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MEASURE CONCENTRATION FOR EUCLIDEAN DISTANCE
IN THE CASE OF DEPENDENT RANDOM VARIABLES!
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Let ¢" be a continuous density function irdimensional Euclidean
space. We think of" as the density function of some random sequexite
with values inR”. For I C [1, n], let X; denote the collection of coordinates
X;,i € I,and letX; denote the collection of coordinat&s, i ¢ I. We denote
by Q;(x;|%;) the joint conditional density function ok;, given X;.
We prove measure concentration gt in the case when, for an appropriate
class of setd, (i) the conditional densitie®; (x;|x;), as functions ofx;,
uniformly satisfy a logarithmic Sobola@wnequality and (iithese conditional
densities also satisfy a contractiviyondition related to Dobrushin and
Shlosman’s strong mixing condition.

1. Introduction. Let us consider the absolutely continuous probability mea-
sures im-dimensional Euclidean spaf . With some abuse of notation, we use
the same letter to denote a probability measure and its density function.

We say that a measugé onR” has the measure concentration property (with
respect to the Euclidean distance) if

1 1
1.1) d(A,B)<c- \/Io +\/Io } for any setsA, B C R”,
- [ Yo V) ’

whered (A, B) denotes the Euclidean distance of the se@nd B. (We consider
only measurable sets. This definition is equivalent to the more familiar definition
that involves the probabilities of a satand itse neighborhood.)

Measure concentration is an important property, since it implies sub-Gaussian
behavior of the Laplace transforms of Lipschitz functions and thereby is an
important tool for proving strong forms of the law of large numbers.

Measure concentration fgf follows from the validity of a logarithmic Sobolev
inequality forg" by a recent theorem of Otto and Villani (2000). However, in this
paper we prove measure concentration in some cases when a logarithmic Sobolev
inequality probably cannot be proved by an easy extension of the existing methods.

Consider the following the distance between probability measuri@g:in

W(p",q") =inflE- (Y" — X")?]/2,
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whereY” andX" are random variables distributed according to the gévandg”,
respectively, and the infimum is taken over all distributiansn R” x R” that have
p" andg¢”" as marginals. This is one of the transportation cost related distances
between measures, often called the Wasserstein distance (based on the squared
Euclidean distance).

Let us denote byD(p"|¢") the informational divergence of the probability
distribution p™ with respect tgy" as

D" llg") = / log
Rn

if p" is absolutely continuous with respectgb, andoco otherwise. (Bydp" /dq"
we denote the Radon—Nikodym derivative.)

By a simple argument [first used by Marton (1986, 1996) for Hamming distance
and then by Talagrand (1996) for Euclidean distance] it can be shown tét if
satisfies, for some > 0, the “distance-divergence” inequality

2D n n
1.2) wp" q" < /M for any probability measurg” onRR",
)

then it satisfies the measure concentration inequality (1.1) as well{wit{i2/p ).
Indeed, assume (1.2) and l&t B C R” be measurable sets ®*. Denote byp”
andr” the restriction ofy” to A andB, respectively:

_q”(CﬂA) _q”(CﬂB)
q"(A)  q"(B)

Sincep™ andr”" are supported by and B, respectively, we have, using also the
triangle inequality forw,

d(A,B) <W (", ry<wW(",q") +W@", q")

- \/ZD(p"nq") N \/2D<r"||q">'
N P P

d n
p dp"
dq"

p"(C) , r(C)

Since

n n n n 1
D(p"lig") =log A and D("|q") =log 7B’
(1.1) follows.

Therefore, our aim is to find possibly general sufficient conditions for a
measurey” to satisfy a distance-divergence inequality (1.2).

The inequality (1.2) was first proved by Talagrand (1996) for the case when
g" is a Gaussian product measure, and his proof for dimension 1 easily generalizes
to the case when! is uniformly log-concave. [Second derivative eflogg?(x)
bounded from below.] With more effort, using recent results on the solution of the
Monge—Kantorovich problem for the Wasserstein distance in the Euclidean space
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[McCann (1995)], this generalization can be carried out for the multidimensional
case as well. For an alternative proof, see Bobkov and Gétze (1999). Otto and
Villani (2000) proved that the distance-divergence inequality (1.2) follows rbm
satisfying a logarithmic Sobolev inequality, that is, from

2

n

P

qn

holding for any density functiop” on R” such thatp”/¢" is smooth enough.

