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MEASURE CONCENTRATION FOR EUCLIDEAN DISTANCE
IN THE CASE OF DEPENDENT RANDOM VARIABLES1
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Let qn be a continuous density function inn-dimensional Euclidean
space. We think ofqn as the density function of some random sequenceXn

with values inR
n. ForI ⊂ [1, n], let XI denote the collection of coordinates

Xi , i ∈ I , and let�XI denote the collection of coordinatesXi , i /∈ I . We denote
by QI (xI |x̄I ) the joint conditional density function ofXI , given �XI .
We prove measure concentration forqn in the case when, for an appropriate
class of setsI , (i) the conditional densitiesQI (xI |x̄I ), as functions ofxI ,
uniformly satisfy a logarithmic Sobolevinequality and (ii)these conditional
densities also satisfy a contractivitycondition related to Dobrushin and
Shlosman’s strong mixing condition.

1. Introduction. Let us consider the absolutely continuous probability mea-
sures inn-dimensional Euclidean spaceR

n. With some abuse of notation, we use
the same letter to denote a probability measure and its density function.

We say that a measureqn on R
n has the measure concentration property (with

respect to the Euclidean distance) if

d(A,B) ≤ c ·
[√

log
1

qn(A)
+

√
log

1

qn(B)

]
for any setsA,B ⊂ R

n,(1.1)

whered(A,B) denotes the Euclidean distance of the setsA andB. (We consider
only measurable sets. This definition is equivalent to the more familiar definition
that involves the probabilities of a setA and itsε neighborhood.)

Measure concentration is an important property, since it implies sub-Gaussian
behavior of the Laplace transforms of Lipschitz functions and thereby is an
important tool for proving strong forms of the law of large numbers.

Measure concentration forqn follows from the validity of a logarithmic Sobolev
inequality forqn by a recent theorem of Otto and Villani (2000). However, in this
paper we prove measure concentration in some cases when a logarithmic Sobolev
inequality probably cannot be proved by an easy extension of the existing methods.

Consider the following the distance between probability measures inR
n:

W(pn, qn) = inf
π

[Eπ(Y n − Xn)2]1/2,
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whereYn andXn are random variables distributed according to the lawpn andqn,
respectively, and the infimum is taken over all distributionsπ onR

n ×R
n that have

pn andqn as marginals. This is one of the transportation cost related distances
between measures, often called the Wasserstein distance (based on the squared
Euclidean distance).

Let us denote byD(pn‖qn) the informational divergence of the probability
distributionpn with respect toqn as

D(pn‖qn) =
∫

Rn
log

dpn

dqn
dpn

if pn is absolutely continuous with respect toqn, and∞ otherwise. (Bydpn/dqn

we denote the Radon–Nikodym derivative.)
By a simple argument [first used by Marton (1986, 1996) for Hamming distance

and then by Talagrand (1996) for Euclidean distance] it can be shown that ifqn

satisfies, for someρ > 0, the “distance-divergence” inequality

W(pn, qn) ≤
√

2D(pn‖qn)

ρ
for any probability measurepn onR

n,(1.2)

then it satisfies the measure concentration inequality (1.1) as well (withc= √
2/ρ ).

Indeed, assume (1.2) and letA,B ⊂ R
n be measurable sets inRn. Denote bypn

andrn the restriction ofqn to A andB, respectively:

pn(C) = qn(C ∩ A)

qn(A)
, rn(C) = qn(C ∩ B)

qn(B)
.

Sincepn andrn are supported byA andB, respectively, we have, using also the
triangle inequality forW ,

d(A,B) ≤ W(pn, rn) ≤ W(pn, qn) + W(rn, qn)

≤
√

2D(pn‖qn)

ρ
+

√
2D(rn‖qn)

ρ
.

Since

D(pn‖qn) = log
1

qn(A)
and D(rn‖qn) = log

1

qn(B)
,

(1.1) follows.
Therefore, our aim is to find possibly general sufficient conditions for a

measureqn to satisfy a distance-divergence inequality (1.2).
The inequality (1.2) was first proved by Talagrand (1996) for the case when

qn is a Gaussian product measure, and his proof for dimension 1 easily generalizes
to the case whenq1 is uniformly log-concave. [Second derivative of− logq1(x)

bounded from below.] With more effort, using recent results on the solution of the
Monge–Kantorovich problem for the Wasserstein distance in the Euclidean space
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[McCann (1995)], this generalization can be carried out for the multidimensional
case as well. For an alternative proof, see Bobkov and Götze (1999). Otto and
Villani (2000) proved that the distance-divergence inequality (1.2) follows fromqn

satisfying a logarithmic Sobolev inequality, that is, from

D(pn‖qn) ≤ 1

2ρ

∫
Rn

∣∣∣∣∇ log
pn

qn

∣∣∣∣2dqn

holding for any density functionpn on R
n such thatpn/qn is smooth enough.

A simple sufficient condition forqn satisfying a logarithmic Sobolev inequality is
thatqn be a bounded perturbation of a uniformly log-concave function. (See later.)

