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We first give a characterization of theL1-transportation cost-information
inequality on a metric space and next find some appropriate sufficient condi-
tion to transportation cost-information inequalities for dependent sequences.
Applications to random dynamical systems and diffusions are studied.

1. Introduction and questions. Let (E,d) be a metric space equipped with
σ -field B such thatd(·, ·) is B × B-measurable. Givenp ≥ 1 and two probability
measuresµ andν onE, we define the quantity

Wd
p(µ, ν) = inf

(∫ ∫
d(x, y)p dπ(x, y)

)1/p

,(1.1)

where the infimum is taken over all probability measuresπ on the product space
E × E with marginal distributionsµ andν [say coupling of(µ, ν)]. This infimum
is finite as soon asµ and ν have finite moments of orderp. This quantity is
commonly referred to asLp-Wasserstein distance betweenµ andν. Whend is
the trivial metric (d(x, y) = 1x �=y), 2Wd

1 (µ, ν) = ‖µ − ν‖TV , the total variation
of µ − ν.

The Kullback information (or relative entropy) ofν with respect toµ is defined
as

H(ν/µ) =



∫
log

dν

dµ
dν, if ν � µ,

+∞, otherwise.
(1.2)

We say that the probability measureµ satisfies theLp-transportation cost-
information inequality on(E,d) if there is some constantC > 0 such that for
any probability measureν,

Wd
p(µ, ν) ≤

√
2CH(ν/µ).(1.3)

To be short, we writeµ ∈ Tp(C) for this relation.
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The cases “p = 1” and “p = 2” are particularly interesting. ThatT1(C) are
related to the phenomenon of measure concentration was emphasized by Marton
[10, 11], Talagrand [18], Bobkov and Götze [2] and amply explored by Ledoux
[8, 9]. TheT2(C), first established by Talagrand [18] for the Gaussian measure, has
been brought into relation with the log-Sobolev inequality, Poincaré inequality, inf-
convolution, Hamilton–Jacobi’s equations by Otto and Villani [15] and Bobkov,
Gentil and Ledoux [1]. Since those important works, a main trend in the field is to
put on relations ofTp(C) with other functional inequalities (of geometrical nature
in particular). In this paper we shall study three questions around the following
problem going somehow to the opposite direction:how to establish the“Tp(C)”
without reference to other functional inequalities in various concrete situations?

To raise our first question, let us mention the following:

THEOREM 1.1 (Bobkov and Götze [2]). µ satisfies theL1-transportation
cost-information inequality on(E,d) with constantC > 0, that is, µ ∈ T1(C),
if and only if for any Lipschitzian functionF : (E,d) → R, F is µ-integrable and∫

E
eλ(F−〈F 〉µ) dµ ≤ exp

(
λ2

2
C‖F‖2

Lip

)
∀λ ∈ R,(1.4)

where〈F 〉µ = ∫
E F dµ and

‖F‖Lip = sup
x �=y

|F(x) − F(y)|
d(x, y)

< +∞.

In that case,

µ(F − 〈F 〉µ > r) ≤ exp
(
− r2

2C‖F‖2
Lip

)
∀ r > 0.

It might be worthwhile to recall the classical Pinsker–Csizsar inequality which
is the starting point of many recent works. By the coupling characterization of the
total variation distance‖ · ‖TV, the Pinsker–Csizsar inequality

‖ν − µ‖TV ≤
√

1
2H(ν/µ)

says that w.r.t. the trivial distanced(x, y) = 1x �=y onE, any probability measureµ
satisfies theL1-transportation cost-information inequality with the sharp constant
C = 1/4. And by Theorem 1.1, the Pinsker–Csizsar inequality for the trivial
distance follows from the classical well-known inequality: for a real bounded
random variableξ with values in[a, b],

Eeξ−Eξ ≤ exp
(

(b − a)2

8

)

(and vice versa).
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We now do a simple remark. Assume thatµ ∈ T1(C) or, equivalently, (1.4). Let
γ (dλ) be the standard Gaussian lawN (0,1) on R. We have for any Lipschitzian
functionF onE with 〈F 〉µ = 0 and‖F‖Lip ≤ 1, anda ∈ R,

∫
E

exp
(

a2

2
F 2

)
dµ =

∫
E

∫
R

eaλF γ (dλ) dµ ≤
∫

R
exp

(
C

2
a2λ2

)
γ (dλ)

=



1√
1− a2C

, if
a2

2
<

1

2C
,

+∞, otherwise.

Applying it to F(x) := d(x, x0) − ∫
d(x, x0) dµ(x), we obtain∫

ecd2(x,x0) dµ(x) < +∞ ∀ c ∈
(

0,
1

2C

)
.

In particular, for allδ ∈ (0, 1
4C

) we have,∫ ∫
eδ d2(x,y) dµ(x) dµ(y) < +∞.(1.5)

That naturally leads to the following questions:

QUESTION 1. Will the Gaussian tail (1.5) be sufficient for theL1-transporta-
tion cost-information inequality ofµ?

The second question is about dependent tensorizations of theTp(C). Let, for
example,Pn

x , the law of a homogeneous Markov chain(Xk(x))1≤k≤n on En

starting fromx ∈ E, with transition kernelP (x, dy).

QUESTION 2. Assume thatP (x, ·) ∈ Tp(C) for all x ∈ E. Where is the appro-
priate condition under whichPn

x satisfies theLp-transportation cost-information
inequality w.r.t. the metric

dlp (x, y) :=
(

n∑
i=1

d(xi, yi)
p

)1/p

?

The same question can be raised for the law of an arbitrary dependent sequence
(Xk)1≤k≤n. When (Xk)1≤k≤n are independent, this question has a rapid and
affirmative answer, see [8, 9] and references therein.

In the dependent case, whend is the trivial metric, andp = 1 (anddl1 becomes
the Hamming distance onEn), Marton [10] generalized the Pinsker–Csizsar
inequality to the law of the so called “contracting” Markov chains:

1
2 sup

(xi−1,yi−1)

‖Pi(·/yi−1) − Pi(·/xi−1)‖TV ≤ r < 1.(1.6)
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Her approach is based on coupling ideas, natural by the definition of the involved
Wasserstein distance. Her results have been strengthened by Marton [11, 12] and
Dembo [4] and have been generalized to uniform mixing processes by Samson [17]
and Rio [16].

However, the trivial distance does not reflect the natural metric structure of the
state spaceE to which usual Markov processes such as random dynamical systems
or diffusions are related and that is why the uniform mixing assumption was made
in her work (and also in [17]). This is a main motivation for Question 2.

For the L2-transportation cost-information inequalityT2(C), recall that
Talagrand [18] proved that the standard Gaussian lawγ = N (0,1) satisfiesT2(C)

on R w.r.t. the Euclidean distance with the sharp constantC = 1 and found that
T2(C) is stable for product (or independent) tensorization. To our knowledge the
Markovian tensorization ofT2(C) has not been investigated in the literature.

Since the works of Otto and Villani [15] and Bobkov, Gentil and Ledoux [1],
we know thatT2(C) follows from the log-Sobolev inequality in the framework
of Riemannian manifolds. Indeed, all knownT2(C)-inequalities up to now can be
derived from the log-Sobolev inequality. An important open question in the field is
whetherT2(C) is strictly weaker than the log-Sobolev inequality. Hence, it would
be interesting to investigate the following question:

QUESTION 3. How do we establish theT2(C)-inequality in situations where
the log-Sobolev inequality is unknown?

This paper is written around those three questions and it is organized as follows.
The next section is the general theoretical part of this paper. After noticing the
stability ofTp(C) under Lipschitzian map and under weak convergence in Sections
2.1 and 2.2, in Section 2.3 we prove that condition (1.5) is, in fact, sufficient for the
L1-transportation cost-information inequality, solving Question 1. In Section 2.4
we revisit the coupling method of Marton and show that it actually works for
dependent tensorization ofTp(C) for 1 ≤ p ≤ 2, under a contraction assumption
[see (C1) in Theorem 2.5] close to Marton’s (1.6). Section 2.5 is devoted to revisit
the McDiarmid–Rio martingale method which allows us to obtain a much more
subtle condition (C1′) than (C1) for tensorization ofT1(C) in Theorem 2.11.

Sections 3 and 4 contain several applications of the general results in Section 2
to random dynamical systems and diffusions which are our main motivation for
Question 2.

In Section 5, quite independent, we present a direct approach ofT2(C) for
diffusions, by means of the Girsanov transformation, with respect to the usual
Cameron–Martin metric orL2-metric.

The reader may consult the recent monograph by Villani [19] for an extended
(analytical and geometrical) treatment on transportation.
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2. Criteria for Tp(C). Throughout this paper let(E,d) be a metric space
equipped withσ -field B such thatd(·, ·) is B × B-measurable; and when(E,d)

is separable,B will be the Borelσ -field.

2.1. Stability under push-forward by Lipschitz map.We begin with the
stability of Tp(C) under Lipschitzian map and under weak convergence, which
will be useful later.

LEMMA 2.1. Assume thatµ ∈ Tp(C) on (E,dE) and (F, dF ) is another
metric space. If � : (E,dE) → (F, dF ) is Lipschitzian,

dF

(
�(x),�(y)

) ≤ α dE(x, y) ∀x, y ∈ E,

thenµ̃ := µ ◦ �−1 ∈ Tp(Cα2) on (F, dF ).

