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We first give a characterization of tljé-transportation cost-information
inequality on a metric space and nextdisome appropriate sufficient condi-
tion to transportation cost-information inequalities for dependent sequences.
Applications to random dynamical systems and diffusions are studied.

1. Introduction and questions. Let (E, d) be a metric space equipped with
o-field 8 such thati(., -) is 8 x B8-measurable. Givep > 1 and two probability
measureg andv on E, we define the quantity

1/p
(1.1) W, v) :inf(/ d(x,y)? dn(x,y)) ,

where the infimum is taken over all probability measuresn the product space
E x E with marginal distributiong. andv [say coupling of(i, v)]. This infimum
is finite as soon ag and v have finite moments of ordep. This quantity is
commonly referred to ag”-Wasserstein distance betwegrandv. Whend is
the trivial metric @(x, y) = 1.%,), 2Wf(u, v) = ||u — v|lTv, the total variation
of u —v.

The Kullback information (or relative entropy) ofwith respect tqu is defined
as

/Io dvd if v

—daV V

(1.2) H(v/m={ 974" #
+00 otherwise.

We say that the probability measure satisfies theL”-transportation cost-
information inequality on(E, d) if there is some constar@ > 0 such that for
any probability measure,

(1.3) Wy (1, v) < V2CH /).

To be short, we write. € T),(C) for this relation.
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The cases p = 1" and “p = 2" are particularly interesting. Thaty (C) are
related to the phenomenon of measure concentration was emphasized by Marton
[10, 11], Talagrand [18], Bobkov and Go6tze [2] and amply explored by Ledoux
[8, 9]. TheT»(C), first established by Talagrand [18] for the Gaussian measure, has
been brought into relation with the log-Sobolev inequality, Poincaré inequality, inf-
convolution, Hamilton—Jacobi’s equations by Otto and Villani [15] and Bobkov,
Gentil and Ledoux [1]. Since those important works, a main trend in the field is to
put on relations of’, (C) with other functional inequalities (of geometrical nature
in particular). In this paper we shall study three questions around the following
problem going somehow to the opposite directibaw to establish théT,(C)”
without reference to other functional inequalities in various concrete situations

To raise our first question, let us mention the following:

THEOREM 1.1 (Bobkov and Gétze [2]). u satisfies theLl-transportation
cost-information inequality oRE, d) with constantC > 0, that is u € T1(C),
if and only if for any Lipschitzian functiof : (E, d) — R, F is u-integrable and

22
(1.4) / MF—(F)y) du < exp(7C||F||Eip) VieR,
E
where(F), = [y F du and
F(x)—F(y)
| FllLip = SUpQ < 400
x#y d(x,y)

In that case
r2
w(F — (F) >r)§exp(—7) Vr>0.
! 2C||FIIZ,

It might be worthwhile to recall the classical Pinsker—Csizsar inequality which
is the starting point of many recent works. By the coupling characterization of the
total variation distancg - ||tv, the Pinsker—Csizsar inequality

v — plltv </ 3H /1)

says that w.r.t. the trivial distane&x, y) = 1., on E, any probability measure
satisfies thd.l-transportation cost-information inequality with the sharp constant
C = 1/4. And by Theorem 1.1, the Pinsker—Csizsar inequality for the trivial
distance follows from the classical well-known inequality: for a real bounded
random variablé& with values in[a, b],

N2
EeS_ES < eX%(bTa))

(and vice versa).
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We now do a simple remark. Assume that T1(C) or, equivalently, (1.4). Let
v (dA) be the standard Gaussian IaW(0, 1) onR. We have for any Lipschitzian
function F on E with (F),, =0 and| F|l.jp <1, anda € R,

2
c
fEexp(%Fz) du=/EfRe“”y(dmdMS/Rexp(gazx2>y(dm
1 2

. a 1
_ ) if — < —,
= 1—a2C 2 2C
+00, otherwise.

Applying it to F(x) :=d(x, x0) — [ d(x, x0) du(x), we obtain

cdz(x,xo)d v <0 i)
/e nx) < +oo ce o0 )"

1
» 4C

(1.5) / / APED 41 () dp(y) < 0.

