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CONFIDENCE INTERVALS FOR NONHOMOGENEOUS
BRANCHING PROCESSES AND POLYMERASE
CHAIN REACTIONS
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We extend in two directions our previous results about the sampling
and the empirical measures of immortal branching Markov processes. Direct
applications to molecular biology are rigorous estimates of the mutation
rates of polymerase chain reactions from uniform samples of the population
after the reaction. First, we consider nonhomogeneous processes, which
are more adapted to real reactions. Second, recalling that the first moment
estimator is analytically known only in the infinite population limit, we
provide rigorous confidence intervals for this estimator that are valid for
any finite population. Our bounds are explicit, nonasymptotic and valid
for a wide class of nonhomogeneous branching Markov processes that we
describe in detail. In the setting of polymerase chain reactions, our results
imply that enlarging the size of the sample becomes useless for surprisingly
small sizes. Establishing confidence intervals requires precise estimates of
the second moment of random samples. The proof of these estimates is more
involved than the proofs that allowed us, in a previous paper, to deal with the
first moment. On the other hand, our method uses various, seemingly new,
monotonicity properties of the harmonic moments of sums of exchangeable
random variables.

Introduction. The incomplete replications of DNA sequences and their
mutations that occur during successive cycles of a biochemical reaction called
the polymerase chain reaction (PCR) can be modeled, under various simplifying
hypotheses, by a branching process with a suitable branching mechanism; see
Sun (1995) and Weiss and von Haeseler (1995). Sun proposed a point estimator of
the mutation rate of homogeneous reactions that is valid, in fact, in the infinitely-
many-sites and infinite-population limits. Sun’s estimator is based on the first
moment method and was adapted by Wang, Zhang, Cheng and Sun (2000) to
the finitely-many-sites case, still for the infinite-population limit of homogeneous
reactions. In Piau (2002, 2004a), we showed that the branching process introduced
by these authors was but an example of a wider class of processes that we
called immortal branching Markov processes. We studied in-depth properties of
these processes, especially in the case of polymerase chain reactions. Thus, we
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provided explicit bounds of the discrepancy between the point estimator of a finite-
population homogeneous reaction and its infinite-population limit, in cases of both
infinitely many sites and finitely many sites.

In this paper, we refine our methods and adapt them to nonhomogeneous
reactions. This provides confidence intervals for the point estimator of the mutation
rate. Also, we apply our results to a published data set and we comment on
some estimation aspects of the model. For the sake of simplicity, we restrict the
exposition to the so-called additive model, that is, to the infinitely-many-sites case,
although similar results hold in the finitely-many-sites case. Finally, we show that
our techniques allow us to deal with more general branching Markov processes.
We explain in detail how to get pointwise estimates in this wider context and we
leave as straightforward extensions the computation of confidence intervals.

Coming back to the molecular biology context, the first consequence of
our results is that Sun’s first moment method, supplemented by the correction
that the finiteness of the initial population induces and by explicit confidence
intervals, is also available for PCR with variable efficiencies. This provides an
alternative to the estimation of the mutation rate through Monte Carlo simulations
based on the properties of the coalescent that was proposed by Weiss and von
Haeseler (1997). To our knowledge, our results are the first rigorous results
that deal with nonhomogeneous reactions for finite populations. Second, we
exhibit realistic efficiency sequences such that the finite-population correction is
significant: In one case, we are able to show that the correct estimator is more than
33% and less than 63% higher than its infinite-population approximation for every
sample. Conversely, we prove that the finite-population correction is negligible as
soon as the parameters fulfill a simple condition. Third, we show that, for finite
populations, the first moment method yields an estimator that is not consistent,
that is, whose variance does not converge to zero when the size of the sample goes
to infinity. Thus, poor confidence intervals are an intrinsic feature of this setting.

In actual reactions, the efficiency decreases along the successive cycles of
the reaction (see Section 1 for a definition of the efficiency of the reaction or,
more precisely, of a cycle of the reaction). The reduced sterical accessibility
to the DNA sequences when the population is large is among several plausible
biochemical reasons for this phenomenon. This shows that the efficiency of a cycle
should be random and depend on the size of the population before that cycle. We
present some extensions of our results to this setting. In particular, Schnell and
Mendoza (1997) suggested that the kinetics of PCR reactions follow a Michaelis—
Menten law. That is, the efficiency;, of thenth cycle depends on the population
Sn—1 before theth cycle, with

(1) A =D/(C+ Sp-1).

Here C denotes the (usually quite large) Michaelis—Menten constant of the
reaction, D is of the order of magnitude of and D < C + Sp. (Schnell and
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Mendoza suggested choosiliy= C + 1 so as to gek1 =1 if Sp =1, as the
greatest available efficiency.) When the initial populatgris such thatSy « C,

this allows us to recover the initial exponential growth phase, followed by a linear
increase of the number of molecules; see Jagers and Klebaner (2003). Also note
that Michaelis—Menten kinetics imply that whé&p — oo, the largest value of the
sequencéi,), namelyi; = D/(C + Sp), converges to zero. In other words, the
underlying branching process becomes critical ingie> oo limit.

Point estimators and confidence intervals are consequences of precise bounds
of the mean and the variance of a uniform sample. In turn, these follow from the
study of the empirical measure of the population. Our methods ultimately rely
on rather sharp bounds of the harmonic means of sums of i.i.d. or exchangeable
random variables. Thus, on our way, we state and prove various new results about
these means that are often valid in a broader context and, in particular, some simple
monotonicity properties that seem to have been unnoticed until now.

The model of the PCR by a branching process is in Section 1, as well as a
sample of the results of the paper. Some notation used in the paper are collected
in Section 2. Theoretical results on the moments of samples are in Section 4.
These follow from the results on empirical measures of Section 3. Uniform bounds
are available even for random efficiencies, as explained in Section 5, and for
a much more general model of branching processes, as explained in Section 6.
Consequences with regard to the estimation of mutation rates are described in
Section 7. In Section 8, we apply the method to the published data set used
by Weiss and von Haeseler (1997). Some comments about the estimation of the
efficiencies are in Section 9. Proofs are mainly deferred to Sections 10-13.

1. Model of the PCR. The PCR is modeled by a nondecreasing Galton—
Watson processs,,) that starts fromSp > 1 particles with a Bernoulli reproduc-
tion. We call(S,,) a Bernoulli branching process. More precisely, each particle
gives birth toL, = 1 or L, = 2 descendants independently of the other particles
and with distribution

) P(Ly=2):=A=1—P(L, =1).

Each particle represents a single stranded molecule that comprises the region
targeted at by the PCR or represents its complement on the other strand of the
original duplex DNA molecule. Thus, the branching process counts the number
S, of successfully replicated biological sequences afteycles of the reaction.
Mutations are described by the stat€s) of the particlest as follows. Assume

that the states of th&yp initial particles are given. For any particle of any
generation, the first descendantxofs x itself and it has the same statéx). If

the other descendant exists, its stata(y) is the result of the application of a
given Markov kernel ta(x). In the additive model, the states are real numbers
and the kernel is given by

3 s(y) i=s(x) + &y, E&y) =:u, V(Ey) =:v,
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where all the random variablés are independenE denotes the expectation and

V denotes the variance. In the PCR context, the la,d6 usually Poisson, so
thatv = u. In any casej is the efficiency of the PCR (in its exponential phase)
and . is the mutation rate (per cycle and per particle). From now on, we assume
that the initial population is homogeneous and wesse} = 0 for anyx in the

initial population. Thus, in the PCR contextx) is a nonnegative integer for any

x after any number of cycles. Note, however, that our results are valid in the full
generality of the additive model, as described above.