A simple sufficient condition fog” satisfying a logarithmic Sobolev inequality is

thatg” be a bounded perturbation of a uniformly log-concave function. (See later.)
Much effort has been spent to find sufficient conditions for the logarithmic

Sobolev inequality in terms of the conditional density functions

Q; (%) = distyn (X;1X; = %;)

Vlog

1
D(p"lg") < — / dq"
20 Jrn

of ¢". [Here X; denoteg X : k # i).] This problem is not yet satisfactorily solved.
In the cases consideref is a Gibbs state (with unbounded spins) over a region
of the d-dimensional integer lattice ang! corresponds to a pair interaction with
bounded range. [See Yoshida (1999a, b), Helffer (1999), Bodineau and Helffer
(1999) and Ledoux (1999).]

In this paper we use a different approach: To prove distance-divergence
inequality forg”, we use the one-dimensional distance-divergence inequality for
the conditional distribution®); (-|x;).

NOTATION. The integers, 1 <i < n, are called sites anfl, n] is the set
of sites. Letd be a family of setd C [1,n], called patches. Eache { has a
multiplicity > 1 and the number of patches counted with multiplicities is denoted
by N. A patch consisting of one elementis denoted byi: for x” € R” and
JcC[Lnl,xy=(:ieldJ)andx; = (x;:i ¢ J); fora” e R" andJ C [1,n],
las?=3%c;a?.

Letg" denote the density of an absolutely continuous probability measukgé on
and let X" denote a random sequencelf, distX” = ¢". Conditional density
functions consistent withy” are expressed ag);(-|x;) = dist(X;|X; = x;)
(I € 1), whereasj;(x;) (I € 1) denotes the density function &f;. The density
of a probability distribution oriR” is denoted byp"” and Y" denotes a random
sequence with digt" = p". Conditional density functions consistent wigh are
expresseg; (-|x;) = dist(Y;|Y; = x;) and the density function of; is denoted
pi(yr) (I €4).

Let W; (p) represent the set of all probability distributio@s onR! that satisfy,
for every distributionp; onR/, the distance-divergence inequality

2D
W(p1, Q1) < ,/%.
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In the simplest casd, consists of the one-element setq bfn]. Alternatively,
let n be the cardinality of a (large) box in the d-dimensional latticeZ?, let
vV c Z4 be a (relatively small) set and ldt consist of the intersections of the
translates o¥ with A. The multiplicity of such a set can be taken as the number
of different translates oV whose intersection witlA is I. Every site is covered
then by|V| patches, wherg/| is the cardinality ofV.

Theorem 1 presents a sufficient condition for a distance-divergence inequality
of type (1.2) in terms of the conditional distributio@s (-|x;) (I € 4). The reason
we want a condition in terms of the conditional distributio@s (-|x;) is that
in statistical physics the model is often defined in such a manner that it gives
direct information on these conditional distributions. For examgfemay be
the conditional distribution of a ®bs random field over a domain in a multi-
dimensional lattice wit fixed boundary condition.

The conditions of the theorem require that the individual conditional distribu-
tions O, (-|x;) behave nicely, and we also need the following assumption on the
ensemble of the conditional distributiody (-|x;) (1 € 4).

DEerINITION 1 (Contractivity condition). Letf{ be such that every sité
is covered by at least > 1 patches/. The system of conditional distribu-
tions Q;(-|x;) (I € £) is (1 — §)-contractive § > 0) if for any pair of sequences
(yn’ Zn) = Rn X Rn,

(1.3) Y WAQrClyn, QiClzn) <t- A=8)y" — "2

Ied

For clarity, we formulate the contractivity condition for the special case when
£ is the family of one-element patches.

