarity, we show
that the quasi-stationary measure admits a representation as a random Poisson
process, whose Poisson densiti&g are the Laplace transforms of (random)
positive measures (Theorem 6.1). Furthermore, in this integral representation
of u, F may be replaced by its convolution wigh followed by a normalizing
shift.

4. For the last step we develop some monotonicity tools (Section 7), for which the
underlying fact is that under the convolution dynamics the Laplace measures
increase their relative concentration on the higher values of the Laplace para-
meter (Theorem 7.3). This corresponds to the statement that unless the function
F is a strict exponential, under the convolution dynamics the funckidoe-
comes steeper, and the distribution of the gaps is shifted down. Using a strict
monotonicity argument, we show that quasi-stationarity requires the measures
in the above superposition to be supported on pure exponential functions (or, al-
ternatively stated, functions whose Laplace measure is concentrated at a point).

The final implication is that the quasi-stationary measure is a superposition of
REM measures, as asserted in Theorem 4.2.

Let us remark that Section 7 may be of independent interest. It is noted there
that within the space of decreasing functions which are the Laplace transforms of
positive measures o[, co), convolution with a probability measure makes any
function steeper, in the sense presented below, except for the pure exponentials on
which the effect of such a convolution is only a shift.

5. Representation of u asarandom Poisson process.

5.1. “Poissonization”—the statement. Let & be the space of monotone
decreasing, continuous functioAs R — [0, co], with F(x) — 0 forx — oo and
F(x) — oo for x - —oo. We regard a functio € £ as normalized if

(5.1) FO) =1,

and denote byv the normalizing shiftV : F(-) — F(- + zFr), with zr = supz €
R:F(z) > 1}.

For eachF € ¥, the Poisson process @which corresponds to the measure
(—)dF will almost surely exhibit a configuration which can be ranked in the
decreasing order dR. The probability that there is no particle abaves R is
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exp(—F(x)). Conditioned on the location of the leading partictg, the rest are
distributed by a Poisson process @hoo, x] with the densityd(— F). Thus, the
MPGFL [defined in (2.6)] of the Poisson process with densitywhich we shall
denote byG ¢ (f), is given by

(5.2) GF(f):/OO d[e‘F(x)]exp{—/xoo(l—e_f(x_y))d(—F(y))}.

—00

Let us note that

(5.3) Gr(f)=Gxr(f),

since the probability distribution of the gaps is not affected by uniform shifts.

For the purpose of the following theorem I&t be a random variable with the
probability distributionP (S; > y) = [ I[3_y; = ylg(y1) - --g(yr) dy1---dy.. We
associate with each configuratian andr € N, the function

(5.4) Fuz(x) =) P(St > X — xn),

and denote by,, . the position at which
(55) Fot(Zo,r) = 1

One may note thaf,,.. (x) is the expected number of particles jon co) for
the configuration which will be obtained from after r steps of evolution with
independent increments. If the supporgd$) is not bounded, one may easily find
configurations for whichF,,.. (-) diverges. However, if the measuyxes g-regular,
then a.sF,..(-) < oo. Furthermore, we shall see thaifis quasi-stationary, then
the position of the front aftet steps can be predicted to be in the vicinity of
Z»:r—Up to a fluctuation whose distribution remains stochastically bounded (i.e.,
forms a “tight” sequence) as— oc.

The main result of this section is:

THEOREM 5.1. Let u be a g-regular quasi-stationary measure, for the
independent evolution by steps with some common probability distribution which
has a density g(u). Then for every positive function f of compact support in R,

Gu(f)=lIm | udo)Gur,, ()
(5.6) ¢
= lim Q/’L(da))Gg*:NFw;I(f)

T—>00

where (N}M( f) isthe modified probability generating functional defined in (2.6).

This statement implies that the measurés, in the “weak sense,” a limit of
random Poisson processes, of measures corresponding to the random functions
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N F,..(-) whose probability distribution is induced from through their depen-
dence orw.

Let us note that this result is related to—but not covered by—the known
statement that any limit of a sequence of point processes which is derived
through successive random independent increments is a mixed Poisson process
(e.g., [4], Theorem 9.4.2). Unlike in that case, the time evolution considered here
incorporates shifts according to the position of the leading point (and the limiting
process is not stationary under translations).

The rest of this section is devoted to the proof of this assertion, for which we
need some preparatory estimates.

First let us make the following observation:

LEMMA 5.2. Any guasi-stationary measure is supported on configurations
with either exactly one particle, or infinitely many.

PrROOF The statement is a simple consequence of the spreading of the
probability distribution of the sum of independent increments, that is, of the
variableS;. For example, one may consider the function

(5.7) Y2 () =pu({y1— y2 = y)).

By the dominated-convergence theor@r}f) (») :;OO. However, for any finite
number of particles, the probability that aftesteps the smallest gap will exceed

y tends to 1 ag — oo. Thus finite configurations of more than one particle can
carry only zero probability in any quasi-stationary measure. Of course, a measure
with exactly one patrticle is quasi-stationary.]

5.2. Some auxiliary estimates. Given an initial configurationy = {x,}, the
probability distribution of the position of the leading particle after O steps

is d PS” (x), with

P (x) = Prol{{at timez all particles are ofi—oo, x]})

(5.8)
=[1- P(Se = x —xu)l.