PROOF. Let ν̃ be a probability measure such thatH(ν̃/µ̃) < +∞. The key
remark is

H(ν̃/µ̃) = inf{H(ν/µ); ν ◦ �−1 = ν̃}.(2.1)

To prove it, puttingν0(dx) := dν̃
dµ̃

(�(x))µ(dx), we see thatν0◦�−1 = ν̃. We have

for anyν so thatν ◦ �−1 = ν̃,

H(ν/µ) = H(ν0/µ) +
∫

dν̃(y)H(νy/µy),

where νy := ν(·/� = y) and µy := µ(·/� = y) are, respectively, the regular
conditional distribution ofν, µ knowing� = y. Hence, (2.1) follows.

With (2.1) in hand, the rest of the proof is easy and is omitted.�

2.2. Stability under weak convergence.

LEMMA 2.2. Let (E,d) be a metric, separable and complete space(Polish,
say) and (µn,µ)n∈N a family of probability measures onE. Assume thatµn ∈
Tp(C) for all n ∈ N andµn → µ weakly. Thenµ ∈ Tp(C).

PROOF. Recall at first two facts (see, e.g., [19]):

1. If µn → µ andνn → ν weakly, then lim infn→∞ Wp(µn, νn) ≥ Wp(µ,ν).
2. If µn → µ weakly and{d(x, x0)

p,µn(dx)} is uniformly integrable,Wp(µn,

µ) → 0.

What one needs to prove is

W2
p(fµ,µ) ≤ 2C

∫
f logf dµ
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for all f such thatfµ is a probability. By approximation (and using fact 2 above),
it is sufficient to prove the result for continuousf so that 1/N ≤ f ≤ N overE
for someN ≥ 1. Letan = ∫

f dµn and we have by “µn ∈ Tp(C),”

W2
p

(
f µn

an

,µn

)
≤ 2C

∫ (
f

an

)
log

(
f

an

)
dµn = 2C

an

∫
f logf dµn.

Sinceµn converges weakly toµ, an converges toµ(f ) = 1, and one can pass to
the limit in the right-hand side of this last inequality. For the convergence of the
left-hand side, it is enough to apply the lower semi-continuity ofWp. �

2.3. Characterization ofT1(C) by “Gaussian tail.” We present here a char-
acterization ofT1(C), based on the Bobkov and Götze [2] result, that is, some
Gaussian integrability property.

THEOREM 2.3. A given probability measureµ on (E,d) satisfies the
L1-transportation cost-information inequality with some constantC on (E,d) if
and only if (1.5)holds. In the latter case,

C ≤ 2

δ
sup
k≥1

(
(k!)2

(2k)!
)1/k

·
[∫ ∫

eδd2(x,y) dµ(x) dµ(y)

]1/k

< +∞.(2.2)

PROOF. It is enough to show the sufficiency. By Bobkov–Götze’s Theo-
rem 1.1, it is enough to show that there is some constantC = C(δ) verifying (2.2)
such that

EeλF (ξ) ≤ exp
(

Cλ2

2

)
∀λ ∈ R,(2.3)

for all F :E → R with ‖F‖Lip ≤ 1 andEF(ξ) = 0, whereξ is a random variable
valued inE with law µ, defined on some probability space(
,F ,P).

Let ξ ′ be an independent copy ofξ , defined on the same probability space
(
,F ,P). Since EF(ξ ′) = 0, by the convexity of thex → ex , we have

E(e−λF (ξ ′)) ≥ 1. Consequently, noting thatE[F(ξ) − F(ξ ′)]2k+1 = 0, we have

E
(
eλF (ξ)) ≤ E

(
eλF (ξ))E(

e−λF (ξ ′))
= Eeλ(F (ξ)−F(ξ ′))

= 1+
∞∑

k=1

λ2kE[F(ξ) − F(ξ ′)]2k

(2k)!

≤ 1+
∞∑

k=1

λ2kEd(ξ, ξ ′)2k

(2k)! .



2708 H. DJELLOUT, A. GUILLIN AND L. WU

Hence, putting

C := 2 sup
k≥1

(
k! · Ed(ξ, ξ ′)2k

(2k)!
)1/k

,

we get

E
(
eλF (ξ)

) ≤ 1+
∞∑

k=1

λ2k

k! ·
(

C

2

)k

= exp
(

Cλ2

2

)
.

Thus, for (2.3), it remains to estimateC defined above. Since

Ed(ξ, ξ ′)2k ≤ k! ·
(

1

δ

)k

Eexp
(
δd(ξ, ξ ′)2),

we get

C ≤ 2

δ
sup
k≥1

(
(k!)2

(2k)!
)1/k

· [Eexp
(
δ
(
d(ξ, ξ ′)2))]1/k

< +∞

the desired estimate (2.2).�

REMARK 2.4. For comparison notice that the Bernoulli measureµ on {0,1}
with µ(1) ∈ (0,1) satisfiesT1(1/4) w.r.t. the trivial metric, but does not satisfy
Tp(C) for any p > 1 (see [7]). Hence, any probability measureµ which is not
a Dirac measure onE does not satisfyTp(C) for any p > 1 w.r.t. the trivial
metric. Another example for illustrating difference ofT1 and T2 inequalities is
the following.

Let µ = φ(x)2 dx on R with 0 ≤ φ ∈ C∞
0 (R) (compact support). It satisfies

always T1(C) w.r.t. the Euclideand(x, y) := |y − x| by the theorem above.
But if the support ofµ (or of φ) has two connected componentsI1, I2 with
dist(I1, I2) > 0, then the correspondingT2(C) fails. In fact, if contrary to
µ ∈ T2(C), then by [15] or [1] the following Poincaré inequality holds:

Varµ(f ) ≤ C

∫
R

f ′2dµ ∀f ∈ C∞
0 (R).

Choose nowf smooth enough and equal to 1 onI1 and 0 onI2. Then the right-
hand side in the Poincaré inequality is 0, whereas the variance off will be non
zero so that the Poincaré inequality cannot hold, neitherT2(C).

This example shows, moreover, thatT1(C) on R does not imply the Poincaré
inequality, unlikeT2(C).

The next two sections are dedicated to the tensorization ofTp(C) for dependent
sequences.
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2.4. Weakly dependent sequences: Marton’s coupling revisited. Let P be a
probability measure on the product space(En,Bn), n ≥ 2. For anyx ∈ En,
xi := (x1, . . . , xi). Let Pi(·/xi−1) denote the regular conditional law ofxi given
xi−1 for i ≥ 2 (assume its existence). By conventionP1(·/x0) is the law ofx1
underP, wherex0 = x0 is some fixed point. WhenP is Markov, thenPi(·/xi−1) =
Pi(·/xi−1) is the transition kernel at stepi − 1.

Our aim in this section is to extend transportation cost-information inequali-
ties (1.3) for a probability measureP on (En, dlp), where

dlp (x, y) :=
(

n∑
i=1

d(xi, yi)
p

)1/p

.

THEOREM 2.5. LetP be a probability measure onEn, and1≤ p ≤ 2.Assume
thatPi(·/xi−1) ∈ Tp(C) on (E,d) for all i ≥ 1, xi−1 in Ei−1 (E0 := {x0}). If

(C1) there existaj ≥ 0 with rp := ∑∞
j=1(aj )

p < 1 such that

[
Wd

p

(
Pi(·/xi−1),Pi(·/x̃i−1)

)]p ≤
i−1∑
j=1

(aj )
pdp(xi−j , x̃i−j ),(2.4)

for all i ≥ 1, xi−1, x̃i−1 in Ei−1, then for any probability measureQ onEn,

W
dlp
p (Q,P) ≤ 1

1− r

√
2Cn2/p−1H(Q/P).

PROOF. The proof is similar to the one used for the Hamming distance by
Marton [10], however, we have to use the assumptionPi(·/xi−1) ∈ Tp(C) instead
of Pinsker’s inequality. Assume thatH(Q/P) < +∞ (trivial otherwise).

Let Qi(·/xi−1) be the regular conditional law ofxi knowingxi−1 for i ≥ 2 and
Q1(·/x0) the law ofx1, both under lawQ. We shall use the Kullback information
between conditional distributions,

Hi(x̃
i−1) = H

(
Qi(·/x̃i−1)/Pi(·/x̃i−1)

)
,

and exploit the following important identity:

H(Q/P) =
n∑

i=1

∫
En

Hi(x̃
i−1) dQ(x̃).(2.5)

The key is to construct an appropriate coupling ofQ andP, that is, two random
sequences̃Xn andXn distributed according toQ and P, respectively, on some
probability space(
,F ,P).

We define a joint distributionL(X̃n,Xn) by induction as follows. Add
artificially time 0 and putX0 = X̃0 = x̃0 = x0, the fixed point. Assume that
for some i, 1 ≤ i ≤ n, L(X̃i−1,Xi−1) is already defined. We have to define
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the joint conditional distributionL(X̃i,Xi/X̃
i−1 = x̃i−1,Xi−1 = xi−1), where

(x̃i−1, xi−1) is fixed (but arbitrary).
Givenε > 0 so small thatr(1+ ε) < 1, this distribution will have marginal laws

L(X̃i/X̃
i−1 = x̃i−1,Xi−1 = xi−1) = Qi(·/x̃i−1)

and

L(Xi/X̃
i−1 = x̃i−1,Xi−1 = xi−1) = Pi(·/xi−1)

so as to satisfy

E
(
d(X̃i,Xi)

p/X̃i−1 = x̃i−1,Xi−1 = xi−1)
≤ (1+ ε)Wd

p

(
Qi(·/x̃i−1),Pi(·/xi−1)

)p
for all x̃i−1, xi−1 in Ei−1. Obviously,X̃n,Xn are of lawQ, P, respectively.

