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BALLISTIC RANDOM WALKS IN RANDOM ENVIRONMENT
AT LOW DISORDER

BY CHRISTOPHESABOT
CNRS Université Paris 6

We consider random walks in a random environment of the type
po + v&;, where pg denotes the transition probabilities of a stationary
random walk onZ<, to nearest neighbors, ang is an i.i.d. random
perturbation. We give an explicit expansion, for smallof the asymptotic
speed of the random walk under the annealed law, up to order 2. As an
application, we construct, in dimensidr> 2, a walk which goes faster than
the stationary walk under the mean environment.

Multidimensional random walks in random environment (RWRE) have received
a considerable attention these last few years. In particular, several important
gualitative results have been obtained, as a law of large numbers, a central limit
theorem under certain conditions (by Sznitman, Zerner and Sznitman in the case
of independent identically distributed (i.i.d.) environment, [9, 12]; cf. [2, 10] for a
review). Unfortunately, in dimensiath> 2, there are, at the present time, very few
guantitative results. For example, the Kalikow’s condition, under which the law
of large numbers is satisfied with a nonnull velocity, is not very explicit (nor the
conditions (T), (T), [10]), and we have very few information about the parameters
entering the law of large numbers and the central limit theorem. The aim of this
paper is to give an expansion of the asymptotic velocity of the RWRE, which is
the parameter entering the law of large numbers, in the case of an environment
obtained as a small i.i.d. perturbation of an homogeneous walk.

In this article we consider random walks in random environmeridn for
an environment of the typgo + y&;, where pg is the transition probabilities
of a deterministic, stationary, random walk &f, and &, an i.i.d. random
perturbation. We make the assumption that the mean drift, that is, the drift of
the mean environmenpg + yE(&;), is nonnull for y small enough,y # 0.
In this case, for smal}/’s, the random walk in random environmekt,, with
transition probabilitiepo + y&,, has a ballistic behavior with speed # 0, which
means that

lim X, /n=0v" a.s.
n—oo
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In this article we give an expansion af¥, up to order 2, for smally.

The second term of the expansion quantifies the first order of the interaction
between the randomness of the environment and the global behavior given
by the mean environment. From this formula, we can exhibit an acceleration
phenomenon, which is specific to dimensidr= 2: we can construct explicitly
some environment for which the spegtof the RWRE is larger than the speed of
the walk under the mean environment: this cannot happen in dimension 1, where
there is always slowdown (similar phenomenons are shown in [3]).

The proofs of our results are mainly based on the auxiliary random walk
introduced by Kalikow [6], and the result of Sznitman and Zerner on balistic
RWRE [12]. In [6], Kalikow gave a formula which expresses the expectation of
the Green function of the RWRE (killed at its exit of a bounded domain) as the
Green function of an auxiliary random walKhe transition probabilities of this
random walk are obtained as weighted expectation of the environment. Under
a certain condition, usually named Kalikow's condition, this was used in [6] to
prove the transience of the RWRE in dimensibr 2, and later by Sznitman and
Zerner to prove a law of large number, compare [12]. As we show in Section 3, this
auxiliary random walk can also give some information about the asymptotic speed
of the RWRE. The expansion of is obtained by an expansion of the transition
probabilities of the auxiliary random walk. This relies on estimates of perturbed
Green functions. These estimates are easy to derive whdéras a drift, but are
much finer wherpg has no drift.

Let us now point out that random perturbations of simple random walks have
been considered in several different works (cf. [3, 4, 11]). The type of perturbation
we consider here is very specific: the mean drift is at least of opdexhich
is also the order of the perturbation. More precisely, it means that under our
assumption (H) (cf. Section 1), the drift of the mean environment at a single point,
E(po+ v&,), is at least of ordey, which is also the order of the perturbatip8, .

For comparison, whepg is the transition probability of the simple random walk,
then our assumption (H) is stronger than the assumption (0.9) of [11], which
implies that the RWRE has a ballistic behavior. When the drift is smaller than the
order of the perturbation, different phenomenons may appear as diffusive behavior
with nonnull static drift (cf. [3]).

1. Statement of the results. In this paper we consider random walks in
random environmenti?, d > 1, to nearest neighbors. We denoteby, .. ., e;)
the canonical basis of the latticE€. We denote by the set of elementsin Z¢
with |e] = 1, that is,V = {xey, ..., *ey4}. We will consider environments of the
form

o’ (z,e) = pole) + y&(z, e),

for z in Z¢ ande € 'V, wherepg is a vector of|0, 1[V such thaty ",y pole) =1,
and(&(z, -)),¢zq« are i.i.d. random variables with values[in1, 1]V and common
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law v, and such tha}_,.y £(z, e) = 0, v-almost surely. We denote Qy = v®Zd,
the law of (¢(z, -)),cza. Clearly, there existgg > 0 andxg > 0, such that for all
y < y0, We havecg < w”(z, ¢) < 1 for all z ande, n-almost surely.

We denote byPZ‘gy the law of the Markov chain to nearest neighborsZsh
starting fromzg, and with transition probability

PY [Xpp1=z+elX,=zl=0"(z.e) Vzz0€Zl eV,
and by
PY () =E.(PY (),
the annealed law, wheig, denotes the expectation with respecttoThe aim
of this paper is to give an expansion of the asymptotic speed of the random walk

under]P’Zo, up to order 2, in the limit of smaljb’s.
Let us introduce some notation. We set

pi(e) =E,(£(0,¢)), £(z,e) =&(z,e) — pa(e), pY (e) = po(e) + ypi(e)
and

do=)_ pole)e,  di=)_ pi(e)e.

ecV ecV
We also set
Ceo =CoV(£(0,€),£(0,¢)) =E,(£(0, €)€(0, &)
Let us make the following assumption:
(H) do#0o0rdy #0.