We shall need to compalzePa(f)(x) with the probability distribution associated
with the function

(5.9) PV (x) = exp —ZP(Sr >x —x,) b = e Forr ()
n

REMARK. Itis instructive to note that Na(f)(x) is the probability distribution

of the maximum of a modified process, in which at first each particle is replaced
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by a random number of descendents, with the Poisson distribptieae1/n!,
and then each particle evolves byindependent increments, as in the Indy-
500 model. Conditioned on the starting configuration, the modified process is
(instantaneously) a Poisson process. The probability that its maximum is in
(—o0, x] is given by

1

]‘[[Z %(1 — P(S; > x — x”))"}

n n

(5.10)
= exp{—ZP(Sr > x —x,,)} =P (x).

Our first goal is to show that the probability measuie®"’ (x) andd P (x)
are “typically"—in a suitable stochastic sense—asymptotic to each other as
T — 00. This statement is not true for someg and it is not difficult to construct
examples of configurations for which it does not hold. We note that it is easy to
show that the step described by the grapm&ff)(-) remains tight, in the sense that
the width of the intervalgx:§ < Pa(f)(x) < 1 - 6} does not spread indefinitely,
ast — oo.

LEMMA 5.3. For any quasi-stationary measure p:

(e e]
_ (®)
(5.11) E, (/_OO SUPP (8¢ = x —x)d P, <x)> =20
Furthermore,
(5.12) E, (sypﬁj)”(x) — P;”(x)I) 2.0

REMARK. The supremumin (5.11) is clearly attainedat 1 (by monotonic-

ity). Sinced P" (x) is a probability measure, and the c.d.fSefis a bounded func-
tion, the statement means that the maximum typically occurs in a region whose a
priori probability of being reached by any specific point is asymptotically zero.

PrROOF OFLEMMA 5.3. Due to the spreading property of convolutions of
probability measures (see [4], Lemma 9.4.1), for &nhy: oo
b(t,D)=supP(x <S; <x+ D) — 0.
x T—>00

Observe thaP” (x) < B (x) < 1 for all x. Let us pickx > 0 such that
e XA 1 Vx €|[0, %]
Thus if P(S; > x) < 1, we have

(5.13) PO (x) < PO (x)V/ILHAP(S:20]
' w — w .
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Suppose that is such thatP(S; > x) <e. Then

ﬁc(f)(x) — Pa(f)(x) < sup ]ul/(lH‘g) —ul.
uel0,1]

Suppose that is such thatP (S; > x — x1) > ¢.
Letng = 2In 1. Then for allz large enough and for atl < no,

I
b(f, _xn) S é
Consequently,
P(Se = x —x) = P(S: 22) = b(t.x) = 5.
Then
(2/e)In(1/¢) c 1
—Y P(S;=x—x)<— Y, S=-InZ
- ) 2 €
n=
and therefore
(5.14) PO (x) <e NV < ¢,
So in this case we obtain
PP (x) <e. O

Putting the above together, we have:

LEMMA 5.4, If u be aquasi-stationary measure, then for each ¢ > 0,
(5.15) p({o:distd P, dP{) > e}) — 0,

T—>00

where distis the distance between the two measures, defined as
/1l

PROOF  The distributions/ PP (x) andd P.¥ (x) can be written as

dP(S; > x — xp)
(M () — T
R D vy oy

(5.16) dist(dP,dﬁ)=suprh(x)dP(x)—/h(x)dﬁ(x)
h

[T11= P(Se =x —x)],

(5.17)
dP{P(x) =) "dP(S: = x —xp) x exp{-Zp(sf > x _x”)}.
k n

By Lemma 5.3 we obtain that
POx) - PPx)|<e  Va.
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If P(S; > x) <e¢,then we obtain by the same arguments as in the previous lemma
that

|dP (x) —d PP (x)| < ed P (x).

Integrating with respect t%’m over thex such thatP (S; > x) < ¢, we obtain
that the result is small.
If P(S; >x)>¢,then

[[(1—P(S: >x—x,)]<e and ex;{—ZP(S, Zx—xn)} <e.

n#k

Consequently for such
h(x) ~
—2 dPP(x)
o *

s&/ZdP(ST zx—mexp:—%ZP(Sf zx—xn)}

< consty/e,
andalsousingt x <e *forx >0

h(x)
17l

=i [ay P zx—xn)exp{—%Zer Zx—xn)}

< consty/s. O

dP"(x)

5.3. “Poissonization”—the proof. We are now ready to prove the main result
of this section.

PROOF OFTHEOREM 5.1. Due to the quasi-stationarity of the measure
one may evaluatéu(f) by taking the average of the future expectation value
of exp{—>_, f(y1 — yn)}, corresponding to the configuratiesn as it appears at
timer =0.