In actual PCR, the efficiency. is not constant, but typically decreases to
zero along the successive cycles of the reaction. To take into account this
nonhomogeneity and the possibility of nonhomogeneous mutation rates, we
choose two sequencés,) and (u,) indexed byn > 1, and we replacé and i
in (2) and (3) byr, and i, when we construct theth generation from thé),_1
particles of the(n — 1)th generation.

In some versions of PCR, the quantification of the product is done at the end
of the reaction or only after a given number of cycles. By contrast, real-time PCR,
also called quantitative PCR, allows us to measure the amount of product after each
cycle. Based on fluorescent detection systems, this technology yields amplification
plots that represent the accumulation of product during the successive cycles of the
reaction; see Higuchi, Dollinger, Walsh and Griffith (1992) and Higuchi, Fockler,
Dollinger and Watson (1993). Hence, we consider from now on(thatis known.

On the other hand, very little seems to be known about the evolution, if any, of the
mutation rate during the reaction. We assume ihat= u for everyn and we
seek to estimate the value of Let{x1, ..., x;} denote a uniform sample of siZe
drawn with replacement from the population aftecycles and let denote its
mean state, that is,

l
t.= Z_lzs(x,-).
i=1

Because the law of is unknown, we have to rely on Bienaymé—Chebyshev
bounds, which state thats in the interval bounded by

E@) £zvV()

with probability at least 1 1/z2. This supposes known valuesBr) andV(r).
Although there exists no closed form Bfi(r) and V(¢) that would be valid for
every number. of generations, we can show that these quantities converge when
So — oo and can compute the exact values of their limits, which we denote by
E(*) andV(¢*), and call infinite-population limits. The task is then to bound the
discrepancies between the finite-population moments and their infinite-population
limits. This involves the empirical laws of the population, which are defined in
Section 2 and studied in Section 3. To present a flavor of the results we are aiming
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at, we introduce

m._uz”: M 02'—vi M +ﬂ2i M
e Y Bl ¥ = A )?

Then, we prove thak: — £(Sp) < E(¢) < m with
e(So):=1/(So—1)  if So=>2, e(1):=3/2.
Likewise, for any¢ > 3,
o2/t < V() <o/t + (1= 1/On(So) (v + 1)

with n(Sp) :=2/(So — 1) if Sop > 2 andn(1) := 6. Specializations of the above are
the easier to establish equalities

E(*) =m, V(*) = o?/L.

Finally, we mention briefly that all these bounds on the discrepancy between the
moments and the distributions oand:* are of the right order. For instance, there
exists an absolute constansuch that, for any > 3 andSp > 1,

V(1) > 02/ + c(v + 1?)/So.

An unexpected consequence is that enlarging the size of the sample becomes
useless for surprisingly small sample sizes; more precisely, as soon as the
deviation, which behaves like/ 3y, becomes the main contribution¥i), instead

of 02/6. Thus,? > n* S is useless, where* describes the behavior 6£. We can
choosen™ := n for homogeneous reactions amtl:= A1 + - - - + A, otherwise. We

recall that the expected population at times (1 + A1) --- (1 + A,) So, which can

be much greater thaii Sp.

2. Notation. Call ¢, the empirical law of the state of a particle drawn
uniformly at random from the population at timeand letn, := E(g,). That is,
¢, andn, are measures such that, for any nonnegative

Sﬂ
(@) =S;1Y 0, (@) :=E(a(p)).
x=1
By an abuse of notation, we denote the sum over the population at thye sum
from x =1 tox = §,. For any measure, M(n) andM>(n) denote the first and
the second moments gf andD(n) denotes its variance, that is,

M(y) = / sdn(s),  Ma(n):= / s2dn(s), D) :=Ma(y) — M(n)2.

In the next sections, some technical lemmas are valid in the broader setting of a
general nondecreasing branching process and even for the harmonic moments of
sums of i.i.d. or exchangeable random variables.
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DEFINITION 1. Let L; denote i.i.d. or exchangeable copies of a square
integrable random variable such that. > 1 a.s. and

My =Li+4+ -+ L.
For anyk > 1, define

H (k) :=Ek/My), A(k) :=H (k) — 1/E(L), G(k):= E((k/Mk)z).

For anyk > 1, A(k) > 0. For i.i.d. sequencesi(k) — 0 whenk — oo. For
Bernoulli branching processes, that is, when the distributioh isf given by (2),
we write A(k, 1) instead ofA (k) to specify the value of. The same convention
holds for H andG and other sequences that are defined later.

Our results involve various parameters, functiongigf) only, that we define
below.

DEFINITION 2. Letag :=Ar/(1+ Ag), yo:=1, yéi) =1, and, forn > 1,

yoi=[]A—w). P =[]A- /0.

k=1 k=1

DefineWp :=0, W := 0 and, forn > 1,
n n
Wai=> o, Wpi=Y ap(l—ap).
k=1 k=1

3. Empirical laws. From Theorem A, wherfg — oo, 1, and¢, converge
to a deterministic measurg, which is easy to describe [we omit the proof; see
Piau (2004a)].

* coincides with the distribution of the random

n

THEOREM A. The lawn
variable

€161+ - - + €4,

where all the random variables, and &; are independents; is Bernoulli with
Plex =1) = ax =1 — P(g =0), and &; follows the law used if3) at the jth
generation Thus

n n
M) =Y ok, D) =D veen + pgog (1 — o).
k=1 k=1
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3.1. Mean and distance in total variation.The approximations below stem
from precise estimations o (k) and of the harmonic moments &f, that we
develop later in this paper. The results of this section are adapted from Piau (2002,
2004a) and we omit their proofs.

THEOREMB. (i) First moment

M) =M@ — Y urAx, Ap = E(A(Sk-1, A1)
k=1

(ii) Distance in total variation

n
e —millTy < V=) Ax.
=1

THEOREM C (Approximations). For any (%;), So andk > 1, A; satisfies the
inequalities

(So+ DA > y_1ox(L— A /(L + )2,
(So— DA < yr_10x(L— A /(L + ),
(So+ DA <y (X — ).

This implies thatV, is bounded above and below by explicit functions
of (ux) and(iy), divided by (Sg — 1) or (So + 1). We assume from now on that
the law of¢ is constant along the generations or, more precisely, that its first two
moments are. This is only for simplicity of notation and the reader should be able
to guess the correct formulation of our results for variable laws bf analogy
with the expressions in Theorem A. Thus;=E(£), v :=V (&) and

M(ny) = Wy, M(1,) = uWy — V.