Then, fory small enoughdp + yd1 # 0 and the stationary random walk with
transition probabilityp” = pg + yp1 is transient. We denote bg?” (z, z’) the
Green function of this walk, and we set

J/ =G" (e,00—GP" (0,00 VeeV.
Finally, we set

pZ,y(e) = Z Ce,g’ Je}:
e'ey
and

d2,y = Z pZ,y(e)e-
ec’V

THEOREM1. (i) For y small enoughy # 0, X,, is ballistic underP?, that is
there exista” € R?, v # 0, such that

. X
lim =2 =7, P”-as.
n—o0o g
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(i) The asymptotic spead has the following expansion for smad| ¢ # 0,
v’ =do+ydi+y®day + 0%,

forall ¢ > 0.

REMARK 1. Of course, the interesting part of this formula is the tekm),
which quantifies the interaction between the randomness of the walk, contained in
the termC, ./, and the global behavior of the walk, contained in the tdén

REMARK 2. Whendp # 0, we can prove much better estimates, and even get
the third order of the expansion. This is the object of Theorem 3 in Section 6.

REMARK 3. This result is valid ford > 1, in particular, it includes! = 1
(where the explicit value of” is known). As we shall see, faf > 2, the second-
order termd,, can be replaced by a terap, independent of,/, at the order
O (y3~%). This is not the case fat = 1, whered, , have a discontinuity gt = 0
whendgp = 0.

We can prove the previous result by giving an explicit expansion of the
termJ? .

Dimensionl. This case is not very interesting since the explicit value of the
speed is known [8], but we include it here for completeness. In this digg,
can be computed explicitly and we have the followingi{df + yd1) - e1 > 0O,
then

1

1 J., =0, J) =— ,
@) ‘ po(er) + yplier)

e1

and the symmetric result holds whéty + ydi) - e1 < 0. In particular, when
do #0 anddp - ey > 0, thenJ’, =0 and J}; = —ﬁ + O(y). It gives
that

dZ,y = —ZMEU(S(O’ 61) )61 + 0()/)

Whendp =0 [i.e., po(e1) = po(—e1) = %], anddy - e1 > 0, then there is a discon-
tinuity in the second-order term @at= 0, and

) da,, = —4sgn(y)E, (£(0, en)?)er + O(y).
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Dimensiond > 2. If dg # 0, then we have

1 po(Fe;)
JI, = -1
T (@2myd ( po(Ee;) )

COoSu;
d .
) ) /[O,Zn]d 1-2%9_; Vpole;) po(—e;) codu;) [T,

1 (coqu;) — 1)
+ 5= du;
(2m)d /[o,zn]d 1-— 22;?:1 po(e;j)po(—e;j) cosu;) 1_[ "

+ O(y).
If do=0,d1+# 0, then we have(e;) = po(—e;) and
1 N —1
Ji@ _ —d/ (c;Ogul) ) 1—[ du;
L (2m)4 Jio2rd 1— 22,’:1 po(e;)codu;)

@) 5 B
{ (y logy), ford =2,

o), ford > 3.

NoTE. Remark that whewrp # 0, then 22?21 pol(e;) po(—e;) < 1 and the
integrand in both terms of (3) is bounded. Whign= 0, the integrand in (4) is also
bounded due to the presence of the téoogu;) — 1) in the numerator.

In these two cases, we writg for the first term of the expansion g, which
is independent of . Hence, we see that far> 2, the expansion of Theorem 1 can
be rewritten

(5) v =do+ydi+y2da+ O(y>®),
with do =3 ,cy p2(e)e, wherepa(e) =3, Co o' Jor.

REMARK 4. In dimensiond = 2, the second term of the expansionljf
induces the Green function of a symmetric walk killed at r&tg?, for some
K > 0, compare Section 4. This Green function diverges likeylognd the
estimate we give in Theorem 1 does not allow to include this term in the expansion

of v¥. We think our estimates in Theorem 1 could be improved in order to allow
us to include this term.

Heuristic interpretation. Remark that the term?d,,,, can also be written

y2d, =E, [( Y vEQ, e)e) (y Y E(0,e)(G” (e.0) — G”' (0, o»ﬂ

ec’V ecV

_ G?" (0,0
-=](grea)e-Graa)]

ecV

(6)
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where p¥ is the one point modification op”, given by p¥(z,-) = p¥(z, ),

z#0, p¥(0,) = w” (0, -). Hence, we see thaztza’z,y is a weighted expectation

of the random part of the drifty 3, £(0, e)e. The weight is positive when
GP?"(0,0) > GP"(0,0), that is, when the statistical number of visit of 0 is
increased by the randomization of the environment at the point 0. This means that
at this order, the environment has a larger weight when the point is more often
visited. In fact, this is one of the pieces of information contained in Kalikow's
formula (cf. Section 3). The interest of this formula is to quantify this effect.

Let us now explain the structure of the paper. In Section 2 we apply these results
to show that the spead can be larger than the speed of the stationary walk under
the mean environment. In Section 3 we recall the definition of the auxiliary random
walk introduced by Kalikow and the law of large numbers proved by Sznitman and
Zerner, and give a simple result relating the effective value of the asymptotic speed
with the drift of the Kalikow’s random walk. In Section 4 we prove Theorem 1.
Section 5 is devoted to the proof of the formulas concerdihgln Section 6 we
give the third order of the expansion, whé:~ O.

2. Speedupin higher dimension. Considering the formula af; ,, in the case
d = 1, we see that the second-order drift is in opposite direction to the main
drift do 4+ ydj. It is actually true for any balistic RWRE in dimension 1, that
the asymptotic speed of the RWRE is smaller than the mean drift given by the
random environment. Indeed, in dimension 1, if we consider a RWRE with i.i.d.
environmentw_, then this walk has a ballistic behavior in the positive direction if
and only ifE(%) < 1, and in this case, the asymptotic speed has the following
expression (cf. [8]):

1-Elo(zen)/wle) _ E((w(e) —w(=e1))/E(w(e1)))
1+ E(w(—e1)/w(e1)) E(1/w(e1)) ’

which is easily seen to be smaller th&@{w(e1) — w(—e1)). The intuitive
explanation for this slowdown effect is that the sites where the environment plays
against the main behavior are overweighted, in the sense that the expected number
of visits of these sites is larger.