In the following argument we fix the (nonnegative) “test functigf’and take
D < oo such that supg c [— D, Q]. In the approximations which follow we use
the fact that exp- Y f(y1 — y»)} is a bounded function« 1), which is integrated
against a probability measure. As befaredependent quantities are denotg)
if in the limit T — 0 they tend to 0 “in law,” that is, the probability distribution
which they inherited fronw is nonzero only fof0, ¢] for anye > 0.
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The conditional expectation of the future value of Exp_ f(y1 — yn)},
conditioned on the initial configuratian, is

E,(exp{= Y Fv1—w)})

oo .
(5.18) ::/ e TOGP(S, > x —xp)
—0

x [T = P(S: = x —xu)]
n#k
T [rooe TN AP(S, >y —xn)’
n+k (l_ P(ST Z X — xn))
whered P(S; > x — xi) is the probability that thé&th particle is atx at timez,
[Tk [1— P(Sz = x —xp)] is the probability that other particles are(atoo, x] at

. o fy) —xa) . .
time 7, and == e(lf P(;T‘ii(f;if ™) is the expectation of—/—) given that the

particle which is aty,, atz = 0 is at(—oo, x] at timer.

As in the previous discussion, the contributiorvaguch thatP (S; > x) > ¢ to
the integral in (5.18) is negligible.

Considerx such thatP(S; > x) < ¢. We can write

[

n#k

[roo T AP(S: 2 y — xp)
1-P(Se =x —xp)

_ [roo@ = e /O dP(S: 2y — )
(5.19) =11 [1_ 1—P(S; >x—x,) ]

_ (14 01) exp{— f_xoo(l ) d(; P(S:>x - xn)) }

As noted in (5.3), the normalizing shift has no effect®p( f). The result is the
first of the two equations in (5.6). The second equation is an immediate corollary
of the first one, since

(5.20) 8 * Fur = Fyry1. 0

For a later use, let us note that the arguments used in the above discussion
readily imply the following two bounds.

COROLLARY 5.5. For any ¢ > 0, thereis W(e) < oo such that

(5.21) E“</ dk—ﬂﬂm@ﬂ)gg
lx|>W(e)
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and
(5.22) E, ( / d[e¢* Fw;rm]) <e.
|x|>W(e)

PROOF Let f =ljo w()].- Denote
(5.23) d(W(e)=E, [e—|[0,w<s)](y1—yn)]_

Since o, w )] (x) W(T) 1 for x € R and since, in a typical configuration, the
£)—> 00
number of particles within distanc# (¢) behind the leader increases 4o as

W (e) increasesg (W (g)) must decay monotonically to O aB(s) increases. By
taking f = ljo,w()], we see that

o0
(p(W(S)):/M(dCL))/ de_‘NFw:z(x)
(5.24) ~o0
X e_(l—efl)(e/\/Fw;r(x—W(g))—NFw;I(x)) n 0(8.[)_

We can get an estimate oM F,,.. (W (¢)) from (5.24) by restricting the range of
integration fromW (¢) to oo and using thatV F,.; (x — W(g)) — N F,.- (x) < 1.
Then, forx > W(e) we obtain

d)(W(S)) Z/M(da)) /WO(O)deNer(-x)

(525) X ef(_‘]_iefl)(t/\/‘Fw;T(x7W(g))7,/\/Fw;T(x)) + 0(8-[)

2e—(l—e—l)/M(dw)(l_e—NFw:z(W(S))) + O(s7).

Similarly, by restricting the range of integration from 0do and using that
NFyr(x —W(e)) — NFy.r(x) <NF,(—W(e)) for x > 0, we obtain

d(W(e)) zfu(da)) /Ooode—dm;fu)

(526) X e_(l—e_l)(NFw;t(X_W(S))_NF(U;T(X)) + 0(8-[)

>(1-eY f p(dwye™ L DN o CWED 4 oey),

Equations (5.25) and (5.26) prove the first part of the corollary.
To prove (5.22) we observe that from the previous part it follows that for all
large enough, and sufficiently lardg(e),

&
E de NFori(x) < 2
F =2 2
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Since for sufficiently largéV (¢) andw in a set of measure 1 5,

Wi(e)
Zw,14+1 — ot = 5

we obtain that

E de 8N Fur () < ¢
Hlxi=we - O

Corollary 5.5 will be used for an approximation &wa;f(f) by a quantity
which has better continuity properties as a functionak of

6. The Poisson density as a Laplace transform of a random positive
measure. We shall next show that the quasi-stationary measurean be
presented as equivalent to a random Poisson process whose density is the Laplace
transform of a random positive measure®n[Due to the invariance o under
uniform shifts, with no additional restriction the measures may be adjusted so that
p(R)=1]

Let M be the space of finite measures[@hoo). To eachp € M we associate
the Laplace transform function

(6.1) R,O(x)=/0 e o(du).

We denote byF;, the space of such functions, that#, = {R,(-)|p € M}.

We shall need to consider “ensemble averages” over randomly chosen elements
of M. These are described by probability measuredgfnvhich would always be
understood to be defined on the naturahlgebra onm, for which the measures
of intervals,p ([, b]), are measurable functions ef Our goal in this section is to
prove the following statement.

THEOREM 6.1. Under the assumptions of Theorem 4.2, there exists a
probability measure, v(dp), on M such that for any compactly supported positive
function f on R,

(6.2) Golf) = /M v(dp)Gr, (),
and furthermore,
(6.3) Gulf) = /M v(dp)C g ().

For Laplace transform functions = R, shifts correspond to transformations
of the form

(6.4) p(du) = e~ p(du),
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and the normalization condition (5.1) correspondst®) = 1, that is,p € M
being aprobability measure. In view of the invariance (5.3), this normalization
condition may be freely added as a restriction of the suppont(dp) in the
statement of Theorem 6.1.