The first assertion of Theorem C provides a lower bound,pfor any Sp. The
second assertion provides an upper bound/pffor any Sp > 2 that involves
1/(So — 1). WhenSp = 1, we should use the third assertion instead. In the rest
of the paper, the bounds that involve(3p + 1) are valid for anySp and the
bounds that involve A(So — 1) should be used only whe$y > 2. For instance,

in Corollary 3, we should use thg, lower bound for anysp, the v, upper bound

for any So > 2 and thev, upper bound ifSo = 1 (for small values ofSp, the v},
bound is often less interesting than thjg bound). These remarks apply to later
results in this paper.
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COROLLARY 3. (i) One hasy, < (So+ 1)V, < v, with

n
V= 3 k10 (L — A) /(L4 A2,
k=1

n
3
v,/{ = Z yk(_)lozk(l — k).
k=1
(i) One has(So — 1)V, < v, and SV, < v, with
n
v, = Z Vk(z)lolk(l — k).
k=1

COROLLARY 4. ForanySp > 2,
UWn — pon/(So — 1) < M(nn) < uWn — pvn/(So + 1)
and
172 =y llTv < va/(So— D).

REMARK 5. In contrast to the last statement above, we can show that,
although¢,F = ny, for any giverm and (1), there exists a constaatuch that

Ell & — milltvl = ¢/v/So
for everySp > 1. We omit the proof.

3.2. Variance and uniform bounds of the empirical law$Ve move to entirely
new results, namely the estimation of second moments. Recall that we assumed
for simplicity of notation that the two first moments gfare constant. Thus,

D) = vW, — u* Wy,

n

DEFINITION 6. DefineV, such that < V, < V,, by the formula

n
Vii=Y Ap Api= AR+ (1— 20p) Ay
k=1

The assertiorV, <V, in the definition above follows from (-, 1) < «.
THEOREMD. One hasD(n,) = v(W, — V,)) + n2(W, — V).

PROPOSITION7. There exists a constaft that depends oy such that
uW, —nV <Emp) < uW,y, ”nn_nZ”TVS V,

VW + p2W, — (v + p®V < D) < oWy + W,
This holds withV :=1/(S¢ — 1) for So > 2,andV :=3/2 for Sp = 1.
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3.3. Additional term. From Sections 3.1 and 3.2, the two first moments and
the distance in total variation of the empirical laws are described,bgnd V.
The second moment of uniform samples involves an additional #yndefined
as

Ry := V(M(&,)) = E(M(,)?) — E(M(£,))>.

We now complete the results of Sections 3.1 and 3.2 with an in-depth stutjy of
Theorem E recursively describes the evolutiorRgf We control the terms of the
recurrence in Lemmas 9 and 11 and Corollary 14, and finally get tractable bounds
of R, in Corollary 15. This section details the path that leads to these bouiis of

but the proofs of the steps themselves are postponed to Section 11.

DEFINITION 8. Introduce

B(k) ::IE(M;/[;]C),

k
Thus,B(k) = (H (k) — G(k))/k and B’ (k) = G (k) — H (k).

(L1— L2)2>.

BKk)::V(i), B”(k)::%E( 2

M

The theorem below is proved in Section 10.

THEOREME. One haskRyp=0and
Rut1= Ry + VE(B(Sy)) + n?E(B'(Sy)) + E[D(Z,) B” (Sn)1,
where one uses, ;1 in the definition ofB(S,,), B'(S,) and B”(S,).

Lemma 9 deals with th& and B’ terms. The control of thé&” term is more
intricate and involves Lemma 11 and Corollary 14.

LEMMA 9. Foranyk > 1, B(k) < b/k with b := (E(L) — 1)/E(L)?. In the
Bernoulli case b = a(1 — «). For Bernoulli processesB’(k) < b'/(k + 1) and
B"(k) <b"/(k + 2), with

b =, b :=A(1—M).
DEFINITION 10. Lety > —1 denote a real number. Define nonnegative
sequence€’, C’ andC” that depend on by the following equations:
() Let C(1) :=0 and, for any > 2,
L1L
C k) = k2 (k + y)IE<2172).
Mg (My +y)
(i) Foranyk > 1 suchthak +y >0,
(My — 1) (My — k))
MEMi+y) )’

C'(k) ::E(

C’ (k) ::IE( KMy — k) )

M2(My + y)
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In the lemma below#;, is theo -algebra generated by thefirst generations of
the process.

LEMMA 11. UsingA,41 in the definition of the sequenc€s C’ andC”, we
have on the setS, + y > 0},

E( ]D)(Cn—f—l)
Sn—l—l +y

D(Zn)

Cc'(S C"(S,) 1.
Sn+y+ (n)‘)+ (n)l/v

5%) —C(Sy)

DEFINITION 12. For any real numberand any integek > —y, let
k+y >
Mi+y)

m@yZE(

Thus, Ho(k) = H (k). SinceMy > k, C" (k) < C’'(k) and
(k+y)C'(k) <1— H (k).
On the other hand, for > 2,

C(k) = Hy (k) —

k(k+y>E< (L1— Lp)? )
2 MZ(Mi + y)
Thus, C(k) < H,(k). At this point, the only additional tools that we need are

estimations ofH and H,. These are developed in Section 12 and yield the next
lemma.

LEMMmA 13. (i)Foranyy>0,Ck) <1—1r/(y+2).
(i) Fory=—-landk>2,C(k)<1—a.
(i) Foranyy >1—k, (k+y)C'(k) <a.

Our next result states that Lemma 11 can be integrated to get a recursion of the
form

(4) E(%) < ﬂn+1E(g(f:)y) + ozn+1E<

1)(+%
V .
Sp+y "

COROLLARY 14. Foranyy >0, (4)holds withg,,+1:=1—X,4+1/(y + 2).
If y=—1andSp> 2, (4)holds withg,,.1:=1/(1+ Ap+t1).

We are now in the position to estimate the three sums that the iteration of
Theorem E yields. Assume first th8§ > 2. A weaker form of Lemma 9 is that
B(k) <b/(k—1), B'(k)y <b'/(k — 1) andB" (k) < b"/(k — 1). For theB and B’
parts, Corollary 27 gives an upper bound®/(S; — 1)]. For theB” part, we use
they = —1 form of Corollary 14.

Assuming now thatSo = 1, we use the full form of Lemma 9 faB and B’.
Corollary 27 allows us to bounfi(1/S;) for the B term andE[1/(S; + 1)] for
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the B’ term. For theB” term, we use the fact th&” (k) < b”/k and they =0
form of Corollary 14. This yields an upper bound &f of the form

R, <vu(n) + w2u'(n) + v+ 1u” (n).

COROLLARY 15. If So > 2,we can choose

u(n) =y ar(l—ap)y-1/(So— 1),
k=1

W' ()= 3" Myien/(So— ),

k=1
n—1 n—1

W' (n) =Y M Y hira(1—AiyD)yi/(So— ).
k=1 i=k

If So > 1, we can choose

u(n) =Y ax(L— )y 21/ S,

k=1
W)=Yy /(So+ 1),

n—1 n—1

W (n) :—Zl — /ZZA,H(l %4072/ So.

Uniform bounds follow from the tricks described in Section 5.