That naturally leads to the following questions:

In particular, for alls € (0, z~) we have,

QuEsTION 1. Will the Gaussian tail (1.5) be sufficient for tiié-transporta-
tion cost-information inequality of?

The second question is about dependent tensorizations df,i{t®). Let, for
example,P?, the law of a homogeneous Markov chail(x))1<k<, on E"
starting fromx € E, with transition kernelP (x, dy).

QUESTION2. AssumethaP(x,-) € T,(C) forall x € E. Where is the appro-
priate condition under whicl¥} satisfies theL”-transportation cost-information
inequality w.r.t. the metric

n 1/p
dp,(x,y) = (Zd(x,-, y,-)") ?

i=1

The same question can be raised for the law of an arbitrary dependent sequence
(Xr)1<k<n- When (Xy)1<k<, are independent, this question has a rapid and
affirmative answer, see [8, 9] and references therein.

In the dependent case, whéhris the trivial metric, ang = 1 (andd;, becomes
the Hamming distance o&"), Marton [10] generalized the Pinsker—Csizsar
inequality to the law of the so called “contracting” Markov chains:

(1.6) I osup IPi(-/yi—) — PiC/xic)llv <7 < 1

(xi—1.yi-1)
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Her approach is based on coupling ideas, natural by the definition of the involved
Wasserstein distance. Her results have been strengthened by Marton [11, 12] and
Dembo [4] and have been generalized to uniform mixing processes by Samson [17]
and Rio [16].

However, the trivial distance does not reflect the natural metric structure of the
state spacé& to which usual Markov processes such as random dynamical systems
or diffusions are related and that is why the uniform mixing assumption was made
in her work (and also in [17]). This is a main motivation for Question 2.

For the L2-transportation cost-information inequalit§>(C), recall that
Talagrand [18] proved that the standard Gaussiandaw.V (0, 1) satisfiesl>(C)
on R w.r.t. the Euclidean distance with the sharp constarst 1 and found that
T>(C) is stable for product (or independent) tensorization. To our knowledge the
Markovian tensorization df>(C) has not been investigated in the literature.

Since the works of Otto and Villani [15] and Bobkov, Gentil and Ledoux [1],
we know that7>(C) follows from the log-Sobolev inequality in the framework
of Riemannian manifolds. Indeed, all knoWp(C)-inequalities up to now can be
derived from the log-Sobolev inequality. An important open question in the field is
whetherT>(C) is strictly weaker than the log-Sobolev inequality. Hence, it would
be interesting to investigate the following question:

QUESTION 3. How do we establish th&(C)-inequality in situations where
the log-Sobolev inequality is unknown?

This paper is written around those three questions and it is organized as follows.
The next section is the general theoretical part of this paper. After noticing the
stability of 7, (C) under Lipschitzian map and under weak convergence in Sections
2.1and 2.2, in Section 2.3 we prove that condition (1.5) is, in fact, sufficient for the
L1-transportation cost-information inequality, solving Question 1. In Section 2.4
we revisit the coupling method of Marton and show that it actually works for
dependent tensorization @f,(C) for 1 < p < 2, under a contraction assumption
[see (C1) in Theorem 2.5] close to Marton’s (1.6). Section 2.5 is devoted to revisit
the McDiarmid—Rio martingale method which allows us to obtain a much more
subtle condition (C) than (C1) for tensorization df; (C) in Theorem 2.11.

Sections 3 and 4 contain several applications of the general results in Section 2
to random dynamical systems and diffusions which are our main motivation for
Question 2.

In Section 5, quite independent, we present a direct approadh(af) for
diffusions, by means of the Girsanov transformation, with respect to the usual
Cameron—Martin metric ok 2-metric.

The reader may consult the recent monograph by Villani [19] for an extended
(analytical and geometrical) treatment on transportation.
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2. Criteria for T,(C). Throughout this paper l&tE, d) be a metric space
equipped witho -field 8 such thati (-, -) is 8 x B-measurable; and wheik, d)
is separablep will be the Borelo -field.