CONTRACTIVITY CONDITION FOR ONEELEMENT PATCHES We say that
the system of conditional distribution®; (-|x;) is (1 — §)-contractive § > 0) if for
any pair of sequences”, z") e R” x R",

(1.3) Y Wi (13, QiC1z)) < 1= 8)|y" — 2"~

i=1

The contractivity condition is related to Dobrushin and Shlosman’s strong
mixing condition. Indeed, it is obviously implied by the following condition:

DEFINITION 2 (Dobrushin—Shlosman-type contractivity condition). Let us
assume again that every sités covered by at least> 1 patched . We say that
the system of conditional distribution@;(-|x;) (I € {) satisfies a Dobrushin—
Shlosman-type contractivity condition if for evelye 4 and k ¢ I, and for
everyyy, x; differing only at sitek,

(1.4) W(QiC1xn), QrCIyD) < ok rlyk — xkl,
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and for the matrixA = (o, 7) (ak,; =0 for k € I by definition)
(1.3) IAIZ < (1 —8)-1.

Here ||A]| denotes the norm ol considered as afi» — Lo operator and is
a positive constant.

To see that Definition 2 is stronger than Definition 1, note that, by the triangle
inequality, (1.4) implies

W(QrCI3n), Qr¢1Zn) =D o slze — | forall 1,y", 2",
kel

so, by the definition off A||,
> WA(Q: ¢y, QiC1ZD)

Ied

2
sZ(Zak,AZk—m) <A = "P<t- A=)y ="
Ied \ k

The stronger version of the contractivity condition given in Definition 2, when
considered for one-element patches, is an analog of Dobrushin’s (1970) uniqgueness
condition. In the general case, it is an analog of Dobrushin and Shlosman’s
(1985a) unigueness condition (CV). Note, however, that we use a variant of the
Wasserstein distance that minimizes the expected squared distance, whereas in
condition (CV) in Dobrushin and Shlosman’s (1985a) a form of the Wasserstein
distance is used that minimizes the expected distance without squaring. Moreover,
we require (1.4) to hold for all patchese 4, which means, for the second
example considered above, all the intersections of the translates of a given set
with another given set. This is reminiscent of condition (CC) in Yoshida (1999b),
who formulated a set of mixing conditions, one of which is (CC), that can be
considered the analogs of Dobrushin and Shlosman’s (1985b, 1987) strong mixing
conditions. It is not completely clear how the contractivity condition used in this
paper (Definition 1) is related to the set of mixing conditions in Yoshida (1999b).
However, we think that the conditions in Yoshida (1999b) should not be considered
final and standard yet, since their equivalence among each other and with the
logarithmic Sobolev inequality is only proved for ferromagnetic interactions and
in the case of superquadratic growth of the single spin phase. We think that the
contractivity condition is understandable in itself, and we do not need an analysis
of its analogy with the Dobrushin—Shlosman conditions, or the conditions in
Yoshida (1999b). We note, however, that we assume nothing that would correspond
to the boundedness of the “range of interaction.”

In this paper we use only Definition 1. Definition 2 is stated here only to explain
the relationship with previously existing concepts.
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THEOREM 1. Let 4 be such that every site i is covered by at least r > 1
and by at most v patches. Assume that for all 7 € £, Q;(x;]x;), as a function
of n variables, is continuous. Assume further that for every I € 4 and every x;,

(1.5) Qr(lx1) € Wi (p).

Finally, assume that the system of conditional distributions Q;(-|x;) (I € {) is
(1 — 8)-contractive (6 > 0). Then for any distribution p” on R",

v

1 2
(1.6) wW".q") SC-\/7 5 ;-D(pnllq”),

where C isa numerical constant.

Formula (1.6) simplifies ib =z, as in the above examples.

The conditions of Theorem 1 are quite abstract, so we are going to formulate a
special case where the conditions can be verified.

Write the density functiog” in the form

1
1.7) q"(x") = Z -exp(—@(x")),

whereZ is a normalizing constant. Then the conditional density functions are of
the form

1
(1.8) Q(xrlxp) 760
whereZ (x;) is the normalizing factor.
When does the ensemble of the conditional densifiesx;|x;) satisfy the
conditions of Theorem 1?
It is natural to try to use the recent result by Otto and Villani that deduces
the distance-divergence inequality for some probability meaguneR¥, that is,

the relationship
2D
Wp,q) < ,/7(5 1D tor il p,

from ¢ satisfying a logarithmic Sobolev inequality.