COROLLARY 16. There exist constant&/, U’ and U” that depend onSp
such thatu(n) < U, u'(n) < U’ andu”(n) < U". For Sy > 2, this holds with

U=U"=U"=1/(So— 1). For So = 1, this holds withU = 2, U’ = 3/2 and
U =4

COROLLARY 17. For Sg > 2 (resp for Sop=1),
R, <2+ pu®/(So—1)  (resp R, <6v + 11u2/2).

4. Moments of uniform samples. Recall that the sample iéxq, ..., x¢},
that the family[s(x;)] is exchangeable, and that eaqah;) follows the lawz,,.
Thus, first taking the expectation with respect to the randomness of the sampling

procedure, and then the expectation with respect to the branching process and to
the mutation process (we skip the details), we get

E@) =M(@7n), V(@) =D@n)/t+ (1= 1/OR,.
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Hence, the results below are mostly corollaries to Section 3. The exception is
Proposition 19 whose proof is in Section 11 [we omit the proof of part (iv), which
is anecdotal].

THEOREM F. One hasE(r) = uW, — uV,, whereV, is nonnegative and
converges t® whenSg — oco. More preciselyfor any Sp > 2,

vn/(So+1) = Vi <vn/(So— 1)
for a positive constant,, which depends o) only and is defined in Secti@l.

THEOREMG. We have
V(1) = Wy + 12W)) /8 — Zn/+ (L —1/0)R,,

where Z, and R, are nonnegative and converge @when Sg — oco. More
precisely

Zy ::VVn'i‘MZVy:E(U‘l'MZ)Vn’ Rnfrn(v+l/~2)/50

for a positive constant, that depends orfi;) only and whose value can be
deduced from Corollant5.

COROLLARY 18. Whenn — oo, E(t) — oo if and only ifV(r) — oo if and
only if (Ax) is not summabld-or any (\x), Z,, and R,, are uniformly bounded

PrROPOSITION19. (i)Forany? > 1,E(t) <E(@1*).

(ily Fore=1,V(r) =D(n,) <D =V(*).

(iiiy Fore>3,V(@) > V(™).

(iv) For ¢ = 2, both situations are possible for any law &f That is there
exist generations and efficienciesi;) such thatfor any law ofé, V(1) < V(¢*),
respectivelyV(r) > V(*).

Finally, uniform bounds hold that are valid for atiy).

PROPOSITION20. (i) For any Sp > 2,
uWp —p/(So—1) <E@) < uW,.

For So =1, 1/ (So — 1) above should be replaced By /2.
(i) Assume that > 3 and recall thatV(*) = (vW,, + MZW,/,)/E. For any
So> 2,

V() < V() <V(E*) + (1 - 1/02(v + 1?)/(So — 1).
For So =1,
V(*) < V(@) < V(™) + (1 - 1/06(v + u?).
(iif) Assume that = 1. Then for any Sp > 2,
V(") — (v + 12 /(So— 1) < V(1) < V().
For So =1, (v + 2)/(So — 1) above should be replaced By + 12)/2.
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5. Random efficiencies. Assume thati,,1 depends onS,, as in the
Michaelis—Menten setting we recalled in the Introduction, or on the full pastf
the process up to time. Perhaps surprisingly, some uniform bounds of the error
term that we proved in the deterministic case still hold, but the behavior of the
main term becomes somewhat unclear. In this section, we restrict the exposition
to estimation of the first moment. Theorem H deals with the “error term” in the
general case and Theorem | deals with the “main term” in the Michaelis—Menten
case.

THEOREMH. Letw, :=E(W,), whereW, ;=1 + ---+ «, iS now random
and letV be defined as in Propositioh Then

pw, —uV <E@) < pw,y.

Recall thatV ~ 1/So whenSy — oo. Theorem H leaves open the question of the
true behavior of€(¢) in many interesting situations. For instance, the Michaelis—
Menten law implies thatw, ~ nD/Sg when Sp — oo, all the other parameters
being fixed. Thus, the main term, and the error tern¥V become of the same
order. Before coming back to the Michaelis—Menten case, we sketch the proof of
Theorem H. We first mention without proof the crucial identities

n n
Sv=l-v Y uyli=il-y?).
k=1

k=1

SKETCH OF THE PROOF OFTHEOREM H. A simple consequence of the
monotonicity of H (see Lemma 30) is

E(i— 1 ’Sn>>k"+1.
Taking expectations of both sides and summing aveve get

ZE( n+1> N ;0

n>0 Sn

Likewise, for anyk > 0,

1 1 1
o) ()= -
So—1 Sk+1 — Sn So Sk+1

Thus, if (Ag) is not summabIeSk — oo a.s. and

p+1 1
> E
So — Z ( ) = So

n

These bounds are tight sinfg = 2" So whena,, = 1 for everyn. O
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We now studyw,, in the Michaelis—Menten case, that is, when

o= Y 2(75) = L (rerss)
" 14+ i) D+C+ 81/’

k=1 k=1

which depends on and(So, C, D). Easy remarks are th&}t ~ Dn almost surely
and w, ~ logn whenn — oo, all the other parameters being fixed, and that
wy, ~nD/So whenSy — o0, all the other parameters being fixed.

Estimations for fixed values of and Sp are as follows. Introduce the reduced
variables

s0:=So/C, b:=C/D,

and note that (1 + sg) > 1 sinceis = D/(C + Sp) < 1. The regime we are
interested in is wheng is small andb is about 1, but the following result makes
no such assumption.

THEOREMI. In the Michaelis—Menten case;, < w, < w; with
w == (2+ (2b — 1) /s0) log(1 + ns0/(2 + 50)),
w, :=log(1+n/(1+ b(1+ s0))).
Whenb > 1, we can choose; := w* with
w} := (24 (2b — 1) /s0) log(1 + nso/(2b(1 + 50)?)).
In the special cask= 1, we get

log(1+1/(24 50)) < wy < (24 1/s0) log(1 4 nso/(2(1 + s0)?)).

PROOF OFTHEOREMI. The convexity of the function — 1/x yields
Wyt1—wy > D/(D+ C +E(Sy)).
SinceE(S,+1) = E(S,) + E(SyAn+1) andS,Ap41 < D,
E(S,) <So+nD.
This yieldsw,, > ¢(n, b(1+ sg)), where
l(n,t):= i 1/(t + k) > log(1+n/(t + 1)).
k=1

This proves thew, bound. On the other hand, the concavity of the function
x = x/(1+ x) yields

Wp4l — Wy = DE(l/Sn)/(l+ (D + C)E(l/sn))
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From Lemma 27,
E1/Sn+1lFn) < (A = An41/2)/ Sn.
For Michaelis—Menten values @f, 1, this yields
E(1/Sn+1) < (1= D/(2C))E(1/S,) + (D/(2C))E(L/(C + Sn)).

The same concavity inequality with respect i1 that we used a few lines above
allows us to deal with the terfid(1/(C + S,)). This yields

E(1/Sy+1) < ¥ (E(L/Sy))
for the functionys defined by
Y(x):=(1-1/(2b))x + 1/(2b)x/(1+ Cx).
It is a simple matter to show thay{ (x) > 1/a + 1/x for anyx < 1, with
a:=2/D+ (2b—1)/So.