By the triangle inequality for theWd
p -distance,

E
(
d(X̃i,Xi)

p/X̃i−1 = x̃i−1,Xi−1 = xi−1)
≤ (1+ ε)

[
Wd

1
(
Qi(·/x̃i−1),Pi(·/x̃i−1)

) + Wd
1
(
Pi(·/x̃i−1),Pi(·/xi−1)

)]p
.

Using the elementary inequality that(x + y)p ≤ ap−1xp + bp−1yp (for p ≥ 1
∀x, y ≥ 0) wherea, b > 1 such that 1/a + 1/b = 1, we have by the assumptions
Pi(·/xi−1) ∈ Tp(C) and (C1)

E
(
dp(X̃i,Xi)/X̃

i−1 = x̃i−1,Xi−1 = xi−1)

≤ (1+ ε)

(√
2CHi(x̃

i−1) +
[

i−1∑
j=1

(aj )
pdp(x̃i−j , xi−j )

]1/p)p

(2.6)

≤ (1+ ε)

(
ap−1[2CHi(x̃

i−1)]p/2 + bp−1
i−1∑
j=1

(aj )
pdp(x̃i−j , xi−j )

)
.

By recurrence oni, this entails thatEdp(Xi, X̃i) < +∞ for all i = 1, . . . , n.
Taking the average with respect toL(X̃i−1,Xi−1), summing oni and using the
concavity of the functionx → xp/2 for p ∈ [1,2], we get by (2.5) and (2.6)

1

n(1+ ε)

n∑
i=1

E
(
dp(X̃i,Xi)

)

≤ ap−1

(
2C

n

n∑
i=1

EHi(X̃
i−1)

)p/2

+ bp−1

n

n∑
i=1

i−1∑
j=1

a
p
j Edp(X̃i−j ,Xi−j )

= ap−1
(

2C

n
H(Q/P)

)p/2

+ bp−1

n

n−1∑
k=1

Edp(X̃k,Xk)

n∑
i=k+1

a
p
i−k.
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Using
∑

j≥1 a
p
j = rp and lettingε → 0+, the above inequality gives us, when

rpbp−1 < 1,

W
dlp
p (Q,P) ≤

(
ap−1

1− rpbp−1

)1/p√
2Cn2/p−1H(Q/P).

Optimizing on(a, b), we get the desired inequality.�

Noting that for a real functionf on En, ‖f ‖Lip(dl1) ≤ α if and only if for every
k = 1, . . . , n,

|fk(xk) − fk(yk)| ≤ αd(xk, yk) ∀xk, yk ∈ E,(2.7)

wherefk(xk) is the functionf w.r.t. thekth variable while the others are fixed.
Then we get by Theorem 1.1,

COROLLARY 2.6. Under the assumption of Theorem2.5 for p = 1, for any
real functionf onEn satisfying(2.7),

EPeλ(f−EPf ) ≤ exp
(

Cλ2α2n

2(1− r)2

)
∀λ ∈ R.

In particular, for anyt > 0,

P(f > EPf + t) ≤ exp
(
− t2(1− r)2

2nCα2

)
.

REMARK 2.7. The conditionPi(·/xi−1) ∈ Tp(C) is our starting point for
tensorization of theTp(C) and it is verified for many interesting examples, such as
the stochastic differential equation (SDE) (4.1) or random dynamical systems or
Gibbs fields. Condition (C1), meaning that the dependence of thepresenton the
past is very weak, is a crucial condition. Indeed, whend(x, y) = 1x �=y , p = 1 and
P is Markovian, (C1) is equivalent to (1.6), and Theorem 2.5 is exactly the result
of Marton mentioned in the Introduction.

REMARK 2.8. That the constantCn for the T1-inequality of Px increases
linearly on dimensionn is natural in the point of view of the Hoeffding inequality
in Corollary 2.6. This is completely different from the case of theT2-inequality,
for which it is hoped that theT2-constant remains independent of dimensionn, as
seen for the independent tensorization ofT2(C) by Talagrand [18] or its extension
Theorem 2.5.

REMARK 2.9. UnderPi(·/xi−1) ∈ Tp(C) and (2.4) but without the contrac-
tion condition thatrp := ∑

j (aj )
p < 1, we have alwaysPx ∈ Tp(Cn) on En w.r.t.

dlp for some constantCn (but the crucial estimate ofCn in Theorem 2.5 is lost).
We give only the proof of this fact forp = 1.
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Indeed, consider the nonnegative nilpotent lower triangular matrixA = (aij ),
whereaij = ai−j if i > j and 0 otherwise. For any givenδ ∈ (0,1), there is always
a (positive) vectorz = (z1, . . . , zn) such thatzi > 0,

∑
i zi = 1 and

(zA)k =
n∑

i=k+1

ziai−k ≤ δzk ∀ k = 1, . . . , n.

Then by (2.5) forp = 1, we have by Jensen’s inequality,

E

n∑
i=1

zi d(Xi, X̃i)

≤ (1+ ε)

(
n∑

i=1

ziE
√

2CH(x̃i−1) +
n∑

i=1

zi

i−1∑
j=1

ajEd(Xi−j , X̃i−j )

)

≤ (1+ ε)

(√√√√ n∑
i=1

zi2CEH(x̃i−1) +
n−1∑
k=1

Ed(Xk, X̃k)

n∑
i=k+1

ziai−k

)

≤ (1+ ε)

(√
2C max

i
ziH(Q/P) +

n−1∑
k=1

δzkEd(Xk, X̃k)

)
,

where it follows that

W
dl1
1 (Q,P) ≤ 1

(1− δ)mini zi

√
2C max

i
ziH(Q/P).

Whenzi = 1/n, the best choice ofδ is r , and this inequality becomes Theorem 2.5.

2.5. T1(C) for weakly dependent sequences: McDiarmid–Rio’s martingale
method revisited. The last inequality in Corollary 2.6, applied toF(X1, . . . ,

Xn) = ∑n
k=1 f (Xk) and the trivial metricd , where (Xk) are independent and

‖f (Xk)‖∞ ≤ α, becomes exactly the sharp Hoeffding inequality (see [13]). But
when it is applied toF(X1, . . . ,Xn) = f (Xn), it does not furnish the good order
of n for n large. As this last question is important for theT1(C) of the the invariant
measure, we give now a very simple proof of the following:

PROPOSITION2.10. Let (E,d) be a Polish space. LetP (x, dy) be a Markov
kernel onE such that:

(a) P (x, ·) ∈ T1(C) for everyx ∈ E;
(b) Wd

1 (P (x, ·);P (x̃, ·)) ≤ rd(x, x̃), for everyx, x̃ in E and somer < 1.

Then there is a unique invariant probability measureµ ofP and it satisfiesT1(C∞)

as well asP n(x, ·) ∀n ≥ 1, whereC∞ = C(1− r2)−1.



TRANSPORTATION COST-INFORMATION INEQUALITIES 2713

PROOF. When(E,d) is Polish, the spaceMp
1 (E) of probability measuresν

on E such that
∫

d(x, x0)
p dν(x) < +∞, equipped with the Wasserstein metric

Wp(·, ·) is a metric complete separable space (see [19]). Sinceν ∈ M1
1(E) ⇒ νP ∈

M1
1(E) by (a) and, condition (b) implies (in fact, equivalent to)

W1(ν1P,ν2P ) ≤ rW1(ν1, ν2) ∀ ν1, ν2 ∈ M1
1(E),

hence, by the fixed point theorem, there is one and only oneP -invariant measure
µ ∈ M

p
1 (E), and P n(x, ·) → µ in the metricW1 for any initial point x ∈ E.

The last point shows also thatµ is the unique invariant probability measure ofP

[without the restriction thatµ ∈ M1
1(E)].

Since

Wd
1 (ν,µ) = sup

f : ‖f ‖Lip≤1

∣∣∣∣
∫
E

f dν −
∫
E

f dµ

∣∣∣∣,
condition (b) is also equivalent to

‖Pf ‖Lip ≤ r‖f ‖Lip ∀f.

Thus,‖P Nf ‖Lip ≤ rN‖f ‖Lip for all N ≥ 1. Now given a Lipschitzian functionf ,
we have by (a) and Bobkov–Götze’s Theorem 1.1,

P n(ef ) ≤ P n−1
[
exp

(
Pf + C‖f ‖2

Lip

2

)]

≤ P n−2
[
exp

(
P 2f + C‖f ‖2

Lip

2
+ C‖Pf ‖2

Lip

2

)]
≤ · · ·

≤ exp
(
P nf + C‖f ‖2

Lip

2
+ C‖Pf ‖2

Lip

2
+ · · · + C‖P n−1f ‖2

Lip

2

)

≤ exp
(
P nf + C‖f ‖2

Lip

2(1− r2)

)
.