This phenomenon is no longer valid in higher dimension. We construct here an
explicit RWRE, for which the asymptotic speed is larger than the mean drift at one
site.

REMARK 5. Similar phenomenons are shown in [3], where the authors exhibit
RWRE with positive velocity and negative mean drift in large dimension (cf.
Remark 4.3.2 and Section 5.3 of [3]).

REMARK 6. We give here an example in dimensibe:- 2, but we could easily
give a similar example in any dimensidre 2.



3002 C. SABOT

Let us consided = 2, andpg given by

1+a
4 9

po(e1) = po(—e1) =
1—a
pole2) = T(l +é),

_1—a 1
PO(—EZ)—T( —€),

for somereals G- a < 1, and O< ¢ < 1. We see that
1—a

do=¢ eo.

Let us now defind/ € RY by
U(e1) =U(—e1) =1,
U(e2) =0, U(—e2) = -2,
and the random variablg(z, -)) by
E(z,)=UC() with probability 3,
£(z,)=-U()  with probability 3,

independently on each sitein Z2. It is clear thatE(£(z, ¢)) = 0 for all z, e and,
hence, thap; = 0. The covariance matrix is given by

Cov(£(Fer), é(£e1)) =1,

Cov(£(Fer), E(e2)) = Cov(&(Fe2), £(e2)) =0,
Cov(é(—e2), E(—e2)) =4,
CoV(é(£e1), E(—e2)) = =2,

where we simply wroté& (e) for £(z, e). It is clear, by symmetry, that, will be in
the directiont=e» [we recall thatd is defined in (5)], and computation gives

dy = (2(J—¢; + Jey) — BJ_¢,)e2,
whereJ.,, is the first order iry of J., given by (3). Wher goes to zero, the first
term in formula (3) goes to zero [indeed, the te(r\y% —1) is of ordere and
the second term is of order legsince it is the Green function at 0 of a stationary

Markov chain with killing rate of ordee? (cf. the discussion of Section 4)]. It
implies that

i ( / (coquy) — 1) — (cosuz) — 1) )
im do = e
e—0 02712 1 = (1/2)((1 — a) coSuz) + (14 a) coguy))
_ < / 2(coqu1) — coquz)) )e
10,2712 (1 — coSuz)) + (1 — coqu1)) + a(couz) — cou1)) >
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It is not difficult to check that the previous integral is positive. Indeed, if we
considerV1 andUa, two uniform random variables d0, 2], andS = coqUj) +
coqUy), A = coqU»y) — coqUy), then, by symmetry, we havé(A|S) =0, and
since the previous integral is equal to

—2A —2A
255 ar) =BG aals))
2—S+4+aA 2—S+aA

we classically get that it is positive, whers positive. This implies that far small
enough, the termas is in the directiorH-¢», hence, in the same direction é&s It
implies that fory small enoughy? - e> > dp - 2.

REMARK 7. The intuitive explanation for this phenomena is that, due to the
nonsymmetry of the horizontal and vertical direction, it is easier for the walk,
under the mean environmepp, to come back to 0 from the pointe; than
from the pointt+ep. Then we choose a random environment which correlates
the acceleration of the walk, that is, a drift in the directignlarger than the
mean drift, with a larger probability to go on the horizontal direction. This
overweights, in Kalikow’s formula, the environment which have a larger drift in
the directione, than the mean drift. Indeed, in formula (6), forsmall enough,
the drift y 3", £(0, e)e has a positive weight when= U, and a negative weight
when & = —U (indeed, the one-point modification @ in p¥ increases the
statistical number of visit of 0, wheh = U, and decreases it when= —U).

But, (¥ >, £(0, e)e) - e2 is positive wher = U and negative wheh = —U.

3. Kalikow's auxiliary random walk. We present a generalization of the
random walk introduced by Kalikow in [6].

Let us first introduce some notation. L&j > 0 be a positive real. We denote
by ,, the set of environments with uniform ellipticity constadgt that is,

d
QKO = (w(x7 e))XGZd,EGV € (]07 1[2d)Z ’

such thatZ w(x,e)=1andw(x,e)>kgVx,eq.
ec’y

We suppose that is a probability measure of2,,. (We do not assume, for the
moment, tha is the law of an i.i.d. environment.) Léf be a connected subset
of Z4, ands a real 0< § < 1. We denote bwU the boundary set o/, that is,
AU ={zeZ?\U, Ix e U, |z — x| =1}. If w € Q is an environment, we denote,
as usual, by?? the law of the random walk in the environmemntstarting fromz.
We set, forz e U,z e U U AU,

Ty
G@,S(Z’ )= E?<Z 5k]l{Xk=z’}) ’

k=0
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whereTy =inf{k, X; € Z4 \ U}. Forz' € U, G 4(z. 7)) is the value of the usual
Green function of the process killed at constant ‘tand stopped after its first
hitting time of Z¢ \ U, and forz’ € aU,

(ZZ)_ ( XT—Z}6 )

is the probability to exit/ at the point;’, before having been killed.
Let us now fix a pointg in U. We suppose that eithéf is bounded, 06 < 1.
Forallzin U, we set

E, (GY 5(z0, D) (z, €))
E.(Gy 5(z0,2)
Obviously, (oy s, (2, )) defines the transition probabilities of a Markov chain

on U. We denote byG, 0u. the Green function of this Markov chain, killed at
constant raté, and stopped after the first exit time Gf

. N Ty
wy.8,z wy.8,z Z

GUl,fs ") =E; ( Sk]l{xkzz/})
k=0

We simply write G{; and @y ;,, whené =1 andU is a bounded subset a,
andGs, @5z, WhenU = Z4 ands < 1.
In its generalized version, the result of Kalikow says the following:

ﬁ)U,(S,Zo(Z7 6)

ProrPosITION]1. If eitherU is boundedob < 1,thenforallzin U NauU,
E.(Gy 5(z0.2)) = Giﬁf’zo (zo, 2)-

REMARK 8. The original result of Kalikow was given fdy bounded and
5=1.