Thus E(1/S,) < v™(1/S0) < a/(n + aSo). This yields an upper bound of
wy+1 — w, Which reads, after some cumbersome algebra,

wy <s¢(n,r), s:=abD, r-=a(So+D+C)—1.
This can be written irib, sg) terms only, as
s =24 (2b—1)/s0,
r={2b(1+ s0)?> + 1 — 1/b}/so.
Whenb > 1, the expression ab; stems from
c(n,r) <log(l+n/r), r > 2b(1+ 50)%/s0.

In the general casey > bg := 1/(1 + so) and r(b, sg) > r(bg, sg) Sincer is
increasing irb. Finally r (bo, so) = (2+ s0)/so Yields the value ofv;F, since

¢(n,r) <log(d+n/r) <log(1+n/r(bo, s0)). O

6. General branching processes. The results of Sections 3 and 4 can be
extended, at a relatively low cost, to a wider context. Assume for instance that
each particler in the nth generation gives birth t&, > 1 children, whergZ,)
is i.i.d. and eaclZ, is distributed likeL, 1, say. On the eventZ, = k}, order
thek children ofx from y1 to y; and decide that thie-dimensional random vector
(1), ..., E(n)) follows a given Iaw:r,’}“. Do this independently for different
particlesx in the same generation and independently in different generations.

The PCR model is recovered when the lawigf is (1 — A,)é1 + A,82 and
whenrf = §p andnj = §o ® m for a given distributionr on the nonnegative real
numbers.
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Coming back to the general setting, assume that elgrys integrable and
call z, the size biased distribution d@f,, defined by, (k) := ka; , where

ap :=P(L, =k)/E(Ly).

Let the lawsr; be (square) integrable for amy> 1 and anyk > 1 in the support
of the law of L,,. Let 1} denote the expectation 6fy1) + - - - + &(yx) undern;.
Then the following analogue of Theorem A holds.

THEOREMJ. The lawn} coincides with the law of the random variable
E 4+ +E&)

where (§,),>1 are independent and distributed as follovi®r any fixedn > 1,
draw k£ > 1 at random along the sized biased distribution then choose the
index i uniformly at random in{1,...,k} and let&’ denote a copy of théth
marginal ofr;'. Thus for instance

M) =2 3 wjetj.

k=1j>1

In the PCR context, the only nonzemf} term isps = py andas = Ax/(1+ )
iS atx. ThusM(n}) is the sum ofuia as in Theorem A.

The next step is to estimate the discrepancy betwgemnd,. With regard to
first moments, their difference can now be negative or positive.

PropoOsITION21. One has

n

M) =) > phaka—ef),

k=1j>1

where the error termgX, which can be positive or negativare bounded by
functions ofj and of the reproducing laws @L.;); <x. Such bounds can be deduced
from the inequalities

0<E(Lpes — (j — E(L0)E/Sk-1)

<E({(j — E(L©)? + (Sk—1 — DV(L)}/SE_1)-

Assume, additionally, that the first moment of each marginaﬂjbfs bounded

by a given numbeu’c‘,'(or that| £ | < jub) for every j > 1 and 1<k <n. Then
after some computations, Proposition 21 yields

IM () — M) < > uEQ/Sk—)ELY) /E(LoA
k=1



690 D. PIAU

Recalling finally that
E(1/Sk-1) < E(1/Li-1) ---E(1/L1)/So,
we get the main result of this section.

THEOREMK. Fix n and fix some reproduction and mutation mechanisms for
then first generationsAssume that there exists> 1, ug and L finite, such that
foreveryl <k <n and everyj > 1,

bl <im0, E(LE™) < Lo.
Then there exists a finite constaft= C(n, Lg) such thatfor everySp > 1,

n
M) = M@1)| < CroSy ™, MGy =Y ) el
k=1j>1

This holds with thévery crudé constantC :=nLg.

We could deal with the second momentigfalong similar lines, but we leave
this task to the interested reader.

7. Estimation of mutation rates. In the rest of the papekj,) is a given
deterministic sequence as in Section 5. [getlenote the point estimator of
by the first moment method, that is, the solution of the equatienf(z) in the
unknown u. Let fi, denote its infinite-population limit, that is, the solution of
t = E(*) in the unknownu. When the efficiency is constari, is the estimator
due to Sun (1995).

COROLLARY 22. We haveu > i, =t/ W,. More preciselyfor any Sp > 1,

4 - 4
r * r Un v
< M < 1 . r// = n

TSrr Twe T Twy

1- <—=5
So+17" 1

When is the finite-population correctionigs*) negligible? Assume that the
first efficiencies\, are greater thak™. Then (we omit the proof)

2 N~
(1— )MSM*EM-

COROLLARY 23. If Soninf(dx) > 1,thenfi, ~ [i.

In the opposite direction, consider the situation where 25, 1 := A1/k,
A1 := 0.25 andSp = 1. Thus, the efficiency.; decreases from.; = 0.25 to
A25 = 0.01. Thenr = 0.495 andr” = 0.770, meaning that the true estimajor
is between B33- i, and 163- i,.
With regard to second moment properties, we first make the following remark,
direct from Theorem G.
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COROLLARY 24. In the infinite-population limitiz, is a consistent estimator
of «. For finite populationsz is not a consistent estimator of

Assuming thatfi, ~ i, the confidence interval of level 4 1/z2 for u
corresponds to lying in the interval bounded by

E(t*) & z¢/V(t%).

In the Poisson casé&(§) = u = V(&). Thus, replacinge in V(#*) by its point
estimatorii,, we get an approximative confidence interval forbounded by the
pointsii, + zo,/ W,, where

Bai=t/Wy,  GZi=(t+12W /W)L
Whenyu is small,52 ~ /¢ and the interval is approximately bounded by

(1 £ z/V1),

where(z£) is the total number of mutations in the sample.

8. Dataset. Weiss and von Haeseler (1997) applied their coalescent method
to the data set of Saiki et al. (1988). The efficiency sequefigg is not
provided; neither is the initial populatio§y. However, following Weiss and
von Haeseler (1997), the extent of the amplification after 20, 25 and 30 cycles
[provided by Saiki et al. (1988)] allows us to compute hypothetical efficiencies,
which are constant and equal toduring the 20 first cycles, then constant and
equal to)’ during the cycles between 21 and 25, and finally constant and equal to
A" during the cycles between 26 and 30. Numerically,

A=0.872 ) =0.743 2" =0.146

For a sample of sizé = 28, 17 mutations were observed. Thuss 17/28. We
find W3o = 12085 andfi, = 1/ W30 = 0.05024. Furthermorey;, = 0.38435 and
v30 = 0.03653. Thus,

(0.05032 0.05105, for So=1,
i € { (0.050250.05039, for So =10,
(0.05024 0.05026, for So = 100.

These intervals are much smaller than the uncertainties associated to, first, the fact
that the efficiencies are unknown and, second, the variation that a differefide of
in the count of the observed mutations would yield. With regard to the efficiencies,
we followed Weiss and von Haeseler (1997) and chose a constant valuk fdm
to k = 20, then fromk = 21 tok = 25, and finally fromk = 26 tok = 30. More
regular variations ofi) are possible.