In other words, for everyx ∈ E, P n(x, ·) ∈ T1(C∞), whereC∞ is given in the
proposition. Lettingn → ∞, we obtain the desired result forµ by Lemma 2.2.

�

We now use the martingale method of McDiarmid [14] (in the independent case)
and Rio [16] (in the uniform mixing case) for extending the argument above to the
process-level lawP.

THEOREM 2.11. Let P be a probability measure onEn satisfyingPi(·/
xi−1) ∈ T1(C) (∀ i, xi−1) in Theorem2.5.Assume instead of(C1) that
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(C1′) there is some constantS > 0 such that for all real bounded Lipschitzian
functionf (xk+1, . . . , xn) with ‖f ‖Lip(dl1) ≤ 1, for all x ∈ En, yk ∈ E,∣∣EP

(
f (Xk+1, . . . ,Xn)/Xk = xk

) − EP

(
f (Xk+1, . . . ,Xn)/Xk = (xk−1, yk)

)∣∣
≤ Sd(xk, yk).

Then for all function, F onEn satisfying(2.7),

EPeλ(F−EPF) ≤ exp
(

Cλ2(1+ S)2α2n

2

)
∀λ ∈ R.(2.8)

Equivalently, P ∈ T1(Cn) on (En, dl1) with

Cn = nC(1+ S)2.

PROOF. We may assume without loss of generality thatα = 1. Let (Mk =
EP(F/Xk))k≥0, whereM0 = EPF . It is a martingale. It is enough to show that for
eachk,

EP

(
eλ(Mk−Mk−1)/Xk−1) ≤ exp

(
Cλ2(1+ S)2

2

)
.

To this end, note at first byPi(·/xi−1) ∈ T1(C) and Theorem 1.1,

EP

(
eλ(Mk−Mk−1)/Xk−1) ≤ exp

(
Cλ2b2

k

2

)
,

where

bk := sup
x,y

|Mk(x
k) − Mk(x

k−1, yk)|
d(xk, yk)

.

But Mk(x
k) = ∫

F(xk, xk+1, . . . , xn)P(dxk+1, . . . , dxn/x
k), writing xn

k+1 =
(xk+1, . . . , xn) we have

|Mk(x
k) − Mk(x

k−1, yk)|
≤

∣∣∣∣
∫ (

F(xk, xn
k+1) − F(xk−1, yk, x

n
k+1)

)
P(dxn

k+1/x
k)

∣∣∣∣
+

∣∣∣∣
∫

F(xk−1, yk, x
n
k+1)

(
P(dxn

k+1/x
k) − P(dxn

k+1/x
k−1, yk)

)∣∣∣∣
≤ d(xk, yk) + Sd(xk, yk).

Hence,bk ≤ (1+ S), the desired result.�

REMARK 2.12. Whend(x, y) = 1x �=y , Pi(·/xi−1) ∈ T1(1/4), and this result
is essentially due to Rio [16]. Using a different condition than (C1′), he essentially
proved that the constantS in condition (C1′) verifiesS ≤ 2

∑∞
j=1φj , whereφj is

the uniform mixing coefficient of the sequence(Xn). Our proof above is, in fact,
inspired by his work.
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REMARK 2.13. If the condition (C1) is viewed as abackwardtype, then (C1′)
may be seen as aforward type. Indeed (C1′) is equivalent to

W
dl1
1

(
P(dxn

k+1/xk, x
k−1),P(dxn

k+1/yk, x
k−1)

) ≤ Sd(xk, yk).

It means intuitively that the present does not influence a lot the future of the
processP. In concrete situations (C1′) is often weaker than (C1) withp = 1. For
example, let(Px) be a uniformly ergodic (Doeblin recurrent, say) Markov chain
with transitionP (x, dy) in the sense thatrn := supx∈E ‖P n(x, ·) − µ‖TV → 0. As
2φn ≤ rn, we have by Rio’s estimate above,

S ≤
∞∑

n=1

sup
x∈E

‖P n(x, ·) − µ‖TV,

which is finite. But Marton’s condition (1.6) or (C1) means(1/2)supx∈E ‖P n(x,

·) − µ‖TV ≤ rn for all n ≥ 1. See also Example 3.3.
It would be very interesting to generalize Theorem 2.11 toT2(C).

3. Application: study of T1(C) and T2(C) for random dynamical systems.

3.1. T1(C). Let E be a complete connected Riemannian manifold equipped
with the Riemannian metricd . Consider now the nonlinear random perturbed
dynamical system valued inE,

X0(x) := x ∈ E, Xn+1(x) = F
(
Xn(x),Wn+1

)
, n ≥ 0,(3.1)

where the noise(Wn)n≥0 is a sequence of i.i.d. r.v. valued in some measurable
space(G,G), defined on some probability space(
,F ,P), andF(x,w) :E ×
G → E is measurable. Denote byP (x, dy) the law of F(x,W1), and the
following:

PROPOSITION3.1. Assume that there existsδ > 0 such that

sup
x∈E

E
(
eδd(F (x,W1),F (x,W2))

2)
< +∞.(3.2)

If there exists0≤ r < 1 such that

E
(
d
(
F(x,W1),F (x̃,W1)

)) ≤ rd(x, x̃) ∀x, x̃ ∈ E,(3.3)

or more generally for some constantS ≥ 0,
∞∑

n=1

E
(
d
(
Xn(x),Xn(x̃)

)) ≤ S d(x, x̃) ∀x, x̃ ∈ E,(3.4)

then there is some constantC > 0 such that for anyn ≥ 1, for every probability
measureQn onEn,

W
dl1
1 (Qn,Pn

x) ≤ √
CnH(Qn/Pn

x),

wherePn
x is the law of(Xk(x))1≤k≤n onEn.
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PROOF. By Theorem 2.3, condition (3.2) is equivalent to “P (x, ·) ∈ T1(C)

∀x ∈ E.” Notice that (3.3) is equivalent to (C1) (withp = 1) in Theorem 2.5, and
(3.4) implies trivially (C1′) with the same constantS in Theorem 2.11. Hence, this
proposition follows from Theorems 2.5 and 2.11.�

REMARK 3.2. If the largest Lyapunov exponent inL1 given by

λmax(L
1) := lim

n→∞

(
sup
x �=x̃

Ed(Xn(x),Xn(x̃))

d(x, x̃)

)1/n

is strictly smaller than 1, then condition (3.4) is verified.

EXAMPLE 3.3 (ARMA model). To see the difference between (C1) in
Theorem 2.5 and (C1′) in Theorem 2.11, let us consider the ARMA model

X0(x) = x, Xn+1(x) = AXn(x) + Wn+1

in E = Rd , whereA ∈ Md×d (the space ofd ×d matrices) and(Wn) is a sequence
of i.i.d. r.v. with values inG = Rd . This model is a particular case of the general
model above withF(x,w) = Ax + w. Condition (C1), equivalent to (3.3), means
that r = ‖A‖ := sup{|Ax|; |x| ≤ 1} < 1, however, (C1′) for this linear model is
equivalent to

rsp(A) := max{|λ|;λ is an eigenvalue inC of A} = λmax(L
1) < 1,

which is much weaker. This last condition is a well-known sharp sufficient
condition for the ergodicity of this linear ARMA model(Xn).

REMARK 3.4. For this model, the known results mentioned in the Introduc-
tion cannot be applied, for the uniform mixing condition is, in general, not satisfied
whenE is noncompact. For example, the ARMA model withA �= 0 andW1 un-
bounded is never uniformly mixing. See [22].

3.2. T2(C). Consider a particular case of the preceding model

X0(x) = x, Xn+1(x) = f
(
Xn(x)

) + σ
(
Xn(x)

)
Wn+1,(3.5)

(the discrete time SDE), that is,F(x,w) = f (x) + σ(x)w, where E = Rd ,
G = Rn, f :Rd → Rd , σ :Rd → Md×n (the space ofd × n matrices) and the
noise(Wn)n∈Z is a sequence of i.i.d. r.v. with values inRn such thatEW1 = 0.
Assume that:

(i) PW := P(W1 ∈ ·) ∈ T2(C) onRn w.r.t. the Euclidean metric;
(ii) |σ(x)w| ≤ K|w| ∀ (x,w) ∈ Rd × Rn;
(iii) for somer ∈ [0,1),√

|f (x) − f (x̃)|2 + E
∣∣(σ(x) − σ(x̃)

)
W1

∣∣2 ≤ r|x − x̃| ∀x, x̃ ∈ Rd .(3.6)
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Notice that conditions (i) and (ii) imply thatP (x, ·) ∈ T2(CK2) for all x ∈ Rd ,
by Lemma 2.1; and condition (iii)implies (C1) with the samer for p = 2. Hence,
by Theorem 2.5,Pn

x ∈ T2(CK2/(1 − r)2). That yields, by Bobkov, Gentil and
Ledoux [1], the following:

COROLLARY 3.5. For the model(3.5) above assume conditions(i)–(iii).
ThenPn

x ∈ T2(CK2/(1 − r)2) and for any measurable functionF(x1, . . . , xn) ∈
L1((Rd)n,Pn

x),

Eexp
(
ρQF

(
X1(x), . . . ,Xn(x)

)) ≤ exp
(
ρEF

(
X1(x), . . . ,Xn(x)

))
,

where

ρ := (1− r)2

CK2 , QF(x1, . . . , xn) := inf
y∈(Rd )n

(
F(x + y) + 1

2

n∑
k=1

|yk|2
)
.