2.1. Stability under push-forward by Lipschitz mapMe begin with the
stability of 7,,(C) under Lipschitzian map and under weak convergence, which
will be useful later.

LEMMA 2.1. Assume thaw € 7,(C) on (E,dg) and (F,dr) is another

metric spacelf ¥ : (E, dg) — (F, dF) is Lipschitzian
dr(W(x), ¥(y)) <adgp(x,y) Vx,y€eE,

thenji :=u o W=t e T,(Ca?) on(F,dF).

PROOF Let v be a probability measure such thdtv /i) < +oo. The key
remark is
(2.1) H@/) =inf{HW/w); vo W™t =17).
To prove it, puttingug(dx) : %(\D(x))u(dx), we see thatgo W1 = §. We have

for anyv so thatv o W1 =9,

H(v/p) = H(vo/ 1) + / d5(y) H vy /1),

wherev, :=v(-/¥ =y) and u, := u(-/¥ = y) are, respectively, the regular
conditional distribution ob, u knowingW¥ = y. Hence, (2.1) follows.
With (2.1) in hand, the rest of the proof is easy and is omitted.

2.2. Stability under weak convergence.

LEMMA 2.2. Let(E,d) be a metri¢ separable and complete spaolish,
say) and (u,, wren @ family of probability measures of. Assume thaj, €
T,(C) forall n e Nandu, — n weakly Thenu € T,(C).

PROOF Recall at first two facts (see, e.g., [19]):

1. If u, — p andv, — v weakly, then liminf_. oo W, (wn, v,) = Wy (i, v).
2. If p, — n weakly and{d(x, xo)?, u,(dx)} is uniformly integrable,W, (.,
w) — 0.

What one needs to prove is

W2(fiu, ) =2C [ flog fdy
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for all f such thatf i« is a probability. By approximation (and using fact 2 above),
it is sufficient to prove the result for continuoysso that YN < f < N overE
for someN > 1. Leta, = [ fdu, and we have by, € T,(C),"

W,?(fal:",un) < ZC/(é) |09(;;)dun = —/flogfdun

Sinceu, converges weakly tge, a, converges tqu(f) = 1, and one can pass to
the limit in the right-hand side of this last inequality. For the convergence of the
left-hand side, it is enough to apply the lower semi-continuitygf [

2.3. Characterization off1(C) by “Gaussian tail. We present here a char-
acterization of71(C), based on the Bobkov and Gotze [2] result, that is, some
Gaussian integrability property.

THEOREM 2.3. A given probability measurg. on (E,d) satisfies the
L1-transportation cost-information inequality with some constanin (E, d) if
and only if (1.5) holds In the latter case

2\ 1/k 1/k
(22) Cc<= ; ful E;?)') [// e‘s”{z(x’y)du(x)du(y)} < 400.

PrROOF It is enough to show the sufficiency. By Bobkov-Goétze's Theo-
rem 1.1, it is enough to show that there is some congianatC(§) verifying (2.2)
such that

C)?
(2.3) Ee ' ®) < exp(7> VieR,

forall F: E — R with || F|Lp <1 andEF (§) =0, whereé is a random variable
valued inE with law ., defined on some probability spac®, ¥, P).

Let &’ be an independent copy &f defined on the same probability space
(2, F,P). Since EF(’) = 0, by the convexity of thex — ¢*, we have

E(e~*F@") > 1. Consequently, noting th&l F (£) — F(£/)]%**1 =0, we have
E( ) < E(EAF(S))E(E—AF(S’))
— Ee)‘(F(E)_F(E/))
WPELF(§) — F(HI*

=1+ Z (2K)!

00 szEd(E, E/)Zk
<1+) —aor
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Hence, putting

K .Ed N2k~ 1/k
SIS
k>1 (2k)!

we get

X 2%k oNk C)\2
sz S ool ).
(") = +k§k! 2 M2

Thus, for (2.3), it remains to estimagedefined above. Since

k
Ed(g, €)% < k- (51) Eexpsd(¢. &),
we get

< 2 < (k1)2
T 8 k>1\(2k)!