The maximum likelihood method of Weiss and von Haeseler (1997) gives values
that are similar to ours whesy, is large and gives markedly different values when
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So is small, namely an estimated value ofof 0.060 for So = 1. This suggests
that the mean of the posterior distributiongofs not the point where its density is
maximal; in other words, that the distribution is far from being symmetric around
its mean.

With regard to confidence interval$/;, = 6.755, anda, = 0.149, which is
quite comparable ta/7/¢ = 0.147; see the remark at the end of Section 7.
This yields the interval bounded by.05024+ 70.01236. For instancey €
(0.02552 0.07496 at a level of confidence of 75%.

With regard to the variance, Weiss and von Haeseler (1997) simulate the correct
value of Q012 whenSy is large and a variance of@.6 whenSy = 1.

9. On the mean of the sample.

9.1. Boundary effects. We recover some striking features of the numerical
simulations in Weiss and von Haeseler (1995). Recall that the histograp of
is always to the left of the histogram off, meaning thaty; stochastically
dominatesn, (this is specific to the case whete> 0 almost surely); see
Piau (2002). Furthermore, the gap between the two distributions decreases to zero
wheni — 1. This last fact follows fromy, <2(1— ).

Another property that is not visible on the simulations is thatfdixed and
whenx — 0, the gap goes to zero as well. Our results prove that this effect appears
only whena is so small thakA « 1, that is, for values of the efficiency that Weiss
and von Haeseler did not consider in their simulations.

9.2. First generations effect. Considering a smaller number of cycles in our
test case in Section 7, we get similar values of the ratiéor instance, if: = 5,
respectively, if: = 10, therr = 0.521, respectively; = 0.516. Roughly speaking,
this means that the approximation fails only during the first generations, that is,
whenSy is not large enough yet.

9.3. Estimating efficiencies.For Bernoulli branching processes, the sequence
(v,Sn) is a positive martingale, bounded Irf (and in everyL?, p > 2). Thus, it
converges, almost surely and in the mean to a random limit which @, Hroco)
almost surely. This implies that

Snt1/[Sn(1+2p1)]—>1  as.

This fact, rather than the observation thatS,+1) = E(S,)(1 + An+1), IS the
reason whysS,.1/S, is a good estimator ofl + X,,1). Additionally, some
concentration of measure phenomena occurs; see the large deviations results of
Athreya (1994) and Athreya and Vidyashankar (1995).
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10. On the proof of stochastic recursions. We first recall some basic tools.
We haveM(¢,) = T,/ S, WhereT,, denotes the sum of the states of the population
attimen. For any particle: attimen, lete(x) := 1 if x has two children; otherwise,
lete(x) :=0. Let(£(x)) denote i.i.d. random variables distributed likeThen

Sn S’l
Tiyi= Y s@(14e@)+E@e®),  Sppi=) l4e().

x=1 x=1

The exchangeability of(x) implies that
5,120 -1
Sn+l
Likewise,
S,,IE(g(x) sfn> —1— H(S).
Sn+l

IntegratingT;,+1/S,+1, we get

EM(Gn+D1Fn) =M(5n) + [l — H(Sp)].

Turning to the evaluation of the second moment, we use once again the expression
of T,4+1 and the exchangeability properties that arise. Separating carefully the
square terms from the rectangular termffgrl, and skipping the details, we get

E(M(Zn+1)F2) = M2(2) B" (Sn) + M(£2)? B1(S,)
+ 2uM(En)[1 — H(Sp)]+ vB(Sy) + n?Ba(Sy).

where the only coefficients that are not already defined are

B1(1):=0, By (k) := k*E(L1L2/M?), k>2,

Bo(k) :=E((1 — k/My)?).
We take the expectation of both sides and substract to this the recursion
relationship fofE(M(¢,)) squared. The: terms cancel. The? terms add to

Ba(Sy) — [1— H(S)1* = B'(S,).

Thev termisB(S,). TheM2(z,) andM(¢,,)? terms remain and we must show that
the coefficients of these, nameby (S,,) andB1(S,) — 1, add to 0. SincM,f is the

sum ofk squaresLl.2 and ofk(k — 1) productsL; L ; for i # j, the exchangeability
of (L;) yields
KE((L — L1L2)/M{) + K*E(L1L2/M{) = 1,

that is, B”(k) + Bi(k) = 1. This ends the proof of Theorem E. The proof of
Lemma 11 uses similar techniques and we omit it.



694 D. PIAU

11. Additional term—proofs. We begin with the proof of Lemma 9 and with
simple considerations about the sequenBes3’ and B” that are valid for any
distribution of L. Laplace’s method and the law of large numbers yield that, when
k — 00,

E(L)—1 V(L) V(L)

E(L)? ’ E(L)* E(L)?
This implies that Lemma 9 cannot hold with< o:(1 — «), b’ < A(L— 1)/ (14 1)*
orb” < A(1—21)/(1+ )2 Thus, Lemma 9 is optimal when— 0.

kB(k) — kB'(k) — kB" (k) —

PrROOF OF LEMMA 9. The first assertion of Lemma 9 stems from the
concavity of(m — k)/m? with respect ton on the intervalk, 2k). The B” result
follows from the facts that, fok > 2,

B0 =308 e

that My_» > k — 2 a.s. and that/(k + 1)% < 1/(k + 2). We postpone (a stronger
version of ) theB’ assertion to Lemma 25.0J

REMARK. Inthe Bernoulli caseB” (k) > (V(L)/E(L)?) - k/(k + 1)2.
REMARK. We can refine the uniform bounds as follows. First,< 1 and
v/ < 3. Assuming thak, > 1* for everyk <n,
v, <1—A%
On the other hand, assuming that< A™ for everyk < n,
v = (L= )1 —27).
This yields lower bounds af,, and R, since, for instance,

v/ (So+1) < Zy < (v + 1P)ve/(So— D).
Lemma 25 is a key step in the proof of Lemma 26.

LEMMA 25. (i)One hasG (k) < 1/(1+ 1)2+ 3A(k).
(i) Forany integerj > 1,
E((k/My)’) <1/(X+ 1) + A(k)j(j +1)/2.

(i) One hasB’(k) < A(k)(1+31)/(1+1).
(iv) One hasB’(k) <b'/(k + 1), with

b i=11—-1)A+30)/A+1)2 <.
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PROOFE Assertion (iv) follows from assertion (iii) and from the upper bound
of A(k) in Corollary 34. Assertion (iii) follows from assertion (i) and from the fact
that

B'(k) = G(k) — H(k)2 <[3—=2/(1+A)]A(k).
The convexity of the functiom — 3k/m — k?/m? onm > k implies that
3E(k/My) — E((k/M)?) = 3/(1+ 1) — 1/(1+ 1)

Going back to the definitions, this is assertion (i). For assertion (ii), we use the
convexity of the functionn — (j + 2)/m’ — jk/mi*tt onm > k to perform a
recursion onj. O

The contribution ofv, respectively, ofu?, to R,+1 — R, is greater than
E(B(S,)), respectivelyE(B’(S,)). The contribution ofv, respectively, ofi.?, to
Zny1 — Zyn is E(A(Sy)), respectively,A; ;. From Corollary 34,A(k) < a(1—
A)/2. Hence,

A;H <E(A'(Sy)), whereA’(k) := (1 — 1) A(k).