Much effort has been spent to find sufficient conditions for the logarithmic
Sobolev inequality in terms of the conditional density functions

Qi(·|x̄i ) = distqn(Xi |�Xi = x̄i )

of qn. [Here�Xi denotes(Xk :k 
= i).] This problem is not yet satisfactorily solved.
In the cases considered,qn is a Gibbs state (with unbounded spins) over a region�

of thed-dimensional integer lattice andqn corresponds to a pair interaction with
bounded range. [See Yoshida (1999a, b), Helffer (1999), Bodineau and Helffer
(1999) and Ledoux (1999).]

In this paper we use a different approach: To prove distance-divergence
inequality forqn, we use the one-dimensional distance-divergence inequality for
the conditional distributionsQi(·|x̄i ).

NOTATION. The integersi, 1 ≤ i ≤ n, are called sites and[1, n] is the set
of sites. LetI be a family of setsI ⊂ [1, n], called patches. EachI ∈ I has a
multiplicity ≥ 1 and the number of patches counted with multiplicities is denoted
by N . A patch consisting of one elementi is denoted byi: for xn ∈ R

n and
J ⊂ [1, n], xJ = (xi : i ∈ J ) and x̄J = (xi : i /∈ J ); for an ∈ R

n andJ ⊂ [1, n],
|aJ |2 = ∑

i∈J a2
i .

Letqn denote the density of an absolutely continuous probability measure onR
n

and letXn denote a random sequence inR
n, distXn = qn. Conditional density

functions consistent withqn are expressed asQI(·|x̄I ) = dist(XI |�XI = x̄I )

(I ∈ I), whereasq̄I (x̄I ) (I ∈ I) denotes the density function of�XI . The density
of a probability distribution onRn is denoted bypn andYn denotes a random
sequence with distYn = pn. Conditional density functions consistent withpn are
expressedpI (·|x̄I ) = dist(YI |�YI = x̄I ) and the density function of�YI is denoted
p̄I (ȳI ) (I ∈ I).

LetWI (ρ) represent the set of all probability distributionsQI onR
I that satisfy,

for every distributionpI onR
I , the distance-divergence inequality

W(pI ,QI ) ≤
√

2D(pI‖QI )

ρ
.



MEASURE CONCENTRATION 2529

In the simplest case,I consists of the one-element sets of[1, n]. Alternatively,
let n be the cardinality of a (large) box� in the d-dimensional latticeZd , let
V ⊂ Z

d be a (relatively small) set and letI consist of the intersections of the
translates ofV with �. The multiplicity of such a setI can be taken as the number
of different translates ofV whose intersection with� is I . Every site is covered
then by|V | patches, where|V | is the cardinality ofV .

Theorem 1 presents a sufficient condition for a distance-divergence inequality
of type (1.2) in terms of the conditional distributionsQI(·|x̄I ) (I ∈ I). The reason
we want a condition in terms of the conditional distributionsQI (·|x̄I ) is that
in statistical physics the model is often defined in such a manner that it gives
direct information on these conditional distributions. For example,qn may be
the conditional distribution of a Gibbs random field over a domain in a multi-
dimensional lattice with fixed boundary condition.

The conditions of the theorem require that the individual conditional distribu-
tions QI (·|x̄I ) behave nicely, and we also need the following assumption on the
ensemble of the conditional distributionsQI (·|x̄I ) (I ∈ I).

DEFINITION 1 (Contractivity condition). LetI be such that every sitei
is covered by at leastt ≥ 1 patchesI . The system of conditional distribu-
tionsQI (·|x̄I ) (I ∈ I) is (1 − δ)-contractive (δ > 0) if for any pair of sequences
(yn, zn) ∈ R

n × R
n,∑

I∈I

W2(QI (·|ȳI ),QI (·|z̄I )
) ≤ t · (1− δ)|yn − zn|2.(1.3)

For clarity, we formulate the contractivity condition for the special case when
I is the family of one-element patches.

CONTRACTIVITY CONDITION FOR ONE-ELEMENT PATCHES. We say that
the system of conditional distributionsQi(·|x̄i ) is (1− δ)-contractive (δ > 0) if for
any pair of sequences(yn, zn) ∈ R

n × R
n,

n∑
i=1

W2(Qi(·|ȳi ),Qi(·|z̄i )
) ≤ (1− δ)|yn − zn|2.(1.3′)

The contractivity condition is related to Dobrushin and Shlosman’s strong
mixing condition. Indeed, it is obviously implied by the following condition:

DEFINITION 2 (Dobrushin–Shlosman-type contractivity condition). Let us
assume again that every sitei is covered by at leastt ≥ 1 patchesI . We say that
the system of conditional distributionsQI (·|x̄I ) (I ∈ I) satisfies a Dobrushin–
Shlosman-type contractivity condition if for everyI ∈ I and k /∈ I , and for
everyȳI , x̄I differing only at sitek,

W
(
QI (·|x̄I ),QI (·|ȳI )

) ≤ αk,I |yk − xk|,(1.4)
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and for the matrixA = (αk,I ) (αk,I = 0 for k ∈ I by definition)

‖A‖2 ≤ (1− δ) · t.(1.3′′)

Here ‖A‖ denotes the norm ofA considered as anL2 
→ L2 operator andδ is
a positive constant.