1/k
) [Eexp(s(d(&. &1?) 7" < +00
the desired estimate (2.2)

REMARK 2.4. For comparison notice that the Bernoulli meagum@n {0, 1}
with ©(1) € (0, 1) satisfiesTy1(1/4) w.r.t. the trivial metric, but does not satisfy
T,(C) for any p > 1 (see [7]). Hence, any probability measwurevhich is not
a Dirac measure o does not satisfyl,(C) for any p > 1 w.r.t. the trivial
metric. Another example for illustrating difference ®f and 7> inequalities is
the following.

Let u = ¢p(x)%dx onR with 0 < ¢ € Cy°(R) (compact support). It satisfies
always T1(C) w.r.t. the Euclideard(x, y) := |y — x| by the theorem above.
But if the support ofu (or of ¢) has two connected components I> with
dist(/y, I2) > 0, then the correspondin@>(C) fails. In fact, if contrary to
wu € T2(C), then by [15] or [1] the following Poincaré inequality holds:

Varu(f)fchf/zdu V f e CP(R).

Choose nowf smooth enough and equal to 1 énand 0 onl,. Then the right-
hand side in the Poincaré inequality is 0, whereas the variangevafl be non
zero so that the Poincaré inequality cannot hold, neifher).

This example shows, moreover, tHat(C) on R does not imply the Poincaré
inequality, unlikeT»>(C).

The next two sections are dedicated to the tensorizatidi @) for dependent
sequences.
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2.4. Weakly dependent sequenchiarton's coupling revisited. Let P be a

probablllty measure on the product spade’, 8"), n > 2. For anyx € E",
= (x1,...,x;). Let Pi(-/x'~1) denote the regular conditional law ef given

xi_l for i z 2 (assume its existence). By conventify(-/x°) is the law ofx;
underP, wherex? = xq is some fixed point. Whe# is Markov, thenP; (- /x'~1) =
P;(-/x;_1) is the transition kernel at stép- 1.

Our aim in this section is to extend transportation cost-information inequali-
ties (1.3) for a probability measukeon (E", d;,), where

n 1/p
dp, (x,y) = (Zd(x,-, y»l’) :

i=1

THEOREM2.5. LetP be a probabiliy measure oi£”, and1 < p < 2. Assume
that P;(-/x'~1) € T,(C) on (E,d) forall i > 1, x"~%in EF=1 (E® := {xo}). If

(C1) there existi; > Owith r? := 3722 1 (a;)? < 1 such that

i—1
(2.4) [We (P (-/x' =Y, Pi(/37Y)]P < Y (@))PdP iy %o j),
j=1

forall i > 1,x~1, ¥~1in E'~1, then for any probability measuf@ on E”,

W;”P Q,P) < 1—L/2cn2/p—1H(@/IP>).

PrROOFE The proof is similar to the one used for the Hamming distance by
Marton [10], however, we have to use the assumpRgr/x' 1) e T,(C) instead
of Pinsker’s inequality. Assume that(Q/P) < +oo (trivial otherwise).

Let Q; (-/x'~1) be the regular conditional law af knowingx'~1 for i > 2 and
01(-/x9) the law ofx1, both under lawQ. We shall use the Kullback information
between conditional distributions,

Hy (¥~ = H(Qi (/¥ /Pi(-/¥ 1),
and exploit the following important identity:

(2.5) H(Q/P) = Z / H (71 dQG).

The key is to construct an appropriate couplingodndP, that is, two random
sequenceX” and X" distributed according t@ and P, respectively, on some
probability spacé2, ¥, P).