Thus, Lemma 26 below implies tha, > Z,/2, that is, the? > 3 point in
Proposition 19.

LEMMA 26. Foranyk > 1, B(k) > A(k)/2andB’(k) > A’'(k)/2.

PROOF The definitions and two lines of algebra show that the inequality
B(k) > A(k)/2 is equivalent to

(k —2)A(k) +2G (k) <2(1— ).
From assertion (i) of Lemma 25, a sufficient condition is
(k+4Ak) <20(1—a).
The upper bound oA (k) in Corollary 34 implies that this holds if
(k+4/(k+1) <2/(1—22).

This settles thé > 2 case, sincé + 4)/(k + 1) <2 fork > 2. Because the=1
case is obvious, this proves thak) > A(k)/2 for anyk > 1.

Our proof of B'(k) > A’(k)/2 is more intricate. According to Corollary 36 in
Section 12.4, whose notation we use from now on, it is enough to check that

G(k) = H(k)? + (L — 1)L+ 1) (H (k) — 1)/2,

that is, after some rearrangements, to check that

G3 G5 G3
(L+23)Gak = B+3HGz+ (1 —3D)=2 + z(c§ + o2+ k_43>
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First, G2 < (1 — 20)G1. Furthermore, since; € (0, 1/4), for anyk > 2,
G3=G1[1+4 3k —2)n2]/(1+ 1) < G1uk, u:=3/4.
Fork > 2, this yields the sufficient condition
A+219k> B+ 1)L —20) +u(dl— 2%

G1
+2G1+2.5 (A~ 202 +u?).

SinceG1 < A(1 — 1), the sum of the three first terms on the right-hand side is
the sum of 3+ « and of a polynomial in. with negative coefficients, hence
at most 3+ u. For anyk > 4, the last term on the right-hand side is at most
2G1(1+ u?)/k? < 1/16 because < 1, G1 < 1/4 andk > 4. Hence, the right-
hand side is at most-8 3/4+ 1/16 < 4. Since the left-hand side is at leastve
are done for any > 4.

Finally, settingD(k, A) := (2B’ (k) — A’(k))(1+A)/[A(1— 1)], we get, with the
help of Maplé software,

D1, 1) =A1>0,
18D(2, ) =2+ 106 — M2+ 23> 2,
200D (3, 1) = 244 (1 — 1)(1+ 58 — 552 — 1% > 24,
Hence,B'(k) > A’(k)/2 foranyk > 1. [

12. Harmonic moments—statements.

12.1. Method. Following the technique of Piau (2002, 2004a), we seek to
compareA (k) with 1/k and to boundH, (k). Iterating these bounds yields good
estimations of the harmonic moments$f

A remarkable feature of the rescaled harmonic mEack) of the sum of i.i.d.
positive random variables is that, for> 0, H, (k) is a decreasing function affor
k > 1. This very general fact seems to be unknown. It holds in a wider context (see
Lemma 30) and we prove it by a completely deterministic method in Section 13.1.

In the restricted context of the Bernoulli branching process, we uncover two
other monotonicities. First, foy > 1, H_, (k) is an increasing function of for
k > y. Second, a suitably normalized correctionm¢k) is decreasing (however,
see Remark in Section 12.3). Thus, Lemmas 30, 31 and 33 are crucial steps in our
proofs. We state the following consequence.

COROLLARY 27. Inthe Bernoulli casgfor anyy > 0and Sp > 1,

Vu/(So+¥) <E[L/(Sy + 1<y, /(So + y).
ForanySo> y > 1,

E[1/(Sy — )] < vu/(So — ¥).
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As a consequencor any Sp > 2,
Yu/So <E1/Sy) < yu/(So— D).

REMARK 28. If So > 2, E(1/S,) is exactly of ordery,, that is, of the order
of 1/E(Sy). If Sop =1, our results show only thai(1/S,,) is at most of ordey/n(z),
which can be much greater than = 1/E(S,,). An upper bound of£(1/S,) of
ordery, indeed holds whet§o = 1, namely

5) E(1/Sp) < va(1+1/2),

where)’ is the minimum of the sequencgy) up to timen (we omit the proof).
This bound is optimal, up to a factor 2, since, whgn= A is constant, we can
show that the limit of£(1/S,,)/y, is at least(1+ 1/1)/2; see Piau (2004a or b).

Equation (5) could be used to replace the produﬁéin all our upper bounds
by y.(1+ 1/1%). Recall finally that, in actual reactions, the sequeqcg is
nonincreasing. Thek =X, andy, (14 1/1)) = yu—1/An.

12.2. Monotonicities ofHy .

DEFINITION 29. For any integet > 1 and real numbey such thak + y > 0,
and for any nonnegative functign define

)

We recoverH, wheng is the convex and decreasing functip(x) = 1/x. For
any locally boundeg and anyL > 1 of bounded support, the law of large numbers
and an easy domination imply tth)‘f’(k) — @(E[L]) whenk — oo.

LEmmA 30. (i) Assume thai(L;) is exchangeable and that is convex
ThenH{§ is nonincreasinglf furthermore(L;) is i.i.d., then Hf (k) > H{ (c0) =
(E[L]).

(i) Assume thay > 0, that (L;) is exchangeableand thaty is convex and
nonincreasing Then H;’) is nonincreasing If (L;) is furthermore ii.d., then
HY (k) > Hy (00) = (E[L]).

For instance H, decreases front/, (1) = E[(1 + y)/(L + y)] to 1/E(L) for
anyy > 0. For Bernoulli branching processes, we get
l-a<H,k)<1-1/(y+2).
FurthermoreH, describes one step of the evolution ¢g{ 3, + y), since

S
ni—i_y Sn) a.s.
Sn+1t+y

This yields the first part of Corollary 27.

Hy(sn)=E(
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LeEmMA 31. For Bernoulli branching processes and> 1, the sequence
H_, (k) is increasing fork > y. Thus
H_y(k) <1/E(L)=1-a.

Iterating Lemma 31 yields the second part of Corollary 27.
REMARK. For non-Bernoulli lawsH_1 can fail to be increasing.
12.3. Monotonicity ofA. Lemmas 32 and 33 are proved in Section 13.2.

LEMMA 32. Fork=1,A(1) =E(1/L) — 1/E(L). Whenk — oo,
kA(k) — V(L)/E(L)3.

LEMMA 33. For Bernoulli branching processeék + 1) A(k) is decreasing
For Bernoulli branching processe$(l) = (1 — 1)/2 andV (L) = A(1— A).

COROLLARY 34. For Bernoulli branching processes
a(1—21)/(1+1)2 < (k+1DAK) <a(l—1).

COROLLARY 35. In particular, kA(k) <a(1—1).

REMARK. (i) The sequencé&A(k) is not always decreasing, even in the
restricted case of Bernoulli branching processes.<f2 — +/3, we can show that
kA (k) is in fact increasing (we omit the proof).