To see that Definition 2 is stronger than Definition 1, note that, by the triangle
inequality, (1.4) implies

W
(
QI (·|ȳI ),QI (·|z̄I )

) ≤ ∑
k /∈I

αk,I |zk − yk| for all I, yn, zn,

so, by the definition of‖A‖,∑
I∈I

W2(QI (·|ȳI ),QI (·|z̄I )
)

≤ ∑
I∈I

(∑
k

αk,I |zk − yk|
)2

≤ ‖A‖2|yn − zn|2 ≤ t · (1− δ)|yn − zn|2.

The stronger version of the contractivity condition given in Definition 2, when
considered for one-element patches, is an analog of Dobrushin’s (1970) uniqueness
condition. In the general case, it is an analog of Dobrushin and Shlosman’s
(1985a) uniqueness condition (CV). Note, however, that we use a variant of the
Wasserstein distance that minimizes the expected squared distance, whereas in
condition (CV) in Dobrushin and Shlosman’s (1985a) a form of the Wasserstein
distance is used that minimizes the expected distance without squaring. Moreover,
we require (1.4) to hold for all patchesI ∈ I, which means, for the second
example considered above, all the intersections of the translates of a given set
with another given set. This is reminiscent of condition (CC) in Yoshida (1999b),
who formulated a set of mixing conditions, one of which is (CC), that can be
considered the analogs of Dobrushin and Shlosman’s (1985b, 1987) strong mixing
conditions. It is not completely clear how the contractivity condition used in this
paper (Definition 1) is related to the set of mixing conditions in Yoshida (1999b).
However, we think that the conditions in Yoshida (1999b) should not be considered
final and standard yet, since their equivalence among each other and with the
logarithmic Sobolev inequality is only proved for ferromagnetic interactions and
in the case of superquadratic growth of the single spin phase. We think that the
contractivity condition is understandable in itself, and we do not need an analysis
of its analogy with the Dobrushin–Shlosman conditions, or the conditions in
Yoshida (1999b). We note, however, that we assume nothing that would correspond
to the boundedness of the “range of interaction.”

In this paper we use only Definition 1. Definition 2 is stated here only to explain
the relationship with previously existing concepts.
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THEOREM 1. Let I be such that every site i is covered by at least t ≥ 1
and by at most v patches. Assume that for all I ∈ I, QI (xI |x̄I ), as a function
of n variables, is continuous. Assume further that for every I ∈ I and every x̄I ,

QI (·|x̄I ) ∈ WI (ρ).(1.5)

Finally, assume that the system of conditional distributions QI(·|x̄I ) (I ∈ I) is
(1− δ)-contractive (δ > 0). Then for any distribution pn on R

n,

W(pn, qn) ≤ C ·
√

v

t
· 1

δ
· 2

ρ
· D(pn‖qn),(1.6)

where C is a numerical constant.

Formula (1.6) simplifies ifv = t , as in the above examples.
The conditions of Theorem 1 are quite abstract, so we are going to formulate a

special case where the conditions can be verified.
Write the density functionqn in the form

qn(xn) = 1

Z
· exp

(−�(xn)
)
,(1.7)

whereZ is a normalizing constant. Then the conditional density functions are of
the form

QI(xI |x̄I ) = 1

Z(x̄I )
· exp

(−�(xn)
)
,(1.8)

whereZ(x̄I ) is the normalizing factor.
When does the ensemble of the conditional densitiesQI (xI |x̄I ) satisfy the

conditions of Theorem 1?
It is natural to try to use the recent result by Otto and Villani that deduces

the distance-divergence inequality for some probability measureq on R
k , that is,

the relationship

W(p,q) ≤
√

2D(p‖q)

ρ
for all p,

from q satisfying a logarithmic Sobolev inequality.

DEFINITION 3. The density functionq on R
k satisfies a logarithmic Sobolev

inequality with constantρ if for any density functionp on R
k , such that

p(xk)/q(xk) is sufficiently smooth,

D(p‖q) ≤ 1

2ρ

∫
Rk

∣∣∣∣∇ log
dp

dq

∣∣∣∣2 dp.

The following sufficient condition follows from the Bakry–Emery (1985)
criterion, supplemented by a perturbation result from Holley and Stroock (1987):
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PROPOSITION 1. Let q(xk) be a density function of the form exp[−V (xk)]
and let V be strictly convex at ∞, that is, V (xk) = U(xk) + K(xk), where K(xk)

is bounded, and the Hessian

D(x) = (
∂ijU(x)

)
satisfies

D(x) ≥ c · I
for some c > 0 (where I is the identity matrix). Then q satisfies a logarithmic
Sobolev inequality with constant ρ, depending only on c and ‖K‖∞:

ρ ≥ c · exp(−4‖K‖∞).

Note that, on the real line, a necessary and sufficient condition for a density
function to satisfy a logarithmic Sobolev inequality was established by Bobkov and
Götze. From this result, Gentil (2001) derived the logarithmic Sobolev inequality
for a class of density functions, different from the above class. We do not cite
this theorem.