We define a joint distribution.(X", X") by induction as follows. Add
artificially time 0 and putXo = Xo = % = x0, the fixed point. Assume that
for somei, 1<i <n, £(X'~1, X'~1) is already defined. We have to define
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the joint conditional distributiont (X;, X;/X'~1 = =1, Xx'=1 = x'~1), where
&1, x'1) is fixed (but arbitrary).
Givene > 0 so small that (1+ ) < 1, this distribution will have marginal laws

LXK/ X =51 xi=1 = yi-ly = g, (/5L
and
L(X; /X = 571 xi=1 = yi=1ly — p/xih
S0 as to satisfy
E(d(f(,-, Xi)p/)'zvi—l — -l xi-lo xi—l)
<A+ oWE(Qi(/Zh, Pi(/x'h)?

for all ¥'~1, xi~1in E/~1. Obviously,X", X" are of lawQ, P, respectively.
By the triangle inequality for thév¢-distance,

E(d(f(l, Xi)p/Xi—l =£i—1’ Xi—l :xi—l)
< A4+ [Wi(Qi(-/F7), Pi(-/57H) + Wi (P (/37Y), P /x )]

Using the elementary inequality that + y)? < a?~1x? + bP~1y? (for p > 1
Vx,y > 0)wherea, b > 1 such that la + 1/b = 1, we have by the assumptions
Pi(-/x'~1 e T,(C) and (C1)

E(d”(X;, Xj)/ X't =51 x'"t=x""1

i—1 1/p\ p
(2.6) <(1+e) <¢ZCHZ-<)E"—1> + [Z <a,~>PdP<fi_,~,xi_,~>} )

j=1

i—1
<(+e¢) (ap—l[ZCHi@"—l)]P/z+bP—1Z (@j)Pd? (%i—j, xi- ]-)).
j=1

By recurrence on, this entails tha~ﬂ-jld1’(X.i, f(l-) <+4ooforalli=1,...,n
Taking the average with respect#(X~1, X'~1), summing oni and using the
concavity of the functiom — x?/2 for p € [1, 2], we get by (2.5) and (2.6)

1
Ed Xl7X
n(l—l—e)z ( ))
2 B p/2 p—1 n i-1
Sap_l(_ZEHi(Xl_l)) +—ZZ ajEd’ (Xi-j, Xi-})
n i=1 i=1j=1

1/ 2C p/2  pp-1n-l
b~ (7H(Q/]P’)> +—ZEdP<Xk,Xk> Sl

i=k+1
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Using ijlaf =rP? and lettinge — 0+, the above inequality gives us, when
rPpr—1 <1,

di, r—1
W, " (Q,P) < (W

Optimizing on(a, b), we get the desired inequality]

1/p
) J2en2r-1@Q/P).

Noting that for a real functiorf on E, || fllLip(,,) < « if and only if for every
k=1,...,n,

(2.7) | i) — il <ad(xg, yi)  Vxe, v € E,
where f.(xr) is the functionf w.r.t. thekth variable while the others are fixed.
Then we get by Theorem 1.1,

COROLLARY 2.6. Under the assumption of Theor&rb for p = 1, for any
real function f on E" satisfying(2.7),

Cr\2an
Epe/—Erf) < ex 7) VieR.
pe Ty <
In particular, for anys > 0,
P(f>Epf+1) < exp( ’2(1"’)2)
> —_— 1.
P - 2nCa?

REMARK 2.7. The conditionP;(-/x'~1) € T,(C) is our starting point for
tensorization of th&,(C) and it is verified for many interesting examples, such as
the stochastic differential equation (SDE) (4.1) or random dynamical systems or
Gibbs fields. Condition (C1), meaning that the dependence gbrsenton the
past is very weak, is a crucial condition. Indeed, when, y) =1,+,, p=1and
P is Markovian, (C1) is equivalent to (1.6), and Theorem 2.5 is exactly the result
of Marton mentioned in the Introduction.

REMARK 2.8. That the constant, for the Ty-inequality of P, increases
linearly on dimensiom is natural in the point of view of the Hoeffding inequality
in Corollary 2.6. This is completely different from the case of fanequality,
for which it is hoped that th&,-constant remains independent of dimensioas
seen for the independent tensorizatiorfefC) by Talagrand [18] or its extension
Theorem 2.5.