(i) Inthe general context, the sequeniet 1) A (k) is not always decreasing.
If the law of L is (1 — p)é1+ pdz andif p < 1/16, we can show thak + 1) A (k)
is in fact increasing (we omit the proof).

12.4. Taylor expansions. Precise estimates of the remaining terms of the
Taylor expansions of the functions— 1/x andx — 1/x2 yield bounds ofG (k)
and H (k), hence ofA (k). Setn, := A(1 — 1). The following results are proved in
Section 13.3.

COROLLARY 36. One hasG(k) > G(k)/(1+ 12 andH (k) < H(k)/(1+ 1)
with
G (k) :=143G1/k —4G2/k? + 2G3/ k>,
Hk):=1+ G1/k — G2/k*>+ G3/ k>,

where

"2 Go = n2(1—24) G e n2(1+ 3(k — 2)n)
2= A+x1)3 " 8= (1+2)3

Gpi=—12
SRRV



PCR CONFIDENCE INTERVALS 699

Corollaries 34 and 36 provide tight bounds daflk). For instance, when
1 — 0, A(k)/x is asymptotically between/k — 1/k% + 1/k% and Y (k + 1). The
difference is ¥[k3(k + 1)]. In the general case, the following corollary holds.

COROLLARY 37. Foranyk > 1,
A1— 1 1-A 1
ﬁm < A(k) < ﬁ%
Thereforefor anyk > 2,
Aty <2278 2
1+13k—1

13. Harmonic moments—pr oofs.

13.1. Proof of the monotonicities of/{. Surprisingly (to us), Lemmas
30 and 31 reflect almost sure properties that have nothing to do with randomness.
Assume first thay = 0 and note thads, . 1/(k + 1) is the barycenter with equal
weights of the(k + 1) random variablest” / k, whereM\" := My 11 — L;. Thus,
the convexity ofp implies that

M 1 k+1 M(l)
®) ¢( "“) < w(—k>
k+1) " k15" Tk

By exchangeability, eacM,E’) is distributed likeM,.. Taking the expectations of
both sides of (6) yields the result.

Fory > 0, setNy := (M +y)/(k+y) andy; := y/[k(y + k+ 1)] > 0. Tedious
computations show that

1 k+1 o
N, =—y+ 1+ E N,
k+1 Vi + ( yk)k 1i:l

WhereM,Ei) yields N,fi) like M; yields N. Since eachv,ﬁi) > 1, N1 is greater

than the barycenter of the random variabmg), which are distributed lik&Vy.
Sinceg is nonincreasing, taking expectations yields Lemma 30.

Likewise, the proof of Lemma 31 for Bernoulli random variables is entirely
nonrandom. Assume that; = 2 for i indices j between 1 and + 1, and
assume thaL ; =1 for thek + 1 — i other indicesj. ThenM; 1 =k +i + 1,
M =k+i—1foriindicesj andM.”’ =k +i for thek + 1 —i other indices.
Thus, it is enough to check the almost sure inequality

k+1—y >k—y< i +k+1—i>
k+i+1—y  k+1\k+i—-1—-y k+i—y
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forany 0<i <k + 1 andk > y. After simplifications, this is equivalent to the
condition that eithet =0 ori > 1 and

(y—=Dk+(+Di-1-)?=20,
which holds for any > 1 andk > y > 1. Thus, Lemma 31 holds.

13.2. Proof of the properties oft. For |¢| < 1, let f(r) :==E@%) andg(r) :=
E((L1 — Lp)%tt1tL2=3) /2 An integration by parts yields

1 2
Ak) = /O g f' )2k dr.

(We omit the details.) Sincef ()| < 1 for|¢] < 1andf (1) = 1, whenk — oo, the
integral is controlled by the behavior of the integrand whes 1. More precisely,
from Laplace’s method,

Ak ~ gD f (D) 2/kf (D],

whereg(1) and f’(1) denote limits whenr — 1, ¢ < 1. Sinceg(1) = V(L) and
f'(t) > E(L), Lemma 32 holds.

For Bernoulli branching processesg(t) = A(1 — A) is constant. ThusA (k)
takes the simpler formd (k) = A(1 — 1)1 (k, 1), where

1
1k, 0) = fo (2.

The facts thatk + 1) f' f* is the derivative off*t1 and thatf” = 2x, together
with an integration by parts yield the recursion

k+ DIk, €)=A+21)"%*D L2020+ DIk +1,¢+1).

Sincel (-, £) is decreasing for any, this implies that the sequen¢e+ 1)1 (k, £)
is a decreasing function @fand, finally, that Lemma 33 holds.

13.3. Proofs of Taylor expansions.Let T; (f)(xo, -) denote the Taylor expan-
sion atxg of the function f, up to orderi > 0. For instance, ifi(x) := 1/x and

g(x) :=1/x?,

T;(h)(xg, x) = Z(—l)f(x — xo)j/xéH,
j=0

Ti(g)(x0, x) = Y (=17 (j + D(x — x0)’ /x4 .
j=0

We now estimate the remaining terms, perhaps more precisely than is usual.
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LEMMA 38. Foranyi > 1,
h(x) = Toi—1(h)(x0, x) 4 (x — x0)% /(x3'x),
g(x) = T2i-1(g) (x0, x) + (x — x0)? (x0 + 2ix)/(x3 T1x?).

PRoOOE Recursionon>1. O

COROLLARY 39. If x andxp are both in a positive intervalx_, x.),
h(x) < Toi-1() (x0, X) + hi (x — x0)%,
2(x) = Tai-1(8)(x0, x) + & (x — x0)?,

where

1 _2ixy +xo0 2

h,’ =, gi ‘= - = - .
x(2)zx_ x(2)1+1x£ x(Z)l-i-lx+

A similar lower bound ofi(x) and a similar upper bound gf(x) hold.
REMARK. Taylor-Lagrange formulas yield greater error terms/6r) and
for g(x) that are, respectively,

241

1

/.

h and g =57
X+

i = F
We apply Corollary 39 tor := M/k, xo:=1+ 4, x_ :=1 andxy := 2, and
i := 2. Introducingn ; := E((x — xp)/) and usingny = 0, we get
Hk) <1/A+A)+mp/(1+ A)B —m3/(1+ A)4 +mq/(1+ A)4,
G(k) > 1/(1+ )2+ 3ma/(L+ A)* — dms/(L+ 1)° + 2ma/(L+ 1)°.
If n; denotes thgth moment ofL —E(L), mp =np/k, m3= n3/k2 and
ma = (ng+ 3k — Hn3)/ k3.
If L is Bernoulli,ny =A(1— 1), n3=n2(1—21) andng = n2(1 — 3n2). This
yields Corollary 36.

PROOF OFCOROLLARY 37. The expression df (k) in Corollary 36 yields
Al=2) ( a)
kA(k) < 1+-),
()‘<1+xﬁ T
where, after some rearrangemeintsan be written as

INLI—d(L—2) 2n(1—2)
a=k—<l——> - .
1+ A+ Mk

k
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Thus,a < 1 and the upper bound is proved. The lower bound is in Corollary 34.
O
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