THEOREM OF OTTO AND VILLANI (2000) [see Bobkov, Gentil and Ledoux
(2001) also]. If the density function q(xk) (xk ∈ R

k) satisfies a logarithmic
Sobolev inequality with constant ρ, then q ∈ W[1,k](ρ).

[The theorem as stated here was proved by Bobkov, Gentil and Ledoux
(2001); its original version from Otto and Villani (2000) contained some minor
additional condition.]

To formulate a sufficient condition for the contractivity condition we introduce
some notation.

Let I be a family of patches as in Theorem 1. Consider distribution (1.7) and
assume that� is twicely continuously differentiable. For a fixed sequenceyn ∈ R

n

and a vectorη = (ηI , I ∈ I), whereηI ∈ R
|I |, we define a matrixB = B(η, yn).

The rows ofB are indexed by pairs(I, i), (i ∈ I ∈ I), while its columns are
indexed byk (1 ≤ k ≤ n),

B = B(η, yn) = (
β(I,i),k(η, yn)

)
,

where

β(I,i),k(η, yn) =
{

∂ik�(ηI , ȳI ), i ∈ I , k /∈ I ,

0, i, k ∈ I .

For the case of one-element patches, the definition ofB(η, yn) = B(ηn, yn)

becomes quite simple:

B = B(ηn, yn) = (
βi,k(η

n, yn)
)
,

βi,k(η
n, yn) =

{
∂ik�(ηi, ȳi), k 
= i,

0, k = i.
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Note that if� has the form

�(xn) =
n∑

i=1

V (xi) + ∑
i 
=k

bi,kxixk,

thenB does not depend onη andyn. For example, in the case of one-element
patches we have

B = (bi,k).

THEOREM 2. Let I be a family of patches as in Theorem 1 and assume that
� is twice continuously differentiable. Assume furthermore that the conditional
densities (1.8),as functions of xI , satisfy a logarithmic Sobolev inequality with the
same ρ (independently of I and x̄I ). If

sup
η,yn

∥∥∥∥ 1

ρ
· B(η, yn)

∥∥∥∥2

≤ t · (1− δ),(1.9)

then Theorem 1 holds.

In view of the Otto–Villani theorem, thequestion arises whether the conditions
of Theorem 2 might imply a logarithmic Sobolev inequality.

This is not to be expected with the existing proofs of logarithmic Sobolev
inequality for Gibbs fields. Indeed, consider a Gibbs field over a cube� ⊂ Z

d ,
with single spin spaceR and potential

�(xn) = ∑
i∈�

V (xi) + ∑
i,j∈�

bi,j xixj + ∑
i∈�

j∈Zd−�

bi,j xiωj ,(1.10)

where{ωj : j ∈ Z
d − �} is the configuration outside�. We assume thatV (x) is

convex at∞, that is,V (x) = U(x) + K(x), whereU ′′(x) ≥ c > 0 andK(x) is
bounded. Ifbi,j does not go to 0 exponentially fast with|i − j | → ∞, then the
proofs of Yoshida and Bodineau–Helffer break down, whereas it is still possible
that condition (1.9) of Theorem 2 holds. Ifbi,j = J > 0 for i and j nearest
neighbors, andbi,j = 0 otherwise, then Yoshida’s proof requires superquadratic
growth for the single spin phaseV (x) at ∞; and for the Bodineau–Helffer proof
to work, 2dJ must not approachρ, whereas for condition (1.9) of Theorem 2 to
hold, it is sufficient that 2dJ < ρ.

On the other hand, Ledoux’s (1999) proof of his Proposition 2.3 does apply
for nearest neighbor interactions with interaction coefficientJ > 0 satisfying
2dJ < c · exp(−4‖K‖∞) and proves the correlation bound (DS3) of Yoshida
(1999b). By the results of Yoshida (1999b), this is equivalent to the logarithmic
Sobolev inequality, providedV (x) grows superquadratically at∞.

However, even if the interaction coefficients and the single spin phase are
such that a logarithmic Sobolev inequality holds, that does not yield a simple
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explicit bound for the logarithmic Sobolev constant nor for the coefficient in
the distance-divergence inequality. On the other hand, Theorem 2 implies the
following corollary for potential (1.10):

COROLLARY 1. If for the potential (1.10), the density function const.
exp(−V (x)) satisfies a logarithmic Sobolev inequality with constant ρ and for
the (infinite) matrix B = (bi,j ),

‖B‖ < ρ,

then

W2(pn, qn) ≤ C2 · 1

1− ‖B/ρ‖2 · 2D(pn‖qn)

ρ
.

REMARK 1. It is not known whether the distance-divergence inequality (1.2)
implies a logarithmic Sobolev inequality (possibly with a different constant
[Villani (2003)] this would be a converse to theOtto–Villani theorem). Thus
it would be very interesting to prove or disprove that a logarithmic Sobolev
inequality holds under the conditions of Theorem 2, with a constant depending
onρ andδ.