REMARK 9. In the sequel, Kalikow's formula will refer to the formula of
Proposition 1.

PrOOF The proof is essentially the same as the proof of Kalikow, but we
give it for convenience since the hypothesis are not exactly the same. Let us first
remark that O< G, 5(x, y) < ¢y y for a constantindependentefin Q,, (indeed,
this comes from the uniform ellipticity condition). This implies tiaat s ., is well
defined. Remark now that for allin U U dU,

(" G 5(20.2) =80:+ Y. Gy s(z0.2—e)dw(z—e,e),

ecV, s.t.
z—eelU

which gives
Eu(Gy 5o, 2) =080+ Y. Eu(Gys(20.2— €)dduy,s,:0(z — e, ).

eeV, s.t.
z—eelU
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Let us set
nATy
Gis(z0.2) = UM( > 5k1{xk=z’}>-
k=0
We see that
Gy 0.2 =80+ Y. G202~ €)80u.s.:0(z — e, e).

ecV, s.t.
z—eeU

It is clear that

(Z)Uﬁ,zo T (n)
and thatG‘lj[fé‘s’ZO satisfies the same equation@$ ; in (7). By induction, we have

G520, 2) < B, (G (20, 2))

for all n» and, thus,

(8) G320, 2) < Eu(GY 5(20, 2))
forall zin U UAU. Foré <1, itis clear that for all environmeiat in €,,,
1 o0
. Z sk
1-6 =

TUlk r, 1

w u

= E¢ (Za +34 1_(3)

g Bt o

zeU k=0 zeBU

=2 GsGo 0+ 15 ; > G 5(z0.2).
zeU zedU

This implies both

1
1T— ZE GU B(ZO,Z))"F 1 s Z E GU 5(Z07Z))
zeU zedU
and
1 wy,5,zq 1 U8,z 20
1—8_ZGU3 (ZO,Z)"F]——S Z GU(S (Z05Z)
zeU zedU

This necessarily implies equality in (8) for alin U UdU.
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Whené = 1 andU is bounded, theffy < oo almost surely undePz‘g, for any
elliptic environmentw. This implies

1= Y Gy @0, 2= Y. Eu(G¥(z0,2),
zedU zedU

which gives equality in (8) for alf in dU, and then by induction for alf in U.
O

3.1. Application to the asymptotic speediVe first recall a result of Sznitman

and Zerner (cf. [12]). Let us suppose now that v®Z% is the law of a uniformly
elliptic, i.i.d. random environmertw (x, -)) in Q..

THEOREM 2 [12]. If there exists a vectarin R?, a constant > 0, such that
for all bounded connected subdétc Z4, U #+ @, and all zg € U,

(Z@U,Zo(z,e)e>-lze VzeU,

ecV

then there exists a vectore R, such that

. X
lim =2 =y, P®-as.,
n—>oo n
for u-almost all environmernw. Moreoveyv - I > 0, hence X, is ballistic in the
direction |

REMARK 10. The velocity can be expressed in terms of the expectation of
some renewal time (cf. [12]) or in terms of Lyapounov exponents [13], but we will
not need these expressions.

We suppose now that our RWRE satisfies the condition of the previous theorem.
We can easily get some information on the asymptotic speed from the walk
of Kalikow. We consider now/ = Z¢ and$§ < 1. The transition probabilities,
Ws,z0(z, €), of the Kalikow’s walk depend only on the difference- zo. We denote
by ds(z) = Y,y @s5.0(z, €)e the drift associated with the Kalikow’s walk. We
denote byA; the convex hull of the set

U ds(2),

ze74

and by, the set of accumulation points &5, whené goes to 1.

PROPOSITION2. The asymptotic speedis in .
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PROOF We denote by the expectation with respect to the annealed law
Eo() =E.(EG ().

We consider an independent geometric random variableith parameters.
We have

5—1
Eo(X) =E, (Eg ( > Xpy1— Xk)>

k=0

o0
= Z Z EM (Es)(]l{fs>k,xk=z}(xk+l - Xk)))
z2€724 k=0

- Z Z Lo (]l{fa>k,Xk:z}< Z w(z, €)€>>

z€724 k=0 ecV

= Y E,.(G§(O, z))( > 500z, 6)6)

ze74 ecV

=3 GP(0,2)ds ().

ze74

ADs.0

ButE(ts) =) ,c7¢ G5 (0,2). Thus,

Eo(Xr,) _ Yeemt Gy *(0,2d50) _

E(ts) > .ezd G5°(0, 2)
and since ling_, 1 Eo(X<;)/E(ts) = v, we know thatv is in 4. [

8

4. Proof of Theorem 1. We will use the following simple estimates several
times in the article.

LEMMA 1. Letw ando’ be two environments if,, for somexg > 0. We
suppose thaw' is a perturbation ofv, at some point in Z¢, that is, that we have

w'(Z,e) =w(,e) for7 #£z,ecV,
w'(z,e) =w(z,e) + Aw(e) foree v,

for some(Aw(e)) €] —1,1[Y. LetU c Z4, 0 < § < 1, be such that eithet/ is
bounded 0B < 1, and such that is in U. Then we have the following estimates
forall yinU,y inUUU,

2d sup.cy |Aw(e)|

1GY sy, Y) — Gy s(3.¥)| < 2 s )
0
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and

G‘ﬁl,a(y, ) —=Gps(,y)

— G s(r.2) Y Aw(e)(8Gy s(z +e,y) — Gy 5(z,Y)
eV
2d A 2
5( SUQEV; @) 7 s .

Ko

PROOF  To simplify notation, in this proof we simply writ€&* for Gy, s
We will use several times in this paper the following classical expansion of
Green functions: letP and P’ be the transition operators of two random
walks onZ? (with eventually some kiling, so that & >y Pry <1, the
left-hand side inequality being eventlyastrlct) to neaest neighbors, and
G = -sP)"1=y 6Pk, and GI' = (I — §P)~! the associated Green
functions (for O< § < 1). Then for all» > 0, we have

n

© G =GI+> s5GF P - P)GE +5 Gl - PG
k=1

In particular, forn = 0, we have

(10) G =Gl +5GE (P — P)GY.