As noted in [1], several estimates of Laplace integrals are the consequence of
the functional inequality version of theT2(C) above. For instance, Corollary 6.1
in [1] says that for any convex functionF on (Rd)n,

EPn
x

exp

(
ρ

[
F − 1

2

n∑
k=1

(∂kF )2

])
≤ exp

(
ρEPn

x
F
)
.

REMARK 3.6. Consider the Lyapunov exponent inL2,

λmax(L
2) := lim

n→∞

(
sup
x �=x̃

Ed(Xn(x),Xn(x̃))2

d(x, x̃)2

)1/n

.

Obviously, (3.6) impliesλmax(L
2) < 1. It is then natural to ask whetherP (x, ·) ∈

T2(C) ∀x plus λmax(L
2) < 1 do imply “Pn

x ∈ T2(K)” for some constantK
independent ofn (for which we have no answer unlike forT1). Notice that for
the ARMA model,λmax(L

2) = λmax(L
1) = rsp(A).

4. Application: study of T1(C) for paths of SDEs. Let us give here an
application of Theorem 2.3 to SDE. Consider the SDE inRd ,

dXt = σ(Xt) dBt + b(Xt ) dt, X0 = x ∈ Rd,(4.1)

whereσ :Rd → Md×n, b :Rd → Rd and (Bt ) is the standard Brownian motion
valued inRn defined on some well filtered probability space(
,F , (Ft ),P).

Assume thatσ,b are locally Lipschitzian and for allx, y ∈ Rd ,

sup
x∈Rd

‖σ(x)‖HS ≤ A, 〈y − x, b(y) − b(x)〉 ≤ B(1+ |y − x|2),(4.2)

where‖σ‖HS := √
trσσ t is the Hilbert–Schmidt norm,〈x, y〉 is the Euclidean

inner product and|x| := √〈x, x〉. It has a unique nonexplosive solution denoted
by (Xt (x)) whose law on the spaceC(R+,Rd) of Rd -valued continuous functions
onR+ will be denoted byPx .
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COROLLARY 4.1. Assume the conditions above. For eachT > 0, there exists
some constantC = C(T,A,B) independent of initial pointx such thatPx satisfies
theT1(C) for everyx ∈ Rd , on the spaceC([0, T ],Rd) of Rd -valued continuous
functions on[0, T ] equipped with the metric

dT (γ1, γ2) := sup
t∈[0,T ]

|γ1(t) − γ2(t)|.

PROOF. Let (Bt ), (B̃t ) be two independent Brownian motions defined on
some filtered probability(
,F , (Ft ),P) and Xt(x), X̃t (x) strong solutions
of (4.1), respectively, driven by(Bt), (B̃t ). Put

X̂t := Xt(x) − X̃t (x), b̂t := b
(
Xt(x)

) − b
(
X̃t (x)

)
a(·) := σσ t(·), āt := a

(
Xt(x)

) + a
(
X̃t (x)

)
Lt :=

∫ t

0
σ
(
Xt(x)

)
dBt −

∫ t

0
σ
(
X̃t (x)

)
dB̃t .

Then

X̂t = Lt +
∫ t

0
b̂s ds.

By Theorem 2.3, it is enough to show that there exists some positive constant
δ = δ(T ,A,B) such that

Eexp
(
δ sup

0≤t≤T

|X̂t |2
)

< +∞.(4.3)

Let f (x) := h(|x|), whereh ∈ C∞(R) is pair and such thath(r) = r for r ≥ 4 and

h(r) ≥ r, 0≤ h′(r) ≤ 1∧ r, 0 ≤ h′′(r) ≤ 1 ∀ r ∈ [0,4].
ConsiderYt := (1+ f (X̂t ))e

−βt , whereβ > 0 is a constant to be determined later.
By Ito’s formula,

dYt = e−βt

(
1

2

d∑
i,j=1

ā
ij
t ∂i∂jf (X̂t ) + 〈∇f (X̂t ), b̂t 〉

)
dt − βYt dt + dMt

= e−βt

(
1

2
h′′(|X̂t |)〈X̂t , āt X̂t 〉

|X̂t |2
+ 1

2
h′(|X̂t |)

(
tr āt

|X̂t |
− 〈X̂t , āt X̂t 〉

|X̂t |3
)

+ h′(|X̂t |)
|X̂t |

〈X̂t , b̂t〉 − β
(
1+ h(|X̂t |))

)
dt + dMt,

where(Mt) is a local martingale(Mt) with M0 = 0, whose quadratic variational
process[M] is given by

[M]t =
∫ t

0
e−2βs〈∇f (X̂s), ās∇f (X̂s)〉ds ≤ 2A2

∫ t

0
e−2βs ds ≤ A2

β
.
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Using our condition (4.2), we see thatYt ≤ 1+ h(0) + Mt once if

β > max{0,2A2 + B}.
Fix such aβ. For anyλ > 0, using the exponential martingale,

exp
(
λMt − λ2

2
[M]t

)
,

(Novikov’s condition is satisfied) and Doob’s maximal inequality [applied to the
positive submartingale exp(λMt/2)], we have

Eeλ(supt≤T Yt−1−h(0)) ≤ E sup
t≤T

eλMt ≤ 4(EeλMT )2 ≤ 4 exp
(

λ2A2

β

)
.

Hence, by Chebychev’s inequality and an optimization ofλ, we get

P

(
sup
t≤T

Yt > 1+ h(0) + r

)
≤ 4 exp

(
− βr2

4A2

)
∀ r > 0.

Consequently,

Eexp
(
a sup

t≤T

Y 2
t

)
< +∞, if 0 < a <

β

4A2
.

Hence, (4.3) is true for allδ ∈ (0, e−βT β

4A2 ), whereβ > max{0,2A2 + B}. �

REMARK 4.2. If b ∈ C2 verifies for some constantB,

∇sb := (1
2(∂ib

j + ∂jb
i)
)
1≤i,j≤d ≤ BId(4.4)

in the order of nonnegative definiteness whereId is the identity matrix, then
〈y − x, b(y) − b(x)〉 ≤ B|x − y|2 and the condition onb in (4.2) is satisfied.

REMARK 4.3. Assume‖∇b‖ ≤ K , n = d andσ(x) = σ = Id . Capitaine, Hsu
and Ledoux [3] yields the log-Sobolev inequality below:∫

C([0,T ],Rd )
F 2 log

F 2

EPxF
2

dPx ≤ 2eKT
∫
C([0,T ],Rd )

|DF|2H dPx,

whereDF be the Malliavin gradient and

H :=
{
γ (·) :=

∫ ·

0
h(s) ds; ‖γ ‖2

H =
∫ T

0
|h(s)|2 ds < +∞

}

(the Cameron–Martin space). As the result of Otto and Villani [15] suggests that
the log-Sobolev inequality implies theT2(C) inequality (that is proved on the
smooth Riemannian manifold), we should havePx ∈ T2(C) on C([0, T ]) w.r.t.
the following pseudo-metric,

dH (γ1, γ2) :=
{‖γ1 − γ2‖H , if γ1 − γ2 ∈ H,

+∞, otherwise.
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This last pseudo metric is much larger thandT used in the Corollary above. We
shall give a simple proof of this lastT2(C) inequality in Section 5.

Notice that asdH above is only a pseudo-metric and‖X·‖H = +∞, a.s.,
Theorem 1.1 cannot be applied forT1(C) associated withdH (since its sufficient
part is no longer valid) and Theorem 2.3 (whose proof is based on Theorem 1.1) is
no longer true w.r.t.dH .

REMARK 4.4. Without essential change of proof, the same result holds if the
locally Lipschitzian condition ofσ,b is replaced by the well posedness of the
martingale problem associated with(σσ t , b), in the sense of Stroock–Varadhan.

REMARK 4.5. If the condition on the driftb in (4.2) is substituted by
〈x, b(x)〉 ≤ B(1+|x|2) ∀x ∈ Rd , then with the same proof as above, we can prove
thatEexp(δ supt∈[0,T ] |Xt(x)|2) < +∞ for someδ > 0 depending on initial point.
Hence,Px satisfies theT1-inequality with a constantC = Cx depending onx.

Note the following drawback of the previous corollary: the constantC in theT1
inequality obtained through Theorem 2.3 via inequality (2.2) is of ordereβT which
is not natural in regard of the results obtained via weakly dependent sequences. We
now show how Theorem 2.5 enables us to get the correct order.

We know from Corollary 4.1 that the law of(Xt (x))t∈[0,1] satisfies theT1-
inequality with a constantC independent ofx. In other words, the transition kernel
of the Markov chainYn := X[n,n+1] valued inC([0,1],Rd) satisfiesT1(C). Let us
check (C1′) below.

Given two different initial pointsx, x̃, let

X̂t := Xt(x) − Xt(x̃),

σ̂t = σ
(
Xt(x)

) − σ
(
Xt(x̃)

)
, b̂t = b

(
Xt(x)

) − b
(
Xt(x̃)

)
.