The proof of Theorem 1 is based on a Markov chain (sometimes called the Gibbs
sampler), which realizes a discrete time interpolation betweenpn and the Markov
chain’s invariant measureqn. The contractivity condition allows us to prove that
this Markov chain converges toqn exponentially with respect to the Wasserstein
distance. (See the end of Section 2.) Before coming to this step, we prove a bound
for W2(pn,pn�M) (wherepn�M is the distribution of theM th term of the Markov
chain) in terms ofD(pn‖qn).

2. Some Markov kernels and probability distributions on R
n. The fol-

lowing Markov kernels, which are associated with the conditional density func-
tionsQI (·|x̄I ) (I ∈ I), are instrumental in our forthcoming constructions.

ForI ∈ I define the Markov kernel (i.e., the conditional distribution)�I (dzn|yn)

as follows. The projection of�I (·|yn) on the coordinates outsideI is defined as

�I ({ȳI }|yn) = 1.

The projection of�I (·|yn) on the coordinates inI is given by the conditional
densityQI(·|ȳI ):

�I (dzI |yn) = QI (zI |ȳI ) dzI .

We define the Markov kernel�(dzn|yn) as a mixture of the Markov ker-
nels�I (·|yn):

�(dzn|yn) = 1

N

∑
I∈I

�I (dzn|yn).
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Finally, for an integerM ≥ 0, we denote by�M(dzn|yn) theM th operator power
of �(dzn|yn):

�M(dzn|yn)

=
∫ ∫

· · ·
∫

�
(
dzn|zn(M − 1)

)
�

(
dzn(M − 1)|zn(M − 2)

) · · ·�(
dzn(1)|yn

)
.

Equivalently,

�M(dzn|yn)

= 1

NM

∑
I1,I2,...,IM∈I

∫ ∫
· · ·

∫
�IM

(
dzn|zn(M − 1)

)
× �IM−1

(
dzn(M − 1)|zn(M − 2)

) · · ·
× �I1

(
dzn(1)|yn

)
.

Now, at the risk of redundancy, we give a somewhat lengthy description of the
Markov kernel�M(dzn|yn), along with some associated density functions, since
it is this description that we use in the sequel. We keepM fixed.

Let us fix a sequence of patches

(I1, I2, . . . , IM).(2.1)

Also, fix a density functionpn = distYn. We define successively the den-
sity functions

rn(0) = pn, rn(l) = rn(l − 1)�Il
, l = 1,2, . . . ,M.(2.2)

We think of the density functionsrn(l) as being conditional density functions of
random sequencesZn(l), l = 1,2, . . . ,M , given that in a random independent
M-wise selection from the setI, we have drawnI1, I2, . . . , IM :

rn(l) = dist
(
Zn(l)|I1, I2, . . . , IM

)
.

It follows from (2.2) thatrn(l) does not depend onIl+1, . . . , IM , that is,

rn(l) = dist
(
Zn(l)|I1, I2, . . . , Il

)
for everyl.

We also define a joint conditional distribution for(Zn(0) = Yn,Zn(1),

. . . ,Zn(M)), given by (2.1). First we define, for everyl,

dist
(
Zn(l − 1),Zn(l)|I1, I2, . . . , IM

) = dist
(
Zn(l − 1),Zn(l)|I1, I2, . . . , Il

)
in such a way that

dist
(�ZIl

(l)|Zn(l − 1) = zn(l − 1), I1, I2, . . . , Il

)
is concentrated on{z̄Il

(l − 1)} and, moreover, that

dist
(
ZIl

(l − 1),ZIl
(l)|�ZIl

(l − 1) = z̄Il
(l − 1), I1, I2, . . . , Il

)
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minimizes, for each value ofz̄Il
(l −1), the expected conditional quadratic distance

E
{∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2∣∣z̄Il
(l − 1), I1, I2, . . . , Il

}
.

At this point we use the condition (1.5) in Theorem 1 to infer that this
minimization yields

E
{∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2∣∣z̄Il
(l − 1), I1, I2, . . . , Il

}
(2.3)

≤ 2

ρ
· D(

rIl
(l − 1)

(·|z̄Il
(l − 1)

)‖QIl

(·|z̄Il
(l − 1)

))
for all z̄Il

(l − 1).
Finally, we define

dist
(
Zn(0),Zn(1), . . . ,Zn(M)|I1, I2, . . . , IM

)
so that, for(I1, I2, . . . , IM) fixed,(Zn(0),Zn(1), . . . ,Zn(M)) is a Markov chain.

Note that althoughrn(l) = dist(Zn(l)|I1, I2, . . . , Il) = rn(l − 1)�Il
,

dist
(
Zn(l)|Zn(l − 1), I1, . . . , Il

) 
= �Il
.

Taking average with respect toI1, I2, . . . , IM , we get the (unconditional)
joint distribution

dist
(
Zn(0),Zn(1), . . . ,Zn(M)

)
.

It is easy to see that

distZn(l) = pn�l for l = 0,1, . . . ,M.