We apply the previous formula for the transition operators associated with
transition probabilitieg andw’, and we get

G (y,y) — G°(y,y)

= 5G°(y, Aw(e)G? oy
1) (y Z)eezv w(@)G? (z+e,y)

=G“(y.2) Y Aw(@)(8G” (2 +e.y) — G (2.))).
ecV

In the last formula, we used that,.y Aw(e) = 0. If we setT; = inf{n > 0,
X, =z}, we get

3G (z+e,y) =G (z,¥)
(6Ez+e( T<TU}8TZ) - 1)Gw/(z7 y/)
(8E1+e( T<TU}8TZ) - 1)Gw,(z7 y/)

(12) 1 ® T.
>—G (2, Y)Y o )EY ,(Lir<1yy8") — 1)
e'ey
1G“(z,y)

ko G(2,2)
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Remark that with the same argument, we also have

, : 1G(z,y")
8G (z+e,y) -G (z,y) = ———F+"—,
( V) (z,y) 0 G (z.2)
which is equal to—K—lo, if y =z.1f y =z, thensG* (z+e,2) — G (z,2) <0. In
particular, this gives, when' = z,

/ / 1
(13) |6G (z+e,2) — G® (Z,Z)|§K—.
0
If z#£y', then
k) Z W'(z,¢)G (z+¢,y)=G"(z,y),
eeV
which gives
(G (z+e.y) — G (z.¥))
o' (z, € , ,
- _ Z /( )(SGL() (Z"l_e/, y/)_Gw (Z,y/))
e'eV, e'#e o'(z, €)
o ’
- 169Gy )’
K§ G¥(z,2)
where in the last inequality we used estimate (12). Thus, we get
/ / 1 Gwl Z, !
(14) 6G” (z4e,y) = G® (z.))] 5—2%.
k5 G°(z,2)
Applied to (11), it gives
, 2d su |[Aw(e)| ,
67 .3 = 670y = Z2REY E2 (17, <7187 G (2, ')
0
2d su [Aw(e)| .
< SRy G (v.y).
0

The second estimate is similar. We expa®d at order 2 [i.e., we use (9) with
n = 1] which gives

G”(3,7) = G(3,y) = Y G®(3,2)Aw(e)(8G°(z + ¢, y) — G(z, )
ec’V

= Z Z G“(y,2)Aw(e)(8G*(z +e,2) — G“(z,2))

ecVe'eV

an)(e/)(6Gw/(Z +e,y) - GY(z, ).
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But, [6G®“(z + e,2) — G5 (z,2)| < ==, compare (13), and using (14), we get the
second estimate.[]

In order to prove Theorem 1, we give an expansion of Kalikow's transition
probabilities. This is based on two susse&/e applications of Proposition 1. We
come back to the notation of Section 1. We have an i.i.d. random environment of
the form

w” (x, ) = po(e) + y&(x, ) = po(e) +y (pi(e) +&(x, e)),
whereé (x, e) is distributed according to the law= 182’ and
pi(e) =E,(§(x,e)), E(x,e)=£&(x,e) — pi(e) VxeZl ecV.
For anyy in Z¢, we denote by?>> the environment
w¥(z,e), if 2y,
po(e) +ypile), ifz=y

For 0< 8 <1 andU c Z4, with eithers < 1 or U boundedzg € U, we denote
by c?)[’},a,zo the transition probabilities of the auxiliary random walk defined in
Section 3, associated with the environme#tunder..

VY (z,e) = {

LEMMA 2. We have the following expansidor smally’s,
A 7U.8,20,
&Y 5.0 €) = poe) +yp1e) +v2 Y Cow Ty 07 () + O3,
e'eV
where
JUsar () Eu (G5 (0. OGS (y+e.y) = GE5 (3. 3))
¢ Eu(GY5 (z0. ) ’

and wherg 0 (y3)| < 2%4)2 y3
0

PROOF  We simply writeG® for G{, 5 in this proof. Let us first remark that
we have

E.(G” (z0, DE(y, )
E.(G* (0, y))
wherep? = po + yp1. Applying Lemma 1 taw” andw”"?, we get

E. (G (z0, y)E(y, €))
E,(G* (z0, )

E. (G (z0, Y)E(y, €))
E,.(G*" (z0, ¥))

O 50,00, €)=pY () +y
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+y Y Eu(G” (2o, ME(y, €)

e'ey
x (3G (y+e,y) — G (3, )E(, €)
x [E (G (z0, )] "+ 01+
=y > Eu(E(.0)E(y. )

eeVy

5 E.(G”" (20, V)G (y + ¢/, y) — G (y,y)))
E,(G“" (20, y))

where|01(y?)| < (%)2)/2. [In the last formula, we used the independence¢f’
0

+ 01(y?),

andé (y, e), and the fact tha, (¢ (y, e)) = 0.] Considering now that by Lemma 1
we have

1 Bu(GY oy | @42,
E. (G (zo, ) |~ «§

’

we get

E. (G (20, )G (y+ €. y) = G (y, 7))
E,.(G* (z0.))

_Eu(G (0. ) (6G (v ¢\ y) = G (v, 1))
Eu (G (20. 7))

2
where| 02(y?)| < %yz- O

+ 02(y?),

Let us remark that the previous lemma implies that, under the hypothesis (H),
for y small enoughy # 0, there exists a positive constant, such that for all
bounded connected subgétandzg in U,

(Z@U,ZO(Z,8)3>'(dO+Vd1) > ¢y VzeU.
ec’V

[Indeed, | 7207 (y)| < K—lo using (13).] Hence, we are in the condition of

application of Theorem 2, fdr= do+ y d1. To obtain information on the speed,
we have to estimate the transition probabilitigs,, whens goes to 1. This is the

object of the next lemma. We simply writg? (y) for 77> (y) whenU = z4
andzp=0.