While the result presented in the previous section required only quasi-
stationarity, we shall now make use of the additional assumptions listed in the
main theorem (Theorem 4.2).

In the derivation of Theorem 6.1 we shall apply what may be regarded as the
principle of the equivalence of ensembles, in the language of statistical mechanics.
Specifically, we need the following result, which, as is explained in the Appendix,
is a refinement of the “Bahadur—Rao theorem” of large deviation theory.

THEOREM A.1l. Let u1,uo,... bei.i.d. random variables with expectation
Eq,u and a common probability distribution g(u), which has a density and a
finite moment generating function, [ e"g(u)du = ¢ < oo for all . Then,
for any 0 < K < A’(c0) and 0 < B < 5 thereis e;.x g — 0 such that for all
q € [Equ, K]and |x| <P,

Prob({us +uz+---+us >x+qt})  _
6.5 = nx l+ Ol(e.. s
(6.5) Prob({us +uo+---+u;s >qrt}) el (€x:k.p)]
with n = n(q) determined by the condition
Jue™g(u)du
9= "7 ~ 5.
Jerg(y)dy

In our analysis we shall need a bound on the front velocity, and on the possible

propagation of particles from the far tail.

(6.6)

LEMMA 6.2. Let u be a quasi-stationary g-regular measure with a density
satisfying the assumptions (4.2) and (4.3) of Theorem 4.2. Then:

(i) For any t large enough, for @ in a set of measure 1 — ¢,

S
(6.7) it < Zr + const where S = In/eaxg(x)dx.
(if) There exist o, (M) and B¢ (7) such that the probability of the complement
of the event

A:r.p.x.m = {o: the configuration obtained after t stepswill have not more
than M particleswith y, > y; — D, and all of them made
atotal jump lessthan Kt 4z, — x, intimefromOto 7}

satisfies

(6.8)  ProlAS, x ) < (M, D) + Bo(r) + Cy e K K0T

with o, (M, D) —> 0Ofor each D < o0, Be(r) —> O0and§ > 0.
M— o0 T—00
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REMARK. Inthe proof below we shall apply the last bound in the double limit:
lIMg_ oo lim;_ o0, With M chosen sothat & M < K.

PROOF OFLEMMA 6.2. (i) By (4.3) and Markov inequality,
Pu({f(=xp) <m} > e?™) < e,
Therefore by the Borel-Cantelli lemma,
P {{t(—=x,) <m} > e®™i.0.) =0.

This implies that for any there exist#:g such that on a set @f of measure 1 ¢,
(#(—=x,) <m)} < e®" for all m > mo.
Using the definition off,,.o we obtain

(6.9) Fy.0(x) < 24 min(x,=mo) Vx <O.
Therefore,

For(x) < Fyo * g(*r)(x)
(6.10)
= CO”St/ e (y) dy < conste™ TS,

For x = g—; + const we thus obtairF,,..(x) < 1. It follows by definition that
Zo,t = % + const.

(i) The probability that the first condition does not hold in the definition of
A:.p.x.m IS, by the quasi-stationarity qf,

o, (M, D) = u(w:more thanM particles
(6.11)
are within distanceD of the leader at = 0).

This quantity vanishes fa¥f — oo because the number of particlegin — D, y1]
is almost surely finite.

To estimate the remaining probability of the complement of the exemns x u
we split it into two cases, based on the distance which the front advances in.time
That distance is at least the total displacement of the particle which is initially at O.
The probability that this displacement is less tliagu — 1)z is dominated by the
guantity

Prob(ze, < (Equ — 1)t) < Prol(S; < (Equ — 1)7) = B, (7).

The choice of 1 is somewhat arbitrary, but even so, standard large deviation
arguments which are applicable under the assumption (4.2) implyghab
decays exponentially.
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The contribution of the other case is bounded by the probability of the following
event:

Prok(at least one of the particles ofwill advance int steps
a distance greater thdrx, + (Equ — 1+ K)1])

<E, (Z Prob(S; > —x, + (Equ — 1+ K)r))
(6.12) "

< EM (Z Eg (ean)e—a[—xn+(Egu—1+K)r])
n

T
< Ul; @ Egt) g.1) due—a(K—l):| E, <Ze—a[—xn]>’
n

wherea > 0 is an adjustable constant. The last factor is finite fer® < A since
under the assumed exponential bound (4.3),

E, (Z e_“[_x”]> =E, (Ol/ dye™ Zl[y > —xn]>

n

(6.13) »

a—Ar
The claimed estimate readily follows (choosing< «, and definings > 0
correspondingly). OJ

fa/ dye™® Ae™ =

PROOF OF THEOREM 6.1. Applying Theorem A.1 to the function defined
by (5.4), we find that

NFa);r(x) :ZP(S‘E > X+ 2wt — Xp)

P(S: > X+ 2wt — Xpn)

= P(S; > 747 —
Z (T_Zw’t *n) P(S‘[ZZ(D;‘L’_xn)

—K(g)t<x,<0

+ Z P(STZZw,I_xn +x)

xn=—K(e)t

(6.14) = Y P(St =z —xp)e MmO 4 0 (e,)]