-exp(—@(x")),

DEFINITION 3. The density functiog on R satisfies a logarithmic Sobolev
inequality with constanto if for any density functionp on R*, such that
p(x%)/q(x*) is sufficiently smooth,

1 dp 2
D <— Vlog—| dp.
(vl =5 [ | V10 5E | ap

The following sufficient condition follows from the Bakry—Emery (1985)
criterion, supplemented by a perturbation result from Holley and Stroock (1987):
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PROPOSITION1. Let ¢(x*) be a density function of the form exg—V (x%)]
and let V be strictly convex at oo, that is, V (x¥) = U (x*) + K (x*), where K (x*)
is bounded, and the Hessian

D(x) = (3;;U (x))
satisfies
Dx)>c-1

for some ¢ > 0 (where I is the identity matrix). Then ¢ satisfies a logarithmic
Sobolev inequality with constant p, depending only on ¢ and || K || oo

p=c-exp(—4K|loo)-

Note that, on the real line, a necessary and sufficient condition for a density
function to satisfy a logarithmic Sobolev inequality was established by Bobkov and
Gotze. From this result, Gentil (2001) derived the logarithmic Sobolev inequality
for a class of density functions, different from the above class. We do not cite
this theorem.

THEOREM OF OTTO AND VILLANI (2000) [see Bobkov, Gentil and Ledoux
(2001) also]. If the density function g(x*) (x* € R*) satisfies a logarithmic
Sobolev inequality with constant p, then g € W1 x1(p).

[The theorem as stated here was proved by Bobkov, Gentil and Ledoux
(2001); its original version from Otto and Villani (2000) contained some minor
additional condition.]

To formulate a sufficient condition for the contractivity condition we introduce
some notation.

Let 4 be a family of patches as in Theorem 1. Consider distribution (1.7) and
assume thad is twicely continuously differentiable. For a fixed sequepte R”
and a vecton = (n;, I € 1), wheren; € R!, we define a matrix@ = B(y, y").

The rows of B are indexed by pair¢l,i), (i € I € {), while its columns are
indexed byk (1 <k <n),

B=B®,y") = (B y"),
where
ik P (nr, ¥, iel,k¢l,
0, i,kel.

For the case of one-element patches, the definitio®@f, y*) = B(n", y")
becomes quite simple:

Bk, y") = {

B=B®0",y") = (Bix(", y").
ik ® (i, yi), k#i,

. no\ny _
Bik(m*, y") {0’ h—i
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Note that if® has the form

n
D)= V(xi)+ ) bigxixk,
i=1 ik
then B does not depend on and y". For example, in the case of one-element
patches we have

B = (bik)-

THEOREM 2. Let f be a family of patches asin Theorem 1 and assume that
® is twice continuously differentiable. Assume furthermore that the conditional
densities (1.8),asfunctions of x;, satisfy a logarithmic Sobolev inequality with the
same p (independently of I and x;). If

2
=t-(1-9),

(2.9) suE{

1 n
—- B, y")
n.y Il P

then Theorem 1 holds.

In view of the Otto—Villani theorem, thguestion arises whether the conditions
of Theorem 2 might imply a logarithmic Sobolev inequality.

This is not to be expected with the existing proofs of logarithmic Sobolev
inequality for Gibbs fields. Indeed, consider a Gibbs field over a cule Z¢,
with single spin spac® and potential

(1.10) D" = Z Vix;)+ Z b,-,jx,-x‘,- + Z b,-,‘,-x,-a)j,
ieA i,jeEA ieA
jeZA—A

where{w;: j € 74 — A} is the configuration outsida. We assume thal (x) is
convex atoo, that is,V(x) = U(x) + K (x), whereU"(x) > ¢ > 0 andK (x) is
bounded. Ifs; ; does not go to O exponentially fast with— j| — oo, then the
proofs of Yoshida and Bodineau—Helffer break down, whereas it is still possible
that condition (1.9) of Theorem 2 holds. # ; = J > 0 for i and j nearest
neighbors, and; ; = 0 otherwise, then Yoshida’s proof requires superquadratic
growth for the single spin phadé(x) at oo; and for the Bodineau—Helffer proof
to work, 24J must not approach, whereas for condition (1.9) of Theorem 2 to
hold, it is sufficient thatZ2J < p.

On the other hand, Ledoux’s (1999) proof of his Proposition 2.3 does apply
for nearest neighbor interactions with interaction coefficignt O satisfying
2dJ < c - exp(—4||K |loo) and proves the correlation bound (DS3) of Yoshida
(1999b). By the results of Yoshida (1999b), this is equivalent to the logarithmic
Sobolev inequality, provide#f (x) grows superquadratically ab.