LEmMMA 3. (i) If do # O, then there exists a consta@t> 0, such that fory
sufficiently small

lim sup|J~f’V(y) - JJ| < Cy?,
§—1
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foralleeV, yeZd.
(i) If do=0andd1 # 0,then for all 0 < ¢ < 1, there exists a constaut, > O,
such that fory sufficiently small

limsup| 72 (y) — JY| < Coy*8,
§—1
forallecv,yez?.

Let us first point out that this lemma concludes the proof of Theorem 1 using
Lemma 2 and Riposition 2.

PrROOF OFLEMMA 3. Let us first describe the structure of the proof. In the
first step, we apply Proposition 1 to a certain modified meagite write ff’y (y)

2 2
as the Green functiodG? ™" 2“(y + ¢, y) — GI" 17" 2%(y. y), for a certain

deterministic environmenp? + y?Aw, which is a second-order perturbation

2
of p”. In the second step, we expand the Green funccﬂt%“’ A° “and rewrite

the Green function of;?” as the Green function of a symmetric random walk plus
a killing. The last step is to use estimates on quantities like

> 1Pn+1(0.2) — pue. 2)l,

zeZ4

which are adapted from Lawler’s book [7].

Stepl. Fory,y’,y”inZ4, we write

_EuGET 006G (. y")
Eu(G§™(0.y)

7y, y")
so that we have:" (y) = 8157V (y + e, y) — I7¥(y, y). We denote byi” the
probability measure of,, given by

o GOy
Eu(G§™(0,3))

It is clear that
Py =Ea (G (7. 5.

We apply Proposition 1 for the environment:” under the measurg”, for the
initial point zo = y’. This means that the Kalikow’s random walk has transition
probabilities

i Ew (G (v, 20" (2, €))
CU(Z, e) = : f wVsY /
B (G (), 2)
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and that by Proposition 1 we get
P,y =630/ y").
We have

Ew (GY™ (v, 2)E(z, )
Eqp (G (v, 2))

for z # y, andw(y, ¢) = p¥ (e). We want to prove that

w(z,e)=p"(e)+vy

B(z,€) = pY () + y?Aw(z, ¢),
for a perturbative termiw(z, ¢), uniformly bounded iny, y’,z,e,8,y. So we
write
1
2

Aw(z,e) = > (@(z,e) — p”(e))

for y #0. As in Lemma 2, we define the environméat->*(z’, €))7 . in Q,,, by

w)/,y,z(z/ 6) — Py (6), |f Z/ =z O0r Z/ =y,
’ w” (7, e), if 2/ #£2z,2 #y.

Using Lemma 1, we get

Ei(GY" (v, 0E(R.€)  Ep(GY (3. 2E(z, €))

Ew (G (v, 2)) Eu (G (y,2))
_Eu(GY (0.6 (v, 28z €))

E.(G$" (0, )G (v, 2))
_Eu(GYT 006G (9. 28z, 0))

E.(G§" (0, »)GY (v, 2))

=0(y),

where, as usual, the remainder termgy) satisfy|O(y)| < C|y|, whereC > 0

is a constant depending only a@, 4. [In the last equality, we used, as usual,

the independence @¢""* with £(z, ¢), and the fact thak,, (£(z, ¢)) = 0.] This
implies thatAw(z, e) is bounded by a constant depending onlyend.

+ O(y)

+ O(y)

+ O(y)

Step2. We transform now the Green functicﬂf{y into the Green function of
a symmetric walk plus a killing. Lep” : Z¢ — R be defined by

d o\
¢V(Z):n< pY(e;) ) .

i=1 py(_ei)
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Let M, be the operator of multiplication by, given, forf:7Z¢ — R, by
Mgy (f)(z) =" (2) f ().

If PP is the transition operator of the walk with stationary transition probabilities
(p? (e))eecv, then we have

M¢pryM¢_y1 = kyPSy,
where
d 1/2
K =2 (p”(—e)p” (e)) 2,
i=1

and P¥ is the transition operator of the symmetric, stationary random walk, with
transition probabilities

—e; 1/2
¥ () =" (—ep) = L 613{1;%,)) |

As we shall see latek} < 1, and we have
G = (1 —8PP") ™ = M1 — 8k7 P*) " Myy = M Gy My
Let us come back té” . We trivially have
d

1- & =Y (VP e —V/p e ).

i=1
which implies thak? < 1 under the hypothesis (H) for smal If dg # 0, then
d

1-k" =" (Vpolen) — Vpol(—en) ) + 0 (y).

i=1

If do =0 andd; # 0, then we easily get

2 d 2
Y (W pile) —/p1(—ei))
—>

+03).
4= po(e:) e

1-k" =

It means that in this case-1k” = Ky2 + O(y?) for a positive constank > 0.
We can easily get, similarly, that
S N [y 77
G! = M3'GST Mgy,

wheres? =57 (z, e) is, a priori, a nonsymmetric, nonstationary environment of the
form

57 (z,e) = s (e) + y°As(z, e),
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where As is uniformly bounded independently of the variables’, z, e, v, 8.
Whendg # 0, the termk?” = kY (z) is of the form
K () =K +y*Ak(2),

where Ak is uniformly bounded. Whedg = 0, d1 # 0, then the ternt? (z) is of
the form

K (@) =k +y3Ak(),
whereAk is uniformly bounded [this comes from the fact tha} Aw(e) =0, and

that i;gg; — 1= 0O(y), from which the term of order 2 is null].