—K(&)t<x,<0

+ Z P(Srzzw,r_xn +x)

xn=—K(e)t

= /:o P (du)e” " [1+ O(e1)]

+ ) P(S:>zZer —XntX),

xp<—K(e)T
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with p,.. (du) defined as the probability measure with weigRtsS; > z,,.. — x,)
at the points (*2=—").
We will now estimate the remainder tefm, -_ k) P(St > zZw,r — Xn +X).
In the case when lim, o A'(n) < oo (in the case when the supremum of
the support ofg(x) is finite), the remainder term is zero for largge) [e.Q., if
K (&) > A'(00) andx = O (z#)].
In the case when lig, o A’(n) = oo, the remainder term can be estimated

using the large deviation arguments. By using (A.2) in Theorem A.1 and (6.9) we
obtain

Z P(SIZZw,t_xn +x)

xn<—K(e)t

[e.e]
S/ P(u1+~-+ufzy+zw,r+x)emydy
K(e)t

(6.15) :/oo exp{—rA*(M)}

K(e)t T

x [/00 exp{—l//r (n(w>)t} ngn(y/r))(t)]eZAy dy
0 T

= 0(&y).
The last equality in (6.15) follows because by convexityzdf

2\
A*(M) > Ty forally > K(¢)r,

and because the factor in the square brackets in (6.15) is small.
Therefore

o0
(6.16) N Fuie ) = [ 7€ e (i) (14 Oe0)).
We observe that
[N For(x) — Rp(x)| < €Rp(x),
|V F,, . (x) = R, (x)| < eR},(x),
(6.17)
|g % N Fr(x) — g% Rp(x)| < &8 % Rp(x),

(8 % N Fu) (x) — (8 % Rp) (x)| < e(g * Rp) (x).

Using (6.17) and Corollary 5.5 we obtain

~ W(e) x
Gu(f) = /_ e de™ Rt exp{— /_ - e/ (’“”)(—dRpm)} +e

(6.18) =Gwe.r, (f) +e
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W(e)

X
de 8*Ro(x) exp{—/ (1- e_f(x_y))(_dg * Rp(y))} t+e
—00

=Gw(e).ger, (f) +e.

W(e)

[Equation (6.18) will serve as a definition &W(g),Rp (]
From (6.16) we observe that for all in a set of measure X ¢ and for every
K > 1 there exists &1 > 1 depending orK such that

o0

619 [ P pedi) < P(Se =X+ 2une — o).
n(EgquK) xpn<—Kit

We can choos& 4 by requiring that for allk,, < — K17,

Lot T - Bou+ K,
T
for example, K1 = Equ + K — 5- and we used (6.7).
From Lemma 6.2 [see (6.8)], applied witi = /K (or any other choice with
1« M « K), we find that under the assumptions listed above, for Rany oo
there exist p(K) with which

limsupE,, (f eD”,ow;,(du)>
n

T—00 (Egu+K)

(6.20) <lim supIEM( Z P(St > zyir — Xn — D)) +ep(K)

Xy <—K1t

=Ep(K) — 0.

The correspondence — p,., defines a mapping from the space of configura-
tions 2 into the spacem, of measures oR, with values restricted to the subset of
probability measures. Corresponding to this map is one which takes the measure
© on  into a probability measure om which we shall denote by;. By this
definition, for any measurable functidi: M — R,

(6.21) [ x@vedo) = [ X(puiuido)

The space of probability measures on compact subseks isfcompact, and
so is the space of probability measures on this space. While we do not have
such compactness (since the measuref{ @&re defined over the noncompé},
(6.20) with any fixedD > 0 implies that the sequence of measurgss tight and
that it has a subsequenag, which converges in the corresponding “weak
topology” ast, — oco. Let v be a limit of such a subsequence. [To prove
the tightness ofv,, we observe that it is possible to show that for all
Ry, (x) < M(x) for some functionM (x) except forw in a set of measure. The
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set of p for which R, (x) < M (x) is compact.] We claim that for every positiye
of compact support, suppc [—D, 0],

fM[6W<s),Rp(f)]v(dp) +e

n—oo

= lim | [Gwe).r, ()], (dp) +&=Gu(f),
(6.22) M

/M[aww),g*zep(f)]wdp) +e

n—oo

= lim M[GW(S),g*Rp(f)]an (dp) +& =G L(f).

The weak convergence means that for aogtinuous function X : M — R,

[ Xywidp = Jim_ [ x(pwr, ()
(6.23) M M
= Iim | X(pw:r,)1(dw).
Q

n—oo

The continuity argument does not apply immediately to the function which we are
interested in:

_ d[e‘R"(’“)]eXp{—fxiD[l—e_f(x_y)]d(—Rp(y))},

—Wi(e)

which is not continuous ino. However, GW(S),RP(f) can be approximated
arbitrarily well, in the appropriaté.1 sense, by functionals which are continuous.