However, even if the interaction coefficients and the single spin phase are
such that a logarithmic Sobolev inequality holds, that does not yield a simple
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explicit bound for the logarithmic Sobolev constant nor for the coefficient in
the distance-divergence inequality. On the other hand, Theorem 2 implies the
following corollary for potential (1.10):

CoroLLARY 1. If for the potential (1.10), the density function const.
exp(—V(x)) satisfies a logarithmic Sobolev inequality with constant p and for
the (infinite) matrix B = (b; ;),

Bl < p,
then
1 2D(p"||g"
1-1B/pl P

REMARK 1. Itis not known whether the distance-divergence inequality (1.2)
implies a logarithmic Sobolev inequality (possibly with a different constant
[Villani (2003)] this would be a converse to th@tto-Villani theorem). Thus
it would be very interesting to prove or disprove that a logarithmic Sobolev
inequality holds under the conditions of Theorem 2, with a constant depending
onp ands.

The proof of Theorem 1 is based on a Markov chain (sometimes called the Gibbs
sampler), which realizes a discrete time interpolation betwéeand the Markov
chain’s invariant measurg’. The contractivity condition allows us to prove that
this Markov chain converges @' exponentially with respect to the Wasserstein
distance. (See the end of Section 2.) Before coming to this step, we prove a bound
for W2(p", p"T'M) (wherep"T'™ is the distribution of the/th term of the Markov
chain) in terms oD (p"||¢™).

2. Some Markov kernels and probability distributions on R". The fol-
lowing Markov kernels, which are associated with the conditional density func-
tions Q; (-|x;) (I € 1), are instrumental in our forthcoming constructions.

ForI € 4 define the Markov kernel (i.e., the conditional distributi®pjd z" | y™)
as follows. The projection df;(-|y") on the coordinates outsides defined as

Ly =1
The projection ofl’;(-|y") on the coordinates id is given by the conditional
densityQ; (:[y;):
Ti(dzi1y") = Qr(zrlyn dzy.
We define the Markov kernel'(dz"|y™) as a mixture of the Markov ker-
nelsr';(-|y"):

1
F@"yn =+ > Trd"y").
Ied
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Finally, for an intege > 0, we denote by (dz"|y") the Mth operator power
of I'(dZ"|y™):

M dz"y")
_ // ../F(dZ"|z"(M — 1)) (d"(M — 1)|"(M — 2))--- T (dz"(D)]y").
Equivalently,

r@z"|y"
1
I1,1p,..., Iyed

x T, (dZ"(M —1)|2"(M = 2))---
x Ty (dz"(D)[y").

Now, at the risk of redundancy, we give a somewhat lengthy description of the
Markov kernell'™ (dz"|y"), along with some associated density functions, since
it is this description that we use in the sequel. We k&gfixed.

Let us fix a sequence of patches

(2.1) (1, I, ..., Iy).

Also, fix a density functionp™” = distY”. We define successively the den-
sity functions

(2.2) r"(0) = p", r"()=r"(l—-DTIy, [1=1,2,...,M.

We think of the density functions’ (/) as being conditional density functions of
random sequences”(l), [ =1,2,..., M, given that in a random independent
M -wise selection from the sdt, we have drawrd, Io, ..., Iy:

() =dist(Z" (D11, Iz, ... ., ).
It follows from (2.2) that-" (1) does not depend ol 1, ..., Iy, thatis,
() =dist(Z" (D, Iz, . .., I})

for everyl.
We also define a joint conditional distribution faz"(0) = Y", Z" (1),
..., Z™(M)), given by (2.1). First we define, for evely

dis(z"( — 1), Z"()| 1, Iz, ..., Iy) = dis(Z" (1 — 1), Z"()| 1, Iz, ..., I))
in such a way that
distZ, (12" - =7"U -1, 11, I, ..., I)
is concentrated oft,, (I — 1)} and, moreover, that
dist(Z,( — 1), Z, ()| Z,d — ) =7,(1 = 1), I1, Ip, ..., I))
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minimizes, for each value af;, (/ — 1), the expected conditional quadratic distance

E{|Z,() — 2,0 = DPP|z,0 = 1), I, I, ..., I},
At this point we use the condition (1.5) in Theorem 1 to infer that this
minimization yields
E{|Zy,() — Zy,( = DI|Zn( = D). [n. I, ... I}
(2.3)

2
< o D(r;,( =D (12, = D)NQy (2,7 = 1))

forall z; (I —1).