Step3. We consider now the following expansion at ordefwhich is a
consequence of the classical expansion of Green functions, cf. (9)]:

J/+ ZA Y
Gy T2,y - G (2,2)

n
=36y Sk, ) + (YD R (2. 2,
k=1

where
Y Y
Siz.2)= Y. Y GY(z,20)A0(z1,e1)GY (z1+e1,22)

Z15+++92n €15---s én

v
X Aw(zn, €n)G§ (zn+en. )

and
Ri= ) 8.2 > Aw(z”,e”)Gg’MyzAw(z”~|—e”,z/).
2"e7d eV
Considering the transformation of step 2, we get
Sn(z,7)
=¢"(@ —2) Y. G (2. 20A0(z1, e1)d? (—e1) Gy (21 + e, 22) -
e
X Ao (Zn, e)d (—en) G (2n + €n, 7)
and
R, (z.2')
=47 —2) Y. Gz 20)Aw(z1, e)d” (—e1) Gy (21 +e1,22) -
2seennzn 2"
e1,eene’

X Aw(zn, en) " (—en) Gy (zn + €n, 7')

« Aa)(z”, e//)¢y(_e//)G§V

1/ 1 /
sy (@ e ).
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If dg # 0, then

d
11— 8k7| <23 (Vpolen) — Vpo(—en) )+ O(p).
i=1

Thus, we get [since? (e) < K—lo fory < o)

n+1
1 v
Sn(z,2) <7 (@ —z)(K—02d<SUp|Aw(z,e)|> Y GO, z))

zeZ4

1 1 n+1
=V — ) = A
o7 =) 24 (suplsw .0l ) =57 )
< ¢’ (7 —C"

for some positive constaut, depending only oo, d, po. We can get a similar
estimate for the remaining term®, (z, z’) considering that + k¥ (z) ~ 1 — 8k”.
This implies that fory small enough, the seri@,‘c’io(aky)kSk(z/, 7) is convergent
and that

Gy~ G (@) = 3 6y 2)
k=1
=¢Y (7 — Z)O(VZ)-

Considering the discussion of step 1, this concludes Lemma 3(i).
If do =0 anddy # 0, then we rewrite

Sn(z, Z/)
=¢7(Z —2) Y. Gin(z.z20Aw(z1, 1)
Z95es2n
e1,....en

X (¢ (—e1) Gy (214 €1, 22) — Gy (21, 22)) -

X Aw(Zn, en) (97 (—en) Gy (zn + €nr 2) — Gy (znr 2))

>n

< ¢ (7 — 2)(2d)" G5, (0, 0) (su% > ¢¥(—e)Gipy (e, 2) — Gy (0, 2)

ec’V ZGZd
)I’l

< ¢ (7 — 2)(2d)" G5, (0, 0)

y Sup< ¢7(ze) —1
ecV

1 okv ’ +[ Y Gy (e.2) — Gy (0.2)
zeZ4




BALLISTIC RWRE AT LOW DISORDER 3017

We write p,,(y, y") for thenth step transition probability of the random walk with
transition probabilitys” . We consider the term

3 G (e, 2) — Gy (0, 2)

ze74

= Z Z((Sky)n(Pn(e’ z) — pa(0, Z))‘

zeZ4d neN
<1+(> Y 6K) pale,2) — (8k”)"py41(0,2)

zeZd neN
<1+ @ =8k Y D (8kY)" pule,2)
zeZ4 neN
+ > @BK")"| > pale,z) — pat1(0,2)
neN €74

<2+ ) (k)"
neN

Y pule.z) — pny1(0.2)

ze74

We now use the following lemma, which specifies and generalizes Corollary 1.2.3
of [7] (we will prove this lemma later on).

LEMMA 4. Let(s(e))eev €10, 1[Y be such that
d
s(e) =s(—e) =ko,  2) se) =1
i=1
Then for all ¢ > 0, there exists a positive constafit, depending only ory, d,

such that
> 1pn41(0,2) — pule, )| < Cen™H2¥ Vee,

ze74

wherep, (z, z’) is thenth step transition probability of the stationargymmetri¢
random walk orZ¢, with transition probability(s(e))ecv .

NoTE. The difference in the indices andn + 1 comes from the fact that
pn(z,2) isnullif n and}_; z’; — z; do not have the same parity.

It means that for all G< ¢ < 1, there is a positive constaif > 0, such that

o0
3 Giprle,2) — Gy (0,2)| <2+ C, Y (8kY)"'n~ D Fe,

ze74 n=0
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Considering that fox > 0,

@-opyr =y et Dk D

n=0

(8k7)",

n!

and that" @D tn=D . ,x=1 for Jargen [which means that there is a constant
K > 0, for which K ~1p*~1 < xatDobetn=l) - gye-1] e see that for alk
suchthatl—x) < % — ¢, we can find a constait > 0 such that

o0
> @k AT < 01— 8kY) .
n=0

This means that for all > 0, we can find a new constafit > 0, such that

Y Giprle,2) — Gy (0,2)| < Co(L— 8kV) (/D¢

zeZ4

< C.(1—8kV) " W/2—¢,
Considering that + k¥ ~ K32 for smally’s, we see that, for all positive, we
can find a new constait, > 0, such that

Z ngv (e,2) — sty(O, 2) 1-e,

ze74

<Cey~

Coming back taS,, (z, z/) and considering that” (—e) — 1= O(y), we see that
1S4(2, ) < 97 (& = D(O(y 7))" |G}y (0. 0)
<¢”(@ —2(0(y7)"|G}5 (0, 0)|.

It clearly implies thatzkzl(Syz)kSk(z,z/) is absolutely convergent foyp
sufficiently small, and that

Y (673" Su(z.2) = ¢ (2 — 2)O(G} (0, 0)y*™%),

for all positivee. It is not difficult, using the same arguments and the fact that
1—k¥(z) = Ky? + 0(y3) for the same constark > 0, to prove that the
remaining termr,, goes to 0, when goes to infinity, which means that

2
G (2.2)) — GE VB2 ) = ¢ (2 — 2') x O(GL(0,0)y ")

and the estimaté)(GiZ (0,0)y1%) is uniform iné, z, z’. Coming back to step 1,
we see that it means that

limsup| 757 (y) — JY| = 0(G3) (0, 0)y 17%).
§—0
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Since, in dim 2,G$,(0,0) diverges like Il — k”) ~ Iny, and is bounded in
dimensiord > 3, we see that it means that

limsup| 727 (y) — JY | = 0(y*)
§—1

for all positivee. This concludes the proof faf > 2. Ford = 1, the expansion
of v¥ can be checked directly from the explicit formula f@f. (It could also be
deduced from the same method[}l

PROOF OFLEMMA 4. Lets; =s(e;) = s(—e;). We suppose that + 1 and
Z‘f;lz/ have the same parity, since, otherwigg, 1(0, z) and p, (e, z) are null.
By the Fourier transform we have

pl’l+1(07 Z) - pl’l(ieiv Z)

1 / d
d l | JUj j
(2m)% Jio,271¢ et

1 d
~ Gy /[O’Zﬂd ®" coq(z; F Du;) H_cos(zju‘,-) ]j duj,
JF# Jj=1
where
d
© =) sjcodu;).
j=1

We can findp < 1,7 > 0, such that®| < p if (u1,...,uq) ¢1—r,r[¢Ulr —r,
7 + r[¢. We take constants > 0 and O< 5 < 1 such that

(nu)?
2

|1—cosu| < Cu, |sinu| < Clul, |COSu|§’l— Yuel-rrl[.