The function@w(g),,gp(f) is not continuous irp. The difficulty is thatR, (x)
can be affected by small changes in the meagufé¢hose occur at high values of
the Laplace variable. However, we do obtain a continuous function by replacing
R, in (6.24) byR ., with

(6.25) |k p(du) = j0,n(E,urk) (@) - p(du).
It is easy to see that

/ ( f e‘*“p(du))v(dp)
MN\IN(Egu+K)

(6.26) <limsup (foo e_x“,ow;f(a’u)>,u(dw)
Q\Jn

T—>00 (Egu+K)

<& (K) — 0O,
K—o0

where the first inequality is by the generalized version of Fatou’s lemma, and the
second is by (6.20).
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Due to the fact thatf is compactly supported and the integrationxiis over
[—W(e), W(e)], the difference

/M \Gwe.r, (f) — 6W(e),R|,(p (Hldvip)

is affected only by values of € [—-W (g) — D, W (¢e)].
Taking x in this interval, we observe that (6.26) implies that

o
/ e p(du) <,
n(Egu+K)

except on the set @ of measure:.

The difference [, IGw ).z, (f) — Gw(g),R,Kp(fN dv(p) is controlled by
|R,(x) — Rigp(x)| and by|R;)(x) — R{Kp(x)|, which are small fox € [-W (¢) —
D, W (e)] except on the set of of measure, sincefnongquK) e " p(du) is small.

One can verify by standard arguments that forfinite 6W(8),R, ,(f) Is
continuous inp, and that this continuity and the approximation bounds listed above

imply (6.22), thereby proving the first part of Theorem 6.1. The second part is
proved via similar arguments ]

7. Monotonicity arguments. In this section we develop some monotonicity
tools, which will be applied to prove that if a measwréas the properties listed in
Theorem 6.1, then the corresponding measpraev-almost surely concentrated
on points, that is, the Poisson densitigsare almost surely pure exponential.

7.1. Thecontraction property of convolutionswithin ;. The spaceF, whose
elements are positive decreasing continuous functior®, asmpartially ordered by
the following relation.

DEFINITION 7.1. ForF, G € ¥ we say thatG is steeper than F if the level
intervals ofG areshorter than those of, in the sense that for any9a < b < oo,
(7.1) 0=)G Ha) -G ) < F Y a) — F ().

We adapt the convention that for the (monotone) functiéns # the inverse is
defined (fora > 0) by
(7.2) G Ya) =inflx eR:G(x) <a).

It is easy to see that, within the class of monotone functiBhsn equivalent
formulation of the relation & is steeper thai” is that for anyu > 0,

(7.3) Gx)=F@y) = Gu+u)=<F(y+u).

Also equivalent is such a principle with the reversed inequality:ardd.
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Of particular interest for us is the subspage of Laplace transforms of
positive measures. We shall show that within this space, the convolution with a
probability measurg (x) dx makes a function steeper. (It is shown below that the
appropriately shiftedk, x g is in #7..) A key step towards this result, which is also
of independent interest, is the following lemma.

LEMMA 7.2. Let F = R,r € ¥, satisfy thenormalization condition £ (0) =
(ile, F=~NF), andlet G = R,c € ¥, berelated to it by

(7.4) G=N(F=x*g)

for some probability measure g(x) dx. Then, for all A > 0,
A A

(7.5) [ o < [ o aw.
0 0

PROOFE The relation betweer and G is such that for some normalizing
constant € R,

(1.6) Gy = [ [ [7 e pF i ety = [ e S o )
—ooLJ0 0
with S(-) defined by
o
(7.7) S = / O (y) dy.
Thus
(7.8) 0% (du) = 3 pF (du),
and the normalization conditior’8(0) = G(0) = 1 imply
o
(7.9) / S F(du)—/ oF (du).
0 0

The functionS(-) is convex, which is easily verified by showing thgit > 0,
by general properties of integrals of the form (7.7), and satisfiés = O (since
g(x)dx is a probability measure). It has, therefore, to be the case that either
of (du) is concentrated at a point (whe$e= 0), or elseS(-) is negative orj0, ir)
and positive on(iz, o) for someu > 0. The claimed concentration statement (7.5)
is obviously true for alk. € [0, i]. For A > u, we note that

(7.10) A S oF (du) > / oF (du).

By subtracting (7.9) from (7.10), we find that the claimed (7.5) is valid also
fora>u. O

THEOREM 7.3. For any F = R, € ¥ and a probability measure g(x) dx
on R, the function N (F % g) is steeper than F.



106 A. RUZMAIKINA AND M. AIZENMAN

PrROOF Our goal is to derive the inequality (7.1) fa¥ = N (F *x g) (and
a < b). By simple approximation arguments, it suffices to do that assuming
M, _o F(x) =o00.
We claim that
N(F xg)(x) < F(x) forx >0,
(7.11)
N(F xg)(x) > F(x) forx <O0.
We find that the functiong andG = N (F *g) are related just as in the previous
lemma. In order to convert the concentration statement (7.5) into one retating
with F(-), we write, using Fubini’'s lemma (or integration by parts),

00 A
forx >0 N(F *xg)(x) = xA dre™™* [/o eS(”)p(du)],
(7.12) forx <O N(F*xg)(x)=x /Ood)\e_“ [/OO eS(”)p(du)i|
0 A

o0
4 fo S o (du),

with the corresponding relations holding fét without the factorseS®™. The
inequalities (7.11) follow now by inserting here the relations (7.5), (7.10) and (7.9).

We note that ifF and & (F * g) were shifted so as to be equal at a different
value ofx, then the argument above would also go through. Therefore we obtain
that N (F * g) is steeper thawr. [

The partial order & is steeper thatt” is preserved when any of the functions
is modified by a uniform shift, and also when each is replaced by a common
monotone function of itself, for examplgF, G} replaced by{1 — e, 1 — ¢ 6},
Following is a useful property of this partial order (another one is presented in
Appendix A.2).