By Ito’s formula,

|X̂t |2 = |x − x̃|2 +
∫ t

0

(
tr(σ̂s σ̂

t
s ) + 2〈X̂s, b̂s〉)ds + Mt,

where(Mt) is a local martingale withM0 = 0, whose quadratic variational process
is given by

[M]t = 4
∫ t

0
〈X̂s, (σ̂s σ̂

t
s )X̂s〉ds.

Let τ̂n := inf{t ≥ 0; |X̂t | ∨ [M]t = n}. If there isδ > 0 such that

1
2 tr

[(
σ(x) − σ(x̃)

)(
σ(x) − σ(x̃)

)t ] + 〈x − x̃, b(x) − b(x̃)〉
(4.5)

≤ −δ|x − x̃|2 ∀x, x̃ ∈ Rd,
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then

E
∣∣X̂t∧τ̂n

∣∣2 ≤ |x − x̃|2 − 2δ

∫ t

0
E
∣∣X̂s∧τ̂n

∣∣2ds.

This entails by Gronwall’s inequality and Fatou’s lemma,

E|Xt(x) − Xt(x̃)|2 = E
∣∣X̂t

∣∣2 ≤ |x − x̃|2e−2δt ∀ t ≥ 0.(4.6)

Moreover, if σ is globally Lipchitzian, then by Burkholder–Davis–Gundy’s
inequality and Gronwall’s inequality, we obtain easily from the estimate above
that

E sup
t≤s≤t+1

|Xs(x) − Xs(x̃)|2 ≤ K|x − x̃|2e−2δt

for some constantK . Thus, the Markov chainYn := X[n,n+1] valued inC([0,1],
Rd) satisfies (C1′) too. Consequently, we obtain by Theorem 2.11, the following:

PROPOSITION 4.6. Assume(4.2), (4.5)and σ is globally Lipchitzian. Then
there is some constantC > 0 such that for anyn ≥ 1 and any initial pointx, the
law Px of (Xt (x))t∈[0,n] onC([0, n],Rd) satisfies the inequalityT1(C ·n) w.r.t. the
metric

d(γ1, γ2) :=
n−1∑
k=0

sup
k≤t≤k+1

|γ1(t) − γ2(t)|.

REMARK 4.7. Let(Pt ) be the semigroup of transition probability kernels of
our diffusion(Xt ). Notice that under (4.5), we have (4.6) which entails not only
the existence and uniqueness of the invariant probability measureµ of (Pt ), but
also

Wd
2
(
Pt(x, ·),Pt (x̃, ·)) ≤ e−δt |x − x̃|,

which gives us the exponential convergence below:

Wd
2
(
Pt(x, ·),µ) ≤ e−δt

(∫
|x − x̃|2 dµ(x̃)

)1/2

∀x ∈ Rd, t > 0.

Let us present a Hoeffding type inequality for

F(γ ) :=
∫ n

0
V (γ (t)) dt,

whereV :Rd → R satisfies‖V ‖Lip ≤ α. For suchV , ‖F‖Lip ≤ α w.r.t. the metric
given in the proposition above. Hence, by Theorem 1.1, Proposition 4.6 entails

P

(∫ n

0

[
V
(
Xt(x)

) − EV
(
Xt(x)

)]
dt > r

)
≤ exp

(
− r2

2nC

)
∀ r > 0.
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5. A direct approach to T2(C) for SDEs via stochastic calculus.

5.1. T2-inequality of the Wiener measure w.r.t. the Cameron–Martin metric.
Let us extend theT2-inequality of the Gaussian measure due to Talagrand to the
Wiener measureP onC([0, T ],Rd), by means of Girsanov formula. GivenQ � P

such thatH(Q/P) < +∞, then underQ, there exist a Brownian motion(Bt) and
a predictable process(βt) such that the coordinates system(γt ) of C([0, T ],Rd)

verifies

dγt = dBt + βt(γ ) dt, γ0 = 0.

Moreover, it is well known that [see the proof of (5.7) below in a much more
complicated case]

H(Q/P) = 1
2EQ

∫ T

0
|βt |2(γ ) dt.(5.1)

Consider the Girsanov transformation�(γ ) := γ (·) − ∫ ·
0 βt(γ ) dt . Then the law

of (γ,�(γ )) underQ is a coupling of(Q,P). Hence, w.r.t. the Cameron–Martin
metricdH given in Remark 4.2,

(
W

dH

2 (Q,P)
)2 ≤ EQ dH

(
γ,�(γ )

)2 = EQ

∫ T

0
|βt |2(γ ) dt = 2H(Q/P),(5.2)

that is,P ∈ T2(1) on (C([0, T ],Rd), dH). We see now why this is sharp. Indeed, if
βt is determinist (or, equivalently,Q is a Gaussian measure), we claim that

[WdH

2 (Q,P)]2 =
∫ T

0
|βt |2 dt = 2H(Q/P).

This follows by the following observation:

LEMMA 5.1. LetX be a random variable valued in a Banach spaceE andH

be a separable Hilbert space continuously embedded inE. Then for any element
h ∈ H ,

W
dH

2 (PX,PX+h) = ‖h‖H ,

wherePX is the law ofX, dH (x, y) := ‖x − y‖H if x − y ∈ H and+∞ otherwise.

PROOF. At first [WdH

2 (PX,PX+h)]2 ≤ E‖X − (X + h)‖2
H = ‖h‖2

H . To show
the inverse inequality, letπ be a probability measure onE2 such that its marginal
laws are, respectively, laws ofX andX + h, and

∫∫ ‖y − x‖2
Hπ(dx, dy) < +∞.

Sincey − (x + h) is centered in the sense thatEπ 〈ei, y − (x + h)〉H = 0 where
(ei) is an orthonormal basis ofH , we have by Jensen’s inequality,∫ ∫

‖y − x‖2
H π(dx, dy) =

∫ ∫ ∥∥h + (
y − (x + h)

)∥∥2
Hπ(dx, dy) ≥ ‖h‖2

H ,
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the desired result.�

Considering the mapping�(γ ) = γ (T ), which verifies

|�(γ1) − �(γ2)| ≤
√

T dH (γ1, γ2),

we get by Lemma 2.1 and (5.2) thatN (0, T Id) ∈ T2(C) onRd w.r.t. the Euclidean
metric with the sharp constantC = T (the theorem of Talagrand).

REMARK 5.2. Gentil [7] proved the dual (functional) version of the
T2-inequality of the Wiener measure w.r.t. the Cameron–Martin metric by gen-
eralizing the approach in [1]. The proof here is completely different and seems to
be simpler and direct.

REMARK 5.3. Recall the method of Talagrand for proving hisT2(C) for
N (0, Id). At first by independent tensorization, he reduces to dimension 1. And in
dimension one, he uses the optimal transportation of Fréchet putting forwardγ =
N (0,1) to f dγ , and a direct integration by parts yields miraculously hisT2(C).
The method here is completely different, we use the Girsanov transformation
which putsQ back toP instead of an (eventual) optimal transportation puttingP

forward to Q. The approach of Talagrand is generalized recently by Feyel and
Ustunel [6] who succeed to construct the optimal transportation fromP to Q on an
abstract Wiener space(W,H,P).

We learned very recently (10 monthes after our first version) from Fang that the
method of Girsanov transformation here has been used by Feyel and Ustunel [5]
in a less elementary manner. So the result of this paragraph is due to them.

5.2. T2-inequality of diffusions w.r.t. the Cameron–Martin metric.We now
generalize the preceding argument to solution of the SDE

dXt = dBt + b(Xt ) dt, X0 = x ∈ Rd,

where(Bt ) is aRd -valued Brownian motion. We assume thatb ∈ C1 and

‖∇b‖ ≤ K.

For any pathγ ∈ C([0, T ],Rd) with γ (0) = 0, let�(γ ) = η be the solution of

η(t) = x + γ (t) +
∫ t

0
b(η(s)) ds.

Then the solution of the SDE above is given byX· = �(B·). Hence, for proving
the T2-inequality of X· w.r.t. the metricdH , it is enough to show that� is
dH -Lipschitzian. To this end, consider

g(t) = d

dε
�(γ + εh)|ε=0,
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whereh ∈ H is fixed. It satisfies

g(t) = h(t) +
∫ t

0
∇b(η(s))g(s) ds.

Its solution is given by

g(t) =
∫ t

0
J (s, t)h′(s) ds,

whereJ (s, t) is the solution of the matrix differential equation

J (s, s) = Id,
d

dt
J (s, t) = ∇b(η(t))J (s, t).(5.3)

Since∇sb ≤ BId for someB ≤ K , we have|J (s, t)y| ≤ eB(t−s)|y| ∀y ∈ Rd .
Consequently,

|g(t)| ≤
∫ t

0
eB(t−s)|h′(s)|ds.

Thus, by Cauchy–Schwarz,

‖g‖2
H ≤ 2

∫ T

0
|h′(t)|2 dt + 2

∫ T

0
|∇b(η(t))g(t)|2 dt

≤ 2‖h‖2
H + 2K2

∫ T

0

[∫ t

0
eB(t−s)|h′(s)|ds

]2

dt.