We use the notationYn for Zn(0) and useZn for Zn(M).
It is important in the sequel that the Markov kernels�I , � and�M all haveqn

as invariant measure.
Note that we could (and do, in fact) consider the infinite Markov chain with

marginal distributionspn�l , 0 ≤ l < ∞, as well. This infinite Markov chain is
a variant of the so-called Gibbs sampler, which is well known in Markov chain
simulation.

In Section 4 we prove that� is a contraction with respect to the Wasserstein
distance, which implies thatpn�m → qn asm → ∞, exponentially fast:

PROPOSITION2. Assume that the conditional distribution functions QI (·|x̄I ),
I ∈ I, satisfy the contractivity condition (Definition 1) and that every site is
covered by at least t patches. Let pn = distYn and rn = distUn be two density
functions on R

n. Then

W2(pn�, rn�) ≤
(

1− tδ

N

)
· W2(pn, rn).

COROLLARY 2. Under the conditions of Proposition 3,

W2(pn�m,qn) ≤
(

1− tδ

N

)m

· W2(pn, qn)

for any integer m ≥ 0.
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3. An auxiliary theorem. A basic tool in the proof of Theorem 1 is the
following theorem, which gives a bound forW(pn,pn�M) in terms of the
informational divergenceD(pn‖qn). We hope that it turns out to be interesting in
its own right. For this auxiliary theorem we do not use the contractivity condition.

AUXILIARY THEOREM . Assume that for every I ∈ I and every x̄I , the
conditional density function QI(·|x̄I ) satisfies condition (1.5),and that each site
is covered by at most v patches. Then for any density function pn on R

n and for
the Markov kernel �,

W2(pn,pn�M) ≤ M

N
· v · 2

ρ
· D(pn‖qn) for any M.

REMARK 2. For the joint distribution dist(Y n,Zn), with marginals pn

andpn�M , yieldingW(pn,pn�M),

dist(Zn|Yn) 
= �M,

in general.

By the construction of the Markov chain(Y n = Zn(0),Zn(1), . . . ,

Zn(M) = Zn) we have

distZn = pn�M

and we use the joint distribution of the Markov chain to estimateW2(pn,pn�M).
Clearly,

W2(pn,pn�M) ≤ E|Yn − Zn|2.
First we prove the following lemma.

LEMMA 1. We have

E|Yn − Zn|2 ≤ M

N
· v ·

M∑
l=1

E
∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2.
(Note that in this formula the subscriptsIl are random and the expected value takes
an average with respect to them, too.)

PROOF OFLEMMA 1. For a realization of the sequence of patches, say

(I1, I2, . . . , IM),(3.1)

we denote byσ the listing of the sites in the patches (3.1),

σ = (i1, i2, . . . , im, . . . , iL), L =
M∑
l=1

|Il|,
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where|Il| denotes the cardinality ofIl andim = i ∈ [1, n] if

m =
l−1∑
j=1

|Ij | + r, 0 < r ≤ |Il|,

and ther th site in the patchIl is just i. Let νi denote the frequency ofi in σ and
let µi,m denote the frequency ofi in (i1, i2, . . . , im).

Write

ζ 2
ij = |Zi(l) − Zi(l − 1)|2, 1 ≤ i ≤ n,1 ≤ j ≤ νi,

if Il is thej th patch in (3.1) that contains the sitei.
It follows from the triangle and the Cauchy–Schwarz inequalities that

E|Yn − Zn|2 ≤
n∑

i=1

∑
k

Pr{νi = k} · k ·
k∑

j=1

E{ζ 2
ij |νi = k}.(3.2)

For j ≤ k we have

E{ζ 2
ij |νi = k} = E{ζ 2

ij |νi ≥ j, νi = k},
but ζ 2

ij is conditionally independent ofνi under the condition {νi ≥ j}. It follows
that forj ≤ k,

E{ζ 2
ij |νi = k} = E{ζ 2

ij |νi ≥ j}.
Thus (3.2) can be continued to

E|Yn − Zn|2 ≤
n∑

i=1

∑
j≥1

E{ζ 2
ij |νi ≥ j} · ∑

k≥j

Pr{νi = k} · k.

Furthermore, for anyi, j ,∑
k≥j

Pr{νi = k} · k ≤ Eνi ≤ M

N
· v,

whence

E|Yn − Zn|2 ≤ M

N
· v ·

n∑
i=1

∑
j≥1

E{ζ 2
ij |νi ≥ j}.(3.3)

Put

η2
m = ζ 2

ij , m = 1,2, . . . ,L,

where(i, j) andm are related as

i = im, j = µi,m.(3.4)
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Clearly, whichever choice of(I1, I2, . . . , IM) is given, for any(i, j) with j ≤ νi ,
there is exactly onem, 1 ≤ m ≤ L, that satisfies (3.4) and vice versa. Note that
herem is a random variable (it depends onI1, . . . , IM ).

Sinceνi ≥ µi,m, we have

E{ζ 2
ij |νi ≥ j} = E{η2

m|νi ≥ µi,m} = Eη2
m.(3.5)

We have ∑
m

η2
m = ∑

i,j

ζ 2
ij = ∑

i

∑
i∈Il

|Zi(l) − Zi(l − 1)|2

=
M∑
l=1

∣∣ZIl
(l) − ZIl

(l − 1)
∣∣2.