LEMMA 7.4. Let F, G € & be continuous and strictly monotone decreasing
functions with lim, o F(x) = lim,_ o G(x) = oo. If G is stegper than F,
then, for any u > 0,

(7.13) /e—[Gu—u)—G(x)] de—G®) E/e—[m—u)—F(x)] de—F
Furthermore, the inequality is strict unless G isa translate of F' (and vice versa).

PROOF The statement is a simple consequence of the following formula,
and (7.3):
fe—[F(x—u)—m)] de—F® _/e—[cu—u)—G(x)]de—G(x)
(7.14)
_ /"odz [ FETH @0 _ =G(GT 00
0 O
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An additional result related to this notion, which may be of independent interest,
is presented in Appendix A.2.

8. Proof of themain result. We shall now apply the monotonicity arguments
for the last leg of the proof of our main result. Theorem 4.2 is clearly implied by
the following statement (see Theorem 6.1).

THEOREM8.1. Let u be a measure on the space of configurations 2, which
admits a representation as a random Poisson process, described by a probability
measure v(dp) on M as in Theorem 6.1, for which both (6.2) and (6.3) hold.
Then the support of the Laplace measure dp is v-almost surely a point; that is, the
functions R, are almost surely pure exponentials.

PROOF Let us consider the probability that the first gap exceeds somé.
For a Poisson process, a simple calculation yields

Poi o0
(8.1) BT () — xp > u) =/ e FO=(_gF(x)).
—00
Therefore,
By —x2z0) = [ ude) [~ O (=dF ().

Substituting this in (6.2), or in (6.3), one obtains the corresponding expectation for
the measurg.. Subtracting the two expressions, we find that

(8.2) 0= f v(dp)[/ e RoC=GR (x) — /_OO e_RP*g(X_”)dRp*g(x)].

By the analysis in the previous section (Theorem 7.3 and Lemma 7.4), the
difference in the square brackets in (8.2) is nonnegative. Thus, this relation implies
that

/e—Rp(x—u)dRp(x) _ /e—Rp*g(x—u)dRp xg(x)=0
(8.3)
for v-almost every.

Furthermore, by Lemma 7.4 the equality yields thahlmost surelyR, * g
coincides with one of the translates 8f,. The only functions £ = R,) with
this property inF;, (or for that matter in¥; see [3]) are pure exponentials, which
correspond t@ concentrated at a pointJ
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APPENDIX

A.l. Useful statements from thetheory of large deviations. Our goal here
is to derive Theorem A.1 which was used in Section 6. Its statement may be read as
an expression of the “equivalence of ensembles”™—in statistical mechanical terms.
The following notation will be used in the theorem.

A =InE[M],  A*(y) =supry — A(V)).
A
The result we used in Section 6 is:

THEOREM A.1. Let uq,up,... bei.i.d. random variables with a common
probability distribution g, which has a density and a finite everywhere moment
generating function. Then, for any 0 < K < A’(0c0) and 0 < B8 < 1/2 there
iSer.k.p rngOSUCh that for all ¢ € [Equ, K]and |x| < ©#,

(A1) Prob({us +uz+---+ur >x +qt})
' Prob({us +ug+ - +u; >qt})
with n = n(g) determined by the condition (g) = A* (g).

e—ﬂx[l+ O(St;K,/S)]»

PrRoOF We will assume thatE,u = 0, since we can replace the random
variablesu; by u; — E,u. We will use the same notation as in the proof of the
Bahadur—Rao theorem (see [5]). We denote

i2)x ().
o)
()

)=
J= ()

’

_ui—yJt
Yi= —————
VA (n(y/1))
Yi+---+Y;
W= ——F—++—,
T ﬁ
and consider a new measuPedefined by its Radon—Nikodym derivative
p (/7))
dPOCT e/,
dpP

Let alsoQ7”/™ denote the distribution function 6%, with respect taP 70/?).
It is easy to show then that are i.i.d. with mean 0 and variance 1 with respect to

P0O/O) ThereforeW, has mean 0 and variance 1 with respec8”/™.
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By analogy with the proof of the Bahadur—Rao theorem (see [5]), we can write
(A2) Plur+ - +up>y)=e TA0/0 /ooeﬂ/mn(y/r»z 40T ¢y,
0

For further consideration, we need to estimate the ratio

Pui+uz+---+ur >x+y)
Pur+uz+---+ucs>y)

(A.3)
- 4 +
:e*TA*((Xer)/r)JrTA*(y/T)fgoe Wr(n((x+y)/r))tngn((x y)/r))(t)
52 e~ ¥/t g QU (1)

By using Taylor's expansion we can estimate the exponent in (A.3):

w2 ()=o) () o)

where, to estimate the remainder term in (A.4), we use the integral form of the
remainder in Taylor series and thit< K, |x| < tf, A* = Al < 00, convexity
of A and the assumption that the Laplace transform wffinite.

It remains to show that the prefactor in (A.3) is

fo e~ Ve n(x+y)/T))e ngﬂ((x-i-y)/r))(t)

(A5) r(x,y)= =1+ O(gy).