Note that∫ T

0

[∫ t

0
eB(t−s)|h′(s)|ds

]2

dt =
∫ T

0

∫ T

0
|h′(u)||h′(v)|

[∫ T

u∨v
e2Bt−(u+v) dt

]
dudv

= 〈�|h′|, |h′|〉L2([0,T ]),
where

�(u, v) =

 e−B(u+v) e

2BT − e2B(u∨v)

2B
, if B �= 0,

T − u ∨ v, if B = 0

and�f (u) := ∫ T
0 �(u, v)f (v) dv. Let λmax(�) be the largest eigenvalue of� in

L2([0, T ]). We haveλmax(�) ≤ ‖�‖1, the norm of� in L1([0, T ]). It is easy to
get‖�‖1 ≤ 1

B2 if B < 0, ‖�‖1 ≤ e2BT

2B2 if B > 0, and‖�‖1 = T 2

2 if B = 0. Thus,
setting

α2 := α2(T ,K,B) =




2
(

1+ K2

B2

)
, if B < 0,

2
(

1+ K2e2BT

2B2

)
, if B > 0,

2
(

1+ K2T 2

2

)
, if B = 0;

(5.4)
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we get by the estimates above that‖g‖2
H ≤ α2‖h‖2

H , that is,‖�‖Lip(dH ) ≤ α. Thus,
Lemma 2.1 (which remains valid for the pseudo-metricdH ) together with the
T2-inequality for the Wiener measure gives us the following:

PROPOSITION5.4. Assume∇sb ≤ BId and‖∇b‖ ≤ K , then for every initial
point x, Px ∈ T2(α

2) on C([0, T ],Rd) w.r.t. the metricdH , whereα2 is given
by (5.4).

REMARK 5.5. Of course, the estimate of‖�‖Lip(dH ) ≤ α together with the
log-Sobolev inequality of Gross for the Wiener measure gives us also∫

C([0,T ],Rd )
F 2 log

F 2

EPxF
2 dPx ≤ 2α2

∫
C([0,T ],Rd )

|DF|2H dPx,

which is better than the Capitaine–Hsu–Ledoux’s estimate in Remark 4.3 when
B < 0.

It is interesting to investigate whether this proposition and the corresponding
log-Sobolev inequality continue to hold in the case where∇sb ≤ BId with B ≤ 0
without condition‖∇b‖ ≤ K .

5.3. T2-inequality of diffusions w.r.t. theL2-metric. Perhaps the most elemen-
tary metric onC([0, T ],Rd) is the followingL2[0, T ]-metric,

d2(γ1, γ2) :=
√∫ T

0
|γ1(t) − γ2(t)|2 dt.

Indeed, the argument leading to theT2-inequality of the Wiener measure will yield
the following robustT2-inequality w.r.t. the metric above:

THEOREM 5.6. Assume thatσ , b are locally Lipschitzian and satisfy(4.5)for
someδ > 0,and‖σ‖∞ := sup{|σ(x)z|; x ∈ Rd, |z| ≤ 1} < +∞. ThenPx ∈ T2(C)

on C([0, T ],Rd) w.r.t. the L2-metric d2 above for allx ∈ Rd and T > 0, where
the constantC is given by

C := ‖σ‖2∞
δ2

.

Moreover, PT (x, ·) ∈ T2(
‖σ‖2∞

2δ
) on Rd , as well as the unique invariant probability

measureµ of (Pt).

REMARK 5.7. The twoT2-inequalities in this theorem are both sharp. Indeed,
let d = 1, σ(x) = 1, b(x) = x/2, that is, (Xt ) is the standard real Ornstein–
Uhlenbeck process, whose invariant measure isN (0,1). By this proposition,
µ ∈ T2(C) with C = ‖σ‖2∞/2δ = 1, which is sharp.
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For the sharpness of theT2-inequality forPx w.r.t. d2, note that any Gaussian
measureN (m,�) on Rn satisfiesT2(C) with the sharp constantC being the
largest eigenvalueλmax(�) of the covariance matrix�. This can be extended
easily to any Gaussian measureν = N (m,�) on any separable Hilbert spaceG,
where the covariance matrix� is a Hilbert–Schmidt operator onG. Hence, if
(Xt )t≥0 is a Gaussian process with paths a.s. inL2([0, T ], dt), then its lawP

satisfies theT2(C) on L2([0, T ], dt) with the sharp constantC = λmax(�), the
largest eigenvalue of the operator

�f (s) :=
∫ T

0
Cov(Xs,Xt )f (t) dt ∀f ∈ L2([0, T ], dt).

For the Ornstein–Uhlenbeck process lawP0 above starting from 0, Cov(Xs,Xt ) =
exp(−|t − s|/2) − exp(−(s + t)/2). In that case,

λmax(�) ≥ 〈�1[0,T ],1[0,T ]〉
T

→ 4 asT → ∞.

Hence, the constantC = ‖σ‖2/δ2 = 4 in theT2-inequality for P0 given by our
theorem becomes sharp whenT → +∞.

PROOF. We shall prove that for anyε > 0, for any probability measureQ on
C([0, T ],Rd),

(
W

d2
2 (Q,Px)

)2 ≤ 2
(1− e(ε−2δ)T )‖σ‖2∞

ε(2δ − ε)
H(Q/P)(5.5)

and for any probability measureν onRn,

(
W

d2
2

(
ν,PT (x, ·)))2 ≤ 2

supt∈[0,T ] e(ε−2δ)t‖σ‖2∞
ε

H
(
ν/PT (x, ·)).(5.6)

Choosingε = δ in (5.5), we get the first claim in the theorem; lettingε ↑ 2δ, we

get PT (x, ·) ∈ T2(
‖σ‖2∞

2δ
) by (5.6) and thenµ ∈ T2(

‖σ‖2∞
2δ

) by Lemma 2.2 and the
fact thatPT (x, ·) → µ asT → ∞ (see Remark 4.7).

It is enough to prove (5.5) forQ � Px andH(Q/Px) < +∞. We divide its
proof into two steps.

Step1. We do at first some preparation of stochastic calculus. Let(
,F , P̃)

be a complete probability space on which an-dimensional Brownian motion
(Bt ) = (B

j
t )j=1,...,n is defined and letFt = F B

t = σ(Bs, s ≤ t)P̃ (completion
by P̃). Let Xt(x) be the unique solution of (4.1) starting fromx. Then the law
of X·(x) is Px . Consider

Q̃ := dQ

dPx

(X·(x)) · P̃, Mt := EP̃

(
dQ

dP
(X·(x))/Ft

)
∀ t ∈ [0, T ].
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Remark that, asQ is a probability measure and the law ofX(x) underP̃ is
exactlyPx , we have∫




dQ

dPx

(X(x)) dP̃ =
∫
C([0,T ],Rd)

dQ

dPx

(w)dPx(w) = Q
(
C([0, T ],Rd)

) = 1.

(Mt) is a martingale can and will be chosen as a continuous martingale. Let
τ := inf{t ∈ [0, T ]; Mt = 0} with the convention that inf∅ := T +, whereT +
is an artificial added element larger thanT , but smaller than anya > T . Then
Q̃(τ = T +) = 1 and

Mt = 1t<τ exp
(
Lt − 1

2[L]t ),
whereLt := ∫ t

0
dMs

Ms
∀ t < τ . (Lt ), being aP̃-local martingale on[0, τ ), can be

represented in the following way: there is a predictable process(βt) = (β
j
t )0≤t<τ

such that
∫ t
0 |βs |2ds < +∞, P̃-a.s. on[t < τ ] and

Lt =
n∑

j=1

∫ t

0
βj

s dBj
s =

∫ t

0
〈βs, dBs〉 ∀ t < τ.

Let τn = inf{t ∈ [0, τ [; [L]t = n} with the same convention that inf∅ := T +. It is
elementary thatτn ↑ τ , P̃-a.s. Hence, by martingale convergence,

H(Q/P) = H(Q̃/P̃) = EP̃MT logMT = lim
n→∞ EP̃MT ∧τn logMT ∧τn

= lim
n→∞EQ̃

(
LT ∧τn − 1

2[L]T ∧τn

)
.

By Girsanov’s formula,(Lt∧τn −[L]t∧τn )t∈[0,T ] is aQ̃-local martingale, then a true
martingale since its quadratic variation process underQ̃, being again([L]t∧τn), is

bounded byn. Consequently,EQ̃(LT ∧τn − [L]T ∧τn) = 0. Substituting it into the
preceding equality and noting thatQ̃(τn ↑ τ = T +) = 1, we get by monotone
convergence,

H(Q/P) = 1
2 lim

n→∞EQ̃[L]T ∧τn = 1
2EQ̃[L]T = 1

2EQ̃
∫ T

0
|βt |2dt.(5.7)

Notice that this is an extension of (5.1).

Step2. By Girsanov’s theorem,

B̃t := Bt −
∫ t

0
βs ds

is a Q̃-local martingale with[B̃i , B̃j ]t = [Bi,Bj ]t = 1i=j t , hence, a Brownian
motion underQ̃. UnderQ̃, Xt = Xt(x) verifies

dXt = σ(Xt) dB̃t + b(Xt ) dt + σ(Xt)βt dt, X0 = x.
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We now consider the solutionYt (underQ̃) of

dYt = σ(Yt) dB̃t + b(Yt) dt, Y0 = x.

The law of(Yt )t∈[0,T ] underQ̃ is exactlyPx . In other words,(X,Y ) underQ̃ is a
coupling of(Q,Px).