This, together with (3.3) and (3.5), completes the proof of Lemma 1.�

PROOF OF THE AUXILIARY THEOREM. By Lemma 1, all we have to prove
is that

E

M∑
l=1

∣∣ZIl
(l) − ZIl

(l − 1)
∣∣2 ≤ 2

ρ
· D(pn‖qn).

In fact, we prove that, for any realization

I1, I2, . . . , IM(3.6)

of the sequence of patches, we have

E

{
M∑
l=1

∣∣ZIl
(l) − ZIl

(l − 1)
∣∣2∣∣∣I1, I2, . . . , IM

}
≤ 2

ρ
· D(pn‖qn).(3.7)

The left-hand side of (3.7) can be written as

M∑
l=1

E
{∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2∣∣I1, I2, . . . , Il

}
.

Fix the sequence (3.6) and recall from Section 2 the definition

rn(l) = dist
(
Zn(l)|I1, I2, . . . , Il

)
,

according to whichrn(l) is obtained fromrn(l − 1) by putting

dist
(
ZIl

(l)|z̄Il

) = QIl

(·|z̄Il

)
(3.8)

and leaving unchanged the distribution of the coordinates outsideIl :

(r̄(l))Il
= (

r̄(l − 1)
)
Il
.(3.9)
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It follows from (2.3), (3.8) and (3.9) that the joint conditional distribution

dist
(
Zn(l − 1),Zn(l)|I1, . . . , Il

)
can be defined in such a way that

E
{∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2∣∣I1, . . . , Il

} ≤ 2

ρ
· D(

rn(l − 1)‖rn(l)
)
.(3.10)

[The distributionsrn(l − 1) andrn(l) depend onI1, . . . , Il .] Indeed, the left-hand
side of (3.10) can be written as∫

E
{∣∣ZIl

(l) − ZIl
(l − 1)

∣∣2∣∣z̄Il
(l − 1), I1, I2, . . . , Il

}(
r̄(l − 1)

)
Il

(
z̄Il

)
dz̄Il

≤ 2

ρ
·
∫

D
(
rIl

(l − 1)
(·|z̄Il

(l − 1)
)‖QIl

(·|z̄Il
(l − 1)

))
(r̄(l − 1))Il

(
z̄Il

)
dz̄Il

= 2

ρ
· D(

rn(l − 1)‖rn(l)
)
.

The last equality here follows from (3.9).
Therefore, it is enough to prove that for any choice ofI1, . . . , IM ,

D(pn‖qn) ≥
M∑
l=1

D
(
rn(l − 1)‖rn(l)

)
.(3.11)

This follows from the identities

D(pn‖qn) = D
(
pn‖rn(1)

) + D
(
rn(1)‖rn(2)

) + · · ·
(3.12)

+ D
(
rn(l − 1)‖rn(l)

) + D
(
rn(l)‖qn

)
,

valid for anyl ≥ 1. It is clear that (3.12) forl = M implies (3.11).
We prove (3.12) by induction onl. Thus first we claim that

D(pn‖qn) = D
(
pn‖rn(1)

) + D
(
rn(1)‖qn)

,(3.13)

which is just (3.12) forl = 1. Indeed, by the well-known decomposition formula
for divergence,

D(pn‖qn) = D
(
p̄I1‖q̄I1

) +
∫

log
pI1(yI1|ȳI1)

QI1(yI1|ȳI1)
pn(yn) dyn

= D
(
rn(1)‖qn) + D

(
pn‖rn(1)

)
.

Now apply (3.13) torn(1) in the role ofpn. This, together with (3.13), yields

D(pn‖qn) = D
(
pn‖rn(1)

) + D
(
rn(1)‖rn(2)

) + D
(
rn(2)‖qn

)
.

Iterating this step, (3.12) follows for anyl. �
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4. Proof of Proposition 2. Consider the joint distribution dist(Y n,Un),
achievingW2(pn, rn). LetYn(1) andUn(1) denote random variables with density
functionspn� andrn�, respectively.

For a givenI ∈ I, we define a joint conditional density function

dist
(
Yn,Un,Y n(1),Un(1)|I )

as follows. Put�YI (1) = �YI , �UI (1) = �UI ,

dist
(
YI (1)|Yn = yn, I

) = QI (·|ȳI ),(4.1)

dist
(
UI (1)|Un = un, I

) = QI (·|ūI ),(4.2)

and take for

dist
(
YI (1),UI (1)|Yn = yn,Un = un, I

)
a joining of (4.1) and (4.2) to achieve

E{|YI (1) − UI (1)|2|Yn = yn,Un = un, I } = W2(QI (·|ȳI ),QI (·|ūI )
)
.