REMARK 2.9. UnderP;(-/x'"1) e T,(C) and (2.4) but without the contrac-
tion condition that” := 3" ;(a;)? < 1, we have alway®, € T,,(C,) on E" w.r.t.
d;, for some constant,, (but the crucial estimate af,, in Theorem 2.5 is lost).
We give only the proof of this fact fop = 1.
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Indeed, consider the nonnegative nilpotent lower triangular matrx (a;;),
wherea;; =a;_; if i > j and 0 otherwise. For any givére (0, 1), there is always
a (positive) vectot = (z1, ..., z,) such that; >0,>";z; =1 and

n
(zA) = Z Zidi—k < 8z Vk=1,...,n.
i=k+1
Then by (2.5) forp = 1, we have by Jensen’s inequality,

n
EY zid(X;. X;)
i=1

n n i—-1
<A+e) (ZZ[EV ZCH()Zi_l) + ZZ,‘ ZajEd(X,-_j, Xi—j))
i=1

i=1 j=1

k=1 i=k+1

n n—1 n
< (1+8)<J Y Zi2CEHGE Y+ > Ed(Xe, Xi) Y Ziai_k>
i=1

n—1
<(l+¢) (\/ZC maxz; H(Q/P) + > 8z Ed(Xy, f(k)),

k=1

where it follows that

d; 1
W, HQ,P) < ———————— [2C maxz; H(Q/P).
1@ >_(1_6)mlni2i\/ axz; H (Q/P)
Whenz; = 1/n, the best choice dfis r, and this inequality becomes Theorem 2.5.

2.5. T1(C) for weakly dependent sequencédcDiarmid—Rids martingale
method revisited. The last inequality in Corollary 2.6, applied t8(X4, ...,
Xn) = Y p—1 f(Xx) and the trivial metricd, where (X;) are independent and
I f(Xlleo < a, becomes exactly the sharp Hoeffding inequality (see [13]). But
when it is applied toF (X1, ..., X,) = f(X,), it does not furnish the good order
of n for n large. As this last question is important for thg C) of the the invariant
measure, we give now a very simple proof of the following:

PROPOSITION2.10. Let(E, d) be a Polish spacé._et P(x, dy) be a Markov
kernel onE such that

(@) P(x,-) e T1(C) foreveryx € E;
(b) W (P(x,-); P(¥,-) <rd(x, %), for everyx, ¥ in E and some < 1.

Thenthere is a unique inviant probability measure. of P and it satisfied’ (Co)
as well asP" (x,-) ¥n > 1,whereCo, = C(1—r?)~L.
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PrROOF When(E,d) is Polish, the spach(E) of probability measures
on E such that/ d(x, xo)?” dv(x) < +o00, equipped with the Wasserstein metric
W, (-, ) is ametric complete separable space (see [19]). S»il%ECMll(E) = VP e
Mll(E) by (a) and, condition (b) implies (in fact, equivalent to)

W11 P, voP) <rWi(vi,v2) Vi, vp € Mi(E),

hence, by the fixed point theorem, there is one and onlyRvariant measure

[Tl Mf(E), and P"(x,-) — wu in the metric W1 for any initial pointx € E.

The last point shows also thatis the unique invariant probability measure @f
Fillflip=1

[without the restriction thak € M1(E)].
Since
[ rav—| rau
E E
condition (b) is also equivalent to
IPflltip <rllfllip Y f

Thus,||PY flltip <Vl fllLip for all N > 1. Now given a Lipschitzian functiop,
we have by (a) and Bobkov—-Goétze's Theorem 1.1,

C||f||Eip>}

Wi, u)= sup

’

P'(e)) < P"—l[exp(Pf +

2
2 2
S pn—Z[exp(p2f+ CIf Ity C||Pf||up)]
2 2
ClIflIg,  CIPFIR, CIP™ 1R
pP" ooy 7 HP
sexp< fr— St 5 )
ClfIZ,
<exp| P'f+ 77|
<ext( P/ + 50,5

In other words, for every € E, P"(x,-) € T1(Cx), WhereC, is given in the
proposition. Letting: — oo, we obtain the desired result for by Lemma 2.2.
O

We now use the martingale method of McDiarmid [14] (in the independent case)
and Rio [16] (in the uniform mixing case) for extending the argument above to the
process-level lavP.