I eﬂ/fr(n(y/r))tngﬂ(y/t))(t)

By the Berry—Esseen theorem (see [7]),

x et/ 33 E 1 1
Q§">(x)—/ ¢ dt‘ B Ry 1 0(—).

—0o 27 = 4 (Varupd2 /. T \JT
Therefore,
/ T eV DO g 0O/ (4
0
00 o=V (((x+y)/0)1—1%/2
A6 - / dt
(A.6) o

o B (22) o),

This formula is especially useful whef, < O(1) (i.e., whenn is small) and the
first term on the right-hand side of (A.6) is much larger than the second term. In
this case we obtain
&0 eV N/ N=1%/2 gt 4 O (1/./T)

J$C eV G /=12/24r + 01/ JT)

(A7) r(x,y) =
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If y is such tha (1) < ¥, < 0(z1/?), we write the integral as
o0 oo
/0 VRO g QOO (1) — /0 e~V 0/ D) (1) g

whereg; is the density ofQ.. By the analog of the Berry—Esseen theorem for
densities (see [7]),

1 2 1
A.8 s 0<_> _
(A.8) sup|gz (x) e 7 ast — oo
From (A.8) we obtain
o0 2 1 1
rx, ):/ o~V AN/ ON=12/2 gy L 0(_)
7 P+ /o) \JT

(A.9) 1 1 _1
% U122 70<_>} .
X{fo ¢ oo C\E

The proof of (A.5) now consists of showing that

() [T)—12)2 (/T —12)2
f e vt dt —/ e VT dt
0 0

—ey [ v one—12/2
<0t 8)/ eV dt. -
0

A.2. A class of monotone functionalsover £7.. Since the notion introduced
in Section 7 may be of independent interest, let us present here a related
result, which offers another instructive insight on the contraction properties of
convolutions inf .

THEOREMA.2. Let F,G € ¥ with G steeper than F. Then, for any positive
and continuous function ¥ on [0, co) which vanishes at 0 and oo,

(A.10) /oo dtv (G (1)) < foo dtV (F(1)).

Furthermore, if W is grictly positive on (0, c0), and G and F are both left-
continuous, then the inequality is strict unless G isatrandate of F.

PrROOF By standard approximation arguments (e.g., using local approxima-
tions by polynomials), it suffices to establish (A.10) under the assumptionithat
is piecewise strictly monotone.

Employing Fubini’'s lemma, or Lebesgue’s “layered cake” formula for the
integral,

(A.11) /_ZOO dtV(F (1)) = /(;OO dxr /j: dtI[W(F(t)) > Al



CHARACTERIZATION OF INVARIANT MEASURES 111

Under the added assumption@nthe seffr € R: W (F(¢)) > A} is a union of level
intervals of F, of the form{r e R:a; (1) < F(t) < b;(A)} (with {[a; (1), b;(M)]};
determined as the level sets{df(-) > 1}).

The integral over on the right-hand side of (A.11) produces the sum of the
lengths of the level-intervals of . When F is replaced byG, the corresponding
intervals can only get shorter, sinee is assumed to be steeper than and
thus (A.10) holds.

In view of the above, the conditions for thgrict monotonicity sound
reasonable. However, since the strict monotonicity is very significant it may be
instructive to make the argument explicit. (What follows makes the argument
given just above redundant; however, we keep it because of its simplicity.) It is
convenient to rearrange the above argument as follows. Using our convention for
the inverse function,

(A.12) /OO dtV (F (1)) =/oo dt (F)W(F) =/oo dF_l(a)\IJ(a),
and thus

/OO At (F(1)) — /oo dtv (G(1))
(A.13) = -
- / [dF~Ya) — dG Y (@)W (a),

whered F~1(a) and dG~1(a) are measures oR. The assumed relation (7.1)
implies that the differencé F~1(a) — dG~1(a) is itself a positive measure. The
vanishing of its integral againsb is therefore possible only if this measure is
supported in the se®—1(0), but that set (viewed as the set of values of the
functionsF andG) contains at most the boundary paint 0. It follows that if the
inequality (A.10) is saturated, then the two Stieltjes measures are eqabi),
and thus

(A.14) F~Y(a) — G™*(a) = Const
which means thaF andG differ by a shift. [

This implies another monotonicity principle, which expresses the fact that
convolutions make functions ifA;, steeper.

COROLLARY A.2. For any function F € ¥, and a probability measure
g(x)dx onR,

(A15) ES TN —xur1) < EFOSP0, —xps)  foralln>1,

and the ineguality is strict unless either both quantities are infinite, or F(x) =
e*(=2 for somes > 0and z € R.
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PrROOE The mean value of the gap may be computed with the help of the
expression

o
(A.16) Xp — Xpa1 =/ {I[t > xpe1] — I[t > x,]} dt.
—00
A simple calculation yields

. o
(A.17) EFOSSON (.  xp1) = / AW, (F (1))
—00
with W, (F) = £0%,~F®_Theorem A.2 applies to such quantities]

We did not base the proof of Theorem 6.1 on this observation [i.e., use in
Section 7 (A.15) instead of (8.1)] since this argument is conclusive only when
the above expected value is known to be finite for sameoo, and we preferred
not to limit the proof by such an assumption (and had no need to).
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