Setting

X̂t := Xt − Yt , σ̂t := σ(Xt) − σ(Yt), b̂t := b(Xt ) − b(Yt),

we have

d|X̂t |2 = [2〈X̂t , b̂t + σ(Xt)βt〉 + tr(σ̂tσ
t
t )]dt + 2〈X̂t , σ̂t dB̃t〉.(5.8)

Letting τ̂n := inf{t ∈ [0, T ]; |X̂t | = n}, we have that for anyε > 0,

EQ̃
∣∣X̂t∧τ̂n

∣∣2 ≤ −2δ

∫ t

0
EQ̃

∣∣X̂s∧τ̂n

∣∣2 ds + 2EQ̃
∫ t∧τ̂n

0
〈X̂s, σ (Xs)βs〉ds

≤ (ε − 2δ)

∫ t

0
EQ̃

∣∣X̂s∧τ̂n

∣∣2 ds + 1

ε
EQ̃

∫ t

0
‖σ‖2∞|βs |2 ds.

Gronwall’s lemma, together with Fatou’s lemma, gives us

EQ̃|X̂t |2 ≤ ‖σ‖2∞
ε

EQ̃

∫ t

0
e(ε−2δ)(t−s)|βs |2 ds ∀ t > 0.(5.9)

Thus,

(
W

d2
2 (Q,Px)

)2 ≤ EQ̃
∫ T

0
|X̂t |2 dt

≤ ‖σ‖2∞
ε

EQ̃
∫ T

0
|βs |2ds

∫ T

s
e(ε−2δ)(t−s) dt

≤ ‖σ‖2∞
ε

· 1− e(2δ−ε)T

2δ − ε
EQ̃

∫ T

0
|βs |2ds,

the desired (5.5). For (5.6), notice that by the key remark (2.1),

H
(
ν/PT (x, ·)) = inf

{
H

(
Q|C([0,T ],Rd )/Px |C([0,T ],Rd )

);QT := Q(xT ∈ ·) = ν
}
.

And for each suchQ, defineQ̃ as before, we have[
Wd

2
(
ν,PT (x, dy)

)]2 ≤ EQ̃|X̂T |2
and conclude using (5.9).�

REMARK 5.8. After the first version was submitted, we learned from M.
Ledoux the work of Wang [20] who obtained theT2(C) w.r.t. theL2-metric for
the elliptic diffusions with lower bounded�2 condition of Bakry on a Riemannian
manifold. His method consists of a continuous time tensorization of theT2(C)
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of the heat kernels (which is true by the log-Sobolev inequality due to Bakry).
Hence, the method and the result here are very different from his: the volatility
coefficientσ could be completely degenerated in Theorem 5.6, and our proof does
not rely on the log-Sobolev inequality which is unknown in our context.

REMARK 5.9. By the proof above, we see that (5.5) and (5.6) hold under (4.5)
even withδ ≤ 0, except now theT2-constant goes to infinity asT → +∞.

REMARK 5.10. The local Lipschitzian condition onσ, b in this theorem
can be substituted by their continuity together with the well-posedness of the
martingale problem associated with(σσ t , b). Indeed, one can find(σ n, bn)

tending locally uniformly to(σ, b), such that(σ n, bn) is locally Lipschitzian,
‖σn‖∞ ≤ ‖σ‖∞ and verifies condition (4.5) with the sameδ. Now the desired
result follows from Theorem 5.6 and Lemma 2.2.

As indicated in [1], many interesting consequences can be derived from this
result. For instance

COROLLARY 5.11. Under the assumptions of Theorem5.6,we have for any
T > 0,

(a) for any smooth cylindrical functionF on G := L2([0, T ], dt;Rd) ⊃
C([0, T ],Rd), that is,

F ∈ F C∞
b := {f (〈γ,h1〉, . . . , 〈γ,hn〉);n ≥ 1, hi ∈ H̃ , f ∈ C∞

b (Rn)}
[where〈γ1, γ2〉 := ∫ T

0 γ1(t)γ2(t) dt ], the following Poincaré inequality holds:

VarPx (F ) ≤ ‖σ‖2∞
δ2

∫
C([0,T ],Rd )

‖∇F(γ )‖2
G dPx(γ ),(5.10)

whereVarPx (F ) is the variance ofF under lawPx , and∇F(γ ) ∈ G is the gradiant
of F at γ .

(b) For anyg ∈ C∞
b (Rd),

VarPT (x,·)(g) ≤ ‖σ‖2∞
2δ

∫
Rd

|∇g(y)|2PT (x, dy).(5.11)

(c) (Inequality of Tsirel’son type.)For any nonempty subsetK in G such that
Z(γ ) := suph∈K〈γ,h〉 ∈ L1(Px), then

∫
exp

(
δ2

‖σ‖2∞
sup
h∈K

[
〈γ,h〉 − |h|2G

2

])
dPx ≤ exp

(
δ2

‖σ‖2∞
EPx Z

)
.(5.12)
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(d) (Inequality of Hoeffding type.)For anyV :Rd → R such that‖V ‖Lip ≤ α,

P

(
1

T

∫ T

0
V
(
Xt(x)

)
dt − E

1

T

∫ T

0
V
(
Xt(x)

)
dt > r

)

≤ exp
(
−T r2‖σ‖2∞

2α2δ2

)
∀ r > 0.

PROOF. For part (a), for anyF(γ ) = f (〈γ,h1〉, . . . , 〈γ,hn〉) ∈ F C∞
b , we

may assume without loss of generality thath1, . . . , hn are orthonormal. In such
case,

� :γ → (〈γ,h1〉, . . . , 〈γ,hn〉), G → Rn

is Lipschitzian with‖�‖Lip ≤ 1. Hence,ν := Px ◦ �−1 ∈ T2(‖σ‖2∞/δ2) onRn by
Lemma 2.1. Thus, the result of [1], Section 4.1 entails

VarPx (F ) = Varν(f ) ≤ ‖σ‖2∞
δ2

∫
Rn

|∇f |2 dν

= ‖σ‖2∞
δ2

∫
C([0,T ],Rd )

‖∇F(γ )‖2
G dPx(γ ).

Part (b) is a consequence of Theorem 5.6 by [1], Section 4.1. One can derive
part (c) from Theorem 5.6 by the same argument as in the finite-dimensional case
given in [1], Section 6.1. For part (d), note thatT2(C) ⇒ T1(C). Moreover, the
functionF(γ ) := (1/T )

∫ T
0 V (γ (t)) dt on C([0, T ],Rd) is Lipschitzian w.r.t. the

L2-metric and‖F‖Lip ≤ α/
√

T . Hence, part (d) follows from Theorem 1.1.�

REMARK 5.12. Let us compare theT2(C)-inequality onC([0, T ],Rd) w.r.t.
the L2-metric d2 or the Cameron–Martin metricdH , denoted, respectively, by
T2(C/d2), T2(C/dH ).

(a) If γ1(0) = γ2(0), then d2(γ1, γ2) ≤ 2T
π

dH(γ1, γ2) by the classical Poincaré
inequality. Hence, if the lawPx of our diffusion starting fromx verifies
T2(C/dH ) on C([0, T ],Rd), thenPx ∈ T2(C(4T 2/π2)/d2) on C([0, T ],Rd).
That orderT 2 in the lastT2-inequality is of correct order. For example, for
the real Wiener measureP, we see by Section 5.1 thatP ∈ T2(1/dH ) on
C([0, T ],Rd), but the largest eigenvalueλmax(�) of the covariance function
�(s, t) = s ∧ t in L2([0, T ]) verifies

λmax(�) ≥ 〈�1[0,T ],1[0,T ]〉
T

= T 2

3
.

Thus, by the same analysis as in Remark 5.7,P ∈ T2(CT 2/d2) with 4/π2 ≥
C = λmax(�) ≥ 1/3.



TRANSPORTATION COST-INFORMATION INEQUALITIES 2731

(b) The contribution of|γ1(t) − γ2(t)| to theL2-metric is homogeneous in time
t , but not at all to the Cameron–Martin metricdH . This is the principal reason
for

(b.1) TheT2(C/dH ) is well adapted to the small time asymptotics of the
diffusions, but not for their large time asymptotics. For instance, ifPx ∈
T2(C/dH )), since forZ(γ ) = sup0≤t≤T ‖γ (t) − γ (0)‖, ‖Z‖Lip(dH ) ≤ √

T ,
then by Theorem 1.1 (its necessary part remains true fordH -Lipchitzian
functionF which is, moreover, integrable, by following the proof in [2]),

Px

(
sup

0≤t≤T

|Xt(x) − x| − Ex sup
0≤t≤T

|Xt(x) − x| > r

)
≤ exp

(
− r2

2CT

)

which is of the correct order whenT → 0+, but completely meaningless forT

large. See [21] for the nonadaptability of the log-Sobolev inequality w.r.t.dH

for the large time asymptotics of the diffusions.
(b.2) In contrary, we have seen that theT2(C/d2) is very well adapted for

the large time asymptotics of the diffusions.

REMARK 5.13. Theorem 5.6, together with Corollary 3.5, is our main new
example for whichT2(C) is true but the inequality of log-Sobolev is unknown.
They are our (very partial) answer to Question 3 in the Introduction. We believe
that in the situations of Theorem 5.6 and Corollary 3.5, the log-Sobolev inequality
may fail without further regularity assumptions on the volatility coefficientσ .
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