Finally, we define

dist(2"(0), Z" (D), ..., Z"(M)|I1, I, ..., In)

so that, for(Iy, I, ..., Iy) fixed, (2" (0), Z"(1), ..., Z"(M)) is a Markov chain.

Note that although” (1) = dist(Z" ()| 11, I2, ..., ;) =r"( — )Ty,

dist(z" ()| 2" —1), I, ..., I}) #Ty,.

Taking average with respect thy, I», ..., Iy, we get the (unconditional)

joint distribution
dist(Z"(0), 2" (1), ..., Z"(M)).
It is easy to see that
distz"() = p"r!  fori=0,1,..., M.

We use the notatiok” for Z"(0) and usez” for Z"(M).

It is important in the sequel that the Markov kernElg I" andI'™ all haveg”
as invariant measure.

Note that we could (and do, in fact) consider the infinite Markov chain with
marginal distributionsp’ll", 0 <1 < oo, as well. This infinite Markov chain is
a variant of the so-called Gibbs sampler, which is well known in Markov chain
simulation.

In Section 4 we prove thdt is a contraction with respect to the Wasserstein
distance, which implies that"I'"™ — ¢" asm — oo, exponentially fast:

ProPOSITION2. Assumethat the conditional distribution functions Q; (-x;),
I € 4, satisfy the contractivity condition (Definition 1) and that every site is
covered by at least r patches. Let p" = distY” and r" = distU” be two density
functions on R”. Then

18
W2(p"T. 1T < (1— ﬁ) WP, ™.
COROLLARY 2. Under the conditions of Proposition 3,
t6\™
W2(p" T g") < (1— ﬁ) W2(p", ")

for any integer m > 0.
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3. An auxiliary theorem. A basic tool in the proof of Theorem 1 is the
following theorem, which gives a bound faW (p", p"T'™) in terms of the
informational divergenc® (p"|l¢"™). We hope that it turns out to be interesting in
its own right. For this auxiliary theorem we do not use the contractivity condition.

AUXILIARY THEOREM. Assume that for every I € 4 and every x;, the
conditional density function Q;(-|x;) satisfies condition (1.5), and that each site
is covered by at most v patches. Then for any density function p” on R” and for
the Markov kernel T,

M 2
Wz(p", Py < N v-—-D(p"|lg") for any M.
P
REMARK 2. For the joint distribution digt”, Z"), with marginals p”"
andp"T'M  yielding W (p", p"I'M),
dist(Z"|Y") £ TM,
in general.

By the construction of the Markov chainY” = Z"(0), Z"(1),...,
Z"(M)=Z") we have

distz" = p"r'M

and we use the joint distribution of the Markov chain to estintéte p”, p"T'M).
Clearly,

w2(p", p"rM) < E|Y" — 2" 2.

First we prove the following lemma.
LEMMA 1. Wehave
M M
ElY"—Z7"2<— v-Y E|Z,) — 2,0 — DI
N =1

(Note that in this formula the subscripgisare random and the expected value takes
an average with respect to them, t00.)

PrROOF OFLEMMA 1. For arealization of the sequence of patches, say

we denote by the listing of the sites in the patches (3.1),

M
G=(i15i25~~-5in15~~-5iL)7 L=Z|Il|7
=1
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where|I;| denotes the cardinality df andi,,, =i € [1, n] if
-1
m=>Y|Ij|+r, O<r <1,
j=1

and therth site in the patchi; is justi. Let v; denote the frequency 6fin o and
let u; ,, denote the frequency ofin (i1, iz, ..., in).
Write

th=1Zih-z(A-DP, 1<i<n1<j<y,

if 1; is the jth patch in (3.1) that contains the site
It follows from the triangle and the Cauchy—Schwarz inequalities that

n k
(32)  EW"-Z"P <} Y Prvi=k}-k- Y E{gilvi =k},
i=1 k j=1
For j <k we have
E{¢5lvi =k} = E{¢5lvi = j, vi =K},

but 55 is conditionally independent aof under the ondition{v; > j}. It follows
that forj <k,