Hence, we have, using parity of the integrands,
|Pn+1(0, 2) — pp(ze;, 2)|

<2p" + 20y /]_”[d (;s‘; (coqu;) — 1))@ [ costzju;)du;

j=1

2 d
+ @0 f]_”[d(l — cosu;)® i]:[lcos(zjuj) du,

2 O" si i d
+W/]_”[d Sinu; Slnzlull;[COS(Z]u]) uj
JFI

d 1 d nod
<2p" +C'lzi] Soud (152 sioup?) [T duj,
]—r,r[d = 2].21 j=1
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with C" = Consideringx; = \/nu j, the last expression is equal to

(27r)d
d

1 1 d nodq
20" +C’ (d+2)/2|z,|/ (Z ) (1—§Zsj(noej)2/n> H daj.
jlsry/n j=1 j=1

Considering the inequalityl — 3u?/n)" < exp(—u?/2) for u < +/2n, we get that
the last expression is smaller than

20" 4+ C’ (d+2)/2|z,|/ (Za)exp(l——Zsj(naJ)>Hdoe,

j=1
1
='Zi|0<m)-

[Let us remark that thisO(W) can be uniformly estimated on the set
of transition probabilitiess satisfying the uniform ellipticity condition with
constani.]

Let us taked > % Fore € V, we consider the sum

> 1Pn41(0.2) — pale.2)|

zeZ4

= Y 1pn+1(0,2) — pule. DI+ Y |pns1(0,2) — pale, 2)|.

|z|>n? |z|<n?

The first term is bounded by 4 expLn?~1 using Hoeffding’s inequality (cf.,

e.g., [5]). For the second term we use the previous estimate

S 1pns1(0.2) — pale. ) < O ( (M)/Z) 3 |2l

|z|<n? |z|<n?

— 0(n9(d+1)—(d+2)/2)

— 0(n9—l+d(9—(1/2))).
Since we can take arty> 3, we can get any orded (n~1/2+¢) for e > 0. O
5. Development of J. .

In dimensiond = 1. When (do + yd1) - e1 > 0, the random walk with
stationary probabilityp? is transcient in the positive direction. This implies that

Y
PP, (To < o0) =
and, thus, that
G?" (—e1,0) — GP7(0,0) =
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Hence,
1=—p”(e1)(G" (e1,0) — GP" (0, 0)),

which gives formula (1).

Dimensiond > 2. We use the transformation described in step 2 of the proof
of Lemma 3 to get

GP (z,7) =97 (2 — )Gy (2, 7).
It gives
T =(@" (=) = 1)Gy (e, 0) + (G (e, 0) — G} (0,0)).
Using the Fourier transform and sinkeés” (=¢;) = +/p? (e;) p¥ (—e;), we get

Jj:/ = 1 py(zFei) 1
“@m)a\\ py(xe)
cosu;

d .
x /[o,zn]d 1-2%9_1V/p"(ej)p¥ (—e;j) coduy) [Tdu;
1 coqu;)—1
_ - du;.
+ (2m)d ./[o,zn]d 1-— 22;?:1 pY(e;)p” (—e;) codu;) H Y

When dg # 0, it is clear that the last formula gives (3), at first orderyin
[since 25°%_; v/polej)po(—e;) < 1, which implies that the denominator is
uniformly bounded away from 0]. Whed = 2 anddg = 0, d1 # 0, then
(¢ (—e) — 1)G3, (e, 0) is of ordery logy . Whendo = 0,d1 # 0,d > 3, G$, (e, 0)

is uniformly bounded, and the first term is of ord2¢y). In any case, the second
term is uniformly bounded and gives (4) at first ordeyin

6. Thethird order when dg# 0. Whendg # 0, we can improve Theorem 1.

THEOREM 3. If dg+# 0,then
v =do+ydi+y2doy +y3ds+ O(y?),
wheredz =),y p3(e)e, and

pa@)= Y E.(E@EE)E ()] Ter.

e e’ey

NOTE. J, is the first order of the expansion gf , compare (3).
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PROOF We just sketch the proof, since it is simple and very similar to the
proof of the second order in the cage# 0. We can improve Lemma 2 as follows
(we only consider the case< 1 andU = Z4):

@ oy ©) = po(e) + vpae) +v? 3 Eu(E@EC)) 7 )
e'ey
+93 Y Eu(B@ECEE) T 0+ 004,

e.e’eV
Wherle’y(y) is given in Lemma 2, and where
77.)
=E, (G5 0.y)(6G (v +¢.) -Gy (v, y)

x(6GE (v +e".y) = GY (3. ) [Eu(GY™ 0. 9)] 7
and where, as usualp (y%)| < Cy*, for a constant > 0, depending only oRrg,
d.In Lemma 3, we estimated the limit (ff,”’(y) whens goesto 1, byle’f, up to or-
der 2iny. We can easily getan estimatefff”e’,, atorder 1iny, simply by expand-

ing the termsG®”™" (y + ¢/, y) — G (v, y) andG*"" (y + ¢”, y) = G (v, y)
atthe pointG?o(y +¢’, y) — GPo(y, y) andGPo(y +¢”, y) — GPo(y, y), and using
the transformation of step 2 to bound the resil
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