We have by (1.3)

E|Yn(1) − Un(1)|2

≤ 1

N

∑
I∈I

E

[∑
k /∈I

|Yk − Uk|2 + W2(QI(·|�YI ),QI (·|�UI )
)]

≤ 1

N

∑
I∈I

∑
k /∈I

E|Yk − Uk|2 + 1

N
(1− δ)tE|Yn − Un|2

≤
(

1− t

N

) n∑
k=1

E|Yk − Uk|2 + 1

N
(1− δ)tE|Yn − Un|2

=
(

1− tδ

N

)
E|Yn − Un|2.

Proposition 2 is proved.

5. Proof of Theorem 1. Let M be fixed, and apply Proposition 2M times to
the distributions

pn = distYn and rn = pn�M = distZn.

(We use the notation of Section 2.) We get that

W2(pn�M, rn�M) = W2(pn�M,pn�2M)

≤
(

1− tδ

N

)M

· W2(pn, rn) ≤ exp
(
−tδ

M

N

)
· W2(pn, rn),
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that is,

W(pn�M, rn�M) = W(pn�M,pn�2M) ≤ exp
(
−tδ

M

2N

)
· W(pn, rn).

Iterating this step, we get that for anyj ≥ 1,

W
(
pn�(j−1)M,pn�jM

) ≤ exp
(
−(j − 1)tδ

M

2N

)
· W(pn, rn).

Let us define the random sequencesYn(j), j = 0,1, . . . , so that

distYn(j) = pn�jM

and, forj ≥ 1,

[E|Yn(j) − Yn(j − 1)|2]1/2 ≤ exp
(
−(j − 1)tδ

M

2N

)
· W(pn, rn).(5.1)

We see that{Yn(j)} is a Cauchy sequence inL2 and thus it converges
in L2 to some random sequencẽXn. However, we must have dist̃Xn = qn.
Indeed,qn is invariant with respect to� and therefore Proposition 3 implies that
W(pn�jM,qn) → 0 asj → ∞. Thus we can assume that the sequence{Yn(j)}
converges toXn in L2.

By the estimates (5.1),

[E|Yn − Xn|2]1/2 ≤ [E|Yn − Zn|2]1/2 · 1

1− exp(−tδ(M/(2N)))
.

By the Auxiliary Theorem, this implies

[E|Yn − Xn|2]1/2 ≤
√

M

N
· v · 2

ρ
· D(pn‖qn) · 1

1− exp(−tδ(M/(2N)))

= √
2 ·

√
tδ(M/(2N))

1− exp(−tδ(M/(2N)))
·
√

1

δ
· v

t
· 2

ρ
· D(pn‖qn).

Now to complete the proof, it is enough to see that the factor√
tδ(M/(2N))

1− exp(−tδ(M/(2N)))

can be bounded by a numerical constant through an appropriate selection ofM .
Notice that the function

f (x) =
√

x

1− e−x
, x > 0,

is bounded in any bounded interval that is bounded away from 0. IfM varies on
the integers, then the quantityx = tδM/(2N) changes by steps smaller than 1/2.
Thus there is a value ofM for whichx = tδM/(2N) is between 1 and 3/2, and so

min
M

f
(
tδM/(2N)

) ≤ max
1≤x≤3/2

f (x).

This completes the proof of Theorem 1.
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6. Proof of Theorem 2. The Otto–Villani theorem implies condition (1.5) of
Theorem 1. To prove the contractivity condition, fix two sequencesxn, yn ∈ R

n.
By (1.5) and the logarithmic Sobolev inequality, we have

W2(QI (·|x̄I ),QI (·|ȳI )
) ≤ 1

2ρ
· D(

QI (·|x̄I )‖QI (·|ȳI )
)

≤ 1

ρ2
·
∫

RI

∑
i∈I

[∂i�(ηI x̄I ) − ∂i�(ηI ȳI )]2Q(ηI |x̄I ) dηI .

It follows that∑
I∈I

W2(QI(·|x̄I ),QI (·|ȳI )
)

≤ 1

ρ2
· ∑
I∈I

∫
RI

∑
i∈I

[∂i�(ηI x̄I ) − ∂i�(ηI ȳI )]2Q(ηI |x̄I ) dηI(6.1)

= 1

ρ2
·
∫ ∑

I∈I

∑
i∈I

[∂i�(ηI x̄I ) − ∂i�(ηI ȳI )]2
∏
I∈I

QI(ηI |x̄I )
∏
I∈I

dηI .

(The integral in the last line is taken over
∏

I∈I R
I .)

Now consider, for a fixed vectorη = (ηI , I ∈ I), the function

g = gη :Rn 
→ ∏
I∈I

R
I ,

defined by

gI,i(y
n) = 1

ρ
· ∂i�(ηI ȳI ), i ∈ I ∈ I.

Observe that the expression

1

ρ2

∑
I∈I

∑
i∈I

[∂i�(ηI x̄I ) − ∂i�(ηI ȳI )]2,

integrated (with respect to some density function) in the last line of (6.1), is nothing
else than the squared Euclidean norm of the increment ofgη between the points
xn andyn. By assumption (1.9) of Theorem 2, the norm of the Jacobian ofgη is
bounded by(t · (1− δ))1/2, so (6.1) implies the contractivity condition (1.3).
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