E{¢3lv =k} = E{g3|v; > j}.
Thus (3.2) can be continued to
n
ElY'—Z"? <Y Y E{¢hlvi = j}- Y Py =k} k.
i=1j>1 k>j

Furthermore, for any, j,

M
ZPr{vi=k}-k§Evi§ﬁ-v,

k=>j
whence
M " i
(3.3) EIY" = 72" < v 30 % Elgflvi = j).
i=1j>1
Put

7731:(13, m:1,2,...,L,
where(i, j) andm are related as
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Clearly, whichever choice dfl4, Io, ..., I}y) is given, for any(i, j) with j < v,
there is exactly oner, 1 < m < L, that satisfies (3.4) and vice versa. Note that
herem is a random variable (it depends én. .., Iy).

Sincev; > w; m, we have

(3.5) E{¢5|vi = j}=EWm5Ivi = pim} = Eny.

We have

PFEDMEDIPNVACEFAESIE
m iJj

i i€l
M
=312, (1) -z, - D
=1
This, together with (3.3) and (3.5), completes the proof of Lemmal.

PROOF OF THE AUXILIARY THEOREM. By Lemma 1, all we have to prove
is that

M
2
EN|Zy() - Zy( = D> < = D(p" g™
=1 P
In fact, we prove that, for any realization
(3.6) I1,1p,..., 1y
of the sequence of patches, we have
M ) 2
@7 END|Zy()—-Z,d - 1) ‘11, b, ..., IM} < re D(p"lig™).
=1
The left-hand side of (3.7) can be written as
I 2
SCE{|Zy() - Zy (= D[ | T2, .. 1)
=1
Fix the sequence (3.6) and recall from Section 2 the definition
() =dist(Z" ()| 11, Ip, ..., 1),
according to which"(I) is obtained fromr” (I — 1) by putting
(3.8) dist(Z;, (D1z5) = Qu(-1z1)
and leaving unchanged the distribution of the coordinates ouiside

(3.9) FO)y=(Fl=1),,.
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It follows from (2.3), (3.8) and (3.9) that the joint conditional distribution
dist(z"(l - 1), 2" ()| 11, ..., 1)
can be defined in such a way that
2
(3.10) E{|Z,()—Z,d =D, ... I} < > D(r"( — D" D).

[The distributions” (I — 1) andr" (/) depend o, ..., I;.] Indeed, the left-hand
side of (3.10) can be written as

/E{|Z,,(l) — Zy =Dz, = 1), I, I, ... LY (R — D), (1) dzy,
2
= / D(r( = D (12, (0 = D)IQy (121, (1 = D)) (F — D)y (21) dzy

2
=—-D("( - Dr" ).
0

The last equality here follows from (3.9).
Therefore, it is enough to prove that for any choicdof . ., Iy,

M
(3.11) D(p"llg") =Y D(r"( — D|Ir" (1))
=1
This follows from the identities
D(p"lig") = D(p"Ir" (1)) + D(r" (D) |r"(2)) + - --
+D(r"( = D" D)+ D" Dq"),

valid for anyl > 1. It is clear that (3.12) fok = M implies (3.11).
We prove (3.12) by induction ah Thus first we claim that

(3.13) D(p"llg") = D(p"IIr" (D) + D(r" (D llq"),

which is just (3.12) fof = 1. Indeed, by the well-known decomposition formula
for divergence,

(3.12)

Onnlyn)
=D("(Dliq") + D(p"Ir" (D).
Now apply (3.13) to" (1) in the role ofp™. This, together with (3.13), yields
D(p"llg") = D(p"Ir" (D) + D(r" (DIIr"(2)) + D(r" (2 ll4").
Iterating this step, (3.12) follows for ardy [

D" lIg") = D51, 1) + / log P OM dy”
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4. Proof of Proposition 2. Consider the joint distribution dig”, U™),
achievingW2(p", r"). LetY" (1) andU" (1) denote random variables with density
functionsp”I" andr"T", respectively.

For a givenl € [, we define a joint conditional density function

dist(y", U", Y" (1), U"(D|])

as follows. Putr; (1) = Y;, U; (1) = Uy,

(4.1) dist(Y;(DIY" =y", 1) = Q;CIyn),

(4.2) dist(U; ()| U" = u", I) = Q;(-|ap),

and take for

dist(Y; (1), Uy (D)|Y" =y", U" =u", I)
a joining of (4.1) and (4.2) to achieve
E{IY;(D) = Ui (DPY" =y" U =u", I} = W3(Q; (|51). Q1 Cliip)).
We have by (1.3)
E|Y"() - U"(D)P
= ZE[Zm U+ W0, (1T, Q1<-|z71>)}

lel Lk¢l

1 1
<SS N EW - Ud?+ (A - 8ElY" —U"?
N
led k¢l

1\ & 1
< (1— —) STEY - Ukl + = (1= 8E|Y" — U"?
N i—1 N

)
= (1— —)E|Y” —U" .
N
Proposition 2 is proved.

5. Proof of Theorem 1. Let M be fixed, and apply Proposition™ times to
the distributions

p"t=distt” and r"=p"T'M =distz".
(We use the notation of Section 2.) We get that

t8\M M
< (1— N) S WE(p". 1) < eXp(—t8ﬁ> WA,
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that is,

M
W(p"TM, "My = w(p"rM, prr2M) < exp( zsﬁ) W (", ™.

Iterating this step, we get that for aniy> 1,
. . M
W(p' T, i) < expf —(j = Do ) W,
Let us define the random sequen&és;), j =0, 1, ..., so that
disty”(j) = p"T/M
and, forj > 1,

(6.1) [EIY"()—Y"(i - DAY < eXp(—(j - mﬂ) W),

We see that{Y"(j)} is a Cauchy sequence ih, and thus it converges
in L, to some random sequencé’. However, we must have di§t' = ¢".
Indeedg" is invariant with respect t&' and therefore Proposition 3 implies that
W(p"T/M 4"y — 0 asj — oo. Thus we can assume that the seque¢e )}
converges tX” in L.

By the estimates (5.1),

1
n_ yn291/2 n_ 7n291/2
LBy = X < LY = 2 T s (i 2N

By the Auxiliary Theorem, this implies

1
1—exp(—t8(M/(2N)))

NGILED) 1o 2 ;

1= exp(—18(M/(2N))) \/ 5y, Pl
Now to complete the proof, it is enough to see that the factor
V15(M/(2N))
1—exp(—t6(M/(2N)))
can be bounded by a numerical constant through an appropriate selecfion of
Notice that the function
Jx

fx)= , x>0,

11—

M 2
[E|Y" — X"[21Y2 < \/ﬁ v D(p"llg") -

is bounded in any bounded interval that is bounded away from ™. Varies on
the integers, then the quantity=t6M/(2N) changes by steps smaller thaf21
Thus there is a value @i for whichx =t5M/(2N) is between 1 and/2, and so

rrA\}nf(tSM/(ZN)) < 1§T§a?)>(/2f(x).

This completes the proof of Theorem 1.
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6. Proof of Theorem 2. The Otto—Villani theorem implies condition (1.5) of
Theorem 1. To prove the contractivity condition, fix two sequences” € R”".
By (1.5) and the logarithmic Sobolev inequality, we have

W(Qr(Clxp), Qr(lyn) < 2 D(QCIxDIIQ1(C1y1))

1
=7k L@ OT) 8,0 5OF Q51 di
It follows that

S WAHQ(1xD, Q1C¢13D)

Ied

1
6D =5 [ e - a0msnroom ) dn

Ied iel

1
= [ XS - a0 [1 etz [Tdn.

lediel JASK) Ied

(The integral in the last line is taken oV, R’.)
Now consider, for a fixed vector= (n;, I € {), the function

g:gani—) HRI,
JASK)
defined by

1 - .
g1,i(y")=;-3i<b(n1y1), ielel.
Observe that the expression

iz S @i (niE) — ;1A
P” revicl

integrated (with respect to some density function) in the last line of (6.1), is nothing

else than the squared Euclidean norm of the incremept dfetween the points

x™ andy”. By assumption (1.9) of Theorem 2, the norm of the Jacobigg¥ o$

bounded by - (1 — §))¥/2, so (6.1) implies the contractivity condition (1.3).
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