~THEOREM 2.11. Let PP be a probability measure o&" satisfying P;(-/
x'™1 e T1(C) (Yi, x'~1) in TheorenR.5.Assume instead dfC1) that
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(CY) there is some constast> 0 such that for all real bounded Lipschitzian
function f (xg+1, - . ., x») With ||f|||_ip(dll) <1,forall x €e E", y; € E,

IEp(f (Xikt1s ---> Xn)/ X5 =x%) = Ep(f (Xxt1, -, Xa)/ X5 = 57 y0)|

< Sd(xk, y)-
Then for all function F on E" satisfying(2.7),
CA%(1+ S)%a?
(2.8) Epe*F—EeF) < exp( ( z ) n) Vi eR.

EquivalentlyP € T1(C,) on (E", d;,) with
C,=nC(1+ 5)>2

PrROOF We may assume without loss of generality that 1. Let (M} =
Ep(F/X*))i=0, whereMo = EpF. Itis a martingale. It is enough to show that for

eachk,
2 2
EP(eA(Mk—Mk,l)/Xk—l) <exp<C)” a+29 )
- 2

To this end, note at first b, (-/x'~1) e T1(C) and Theorem 1.1,

2,2
EP(eA(Mk—Mk,l)/Xk—l) < exp(C)” bk)’
where
M k -M k—l’
by = supl k(x%) K (x yk)I.
X,y d(x, Yk)

But Mi(x*) = [F(X xpq1, ... x)Pdxpst, ... dx,/x5), writing x, =
(Xk+1, - - -, Xn) We have

| My (x) — M (F2, o)l

< ‘/(F(xk, Xpiq) — F(x*L e, x,§‘+1))IP’(de+1/xk)‘

+ \ [ PO ) (P /) — Py /5, m)\

<d(xp, yr) + Sd(x, yr).
Hencep, < (1+ S5), the desired result.[]

REMARK 2.12. Whend(x, y) = 1,2y, P;(-/x'~1) € T1(1/4), and this result
is essentially due to Rio [16]. Using a different condition than'j(e essentially
proved that the constastin condition (CI) verifiesS <2372 1 ¢;, whereg; is
the uniform mixing coefficient of the sequeng¥,). Our proof above is, in fact,
inspired by his work.
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REMARK 2.13. Ifthe condition (C1) is viewed adackwardtype, then (C1)
may be seen asfarwardtype. Indeed (C? is equivalent to

d . _ _
Wi (P(dxf o /xk, X570, P g /ye, x5 1) < Sd G, yo).-

It means intuitively that the present does not influence a lot the future of the
processP. In concrete situations (Olis often weaker than (C1) with = 1. For
example, let(l?,) be a uniformly ergodic (Doeblin recurrent, say) Markov chain
with transitionP (x, dy) in the sense that, := sup,.x |P"(x, ) — ulltv — 0. As

2¢, < ry, we have by Rio’s estimate above,

o0
S <Y supllP"(x,") — ulltv.
n=1X€E
which is finite. But Marton’s condition (1.6) or (C1) mea(ls'2) sup,.g l| P" (x,
) —ulltv <r" foralln > 1. See also Example 3.3.
It would be very interesting to generalize Theorem 2. 1T,4@").

3. Application: study of T;(C) and T>(C) for random dynamical systems.

3.1. T1(C). Let E be a complete connected Riemannian manifold equipped
with the Riemannian metrid. Consider now the nonlinear random perturbed
dynamical system valued iA,

(31  Xo@) :=x€E,  Xpr1(¥)=F(Xy(x), Was1), 120,

where the nois€éW,),>o is a sequence of i.i.d. r.v. valued in some measurable
space(G, %), defined on some probability spa¢e, ¥, P), and F(x, w): E X

G — E is measurable. Denote by (x,dy) the law of F(x, W1), and the
following:

PrRoPOSITION3.1. Assume that there exists> 0 such that

(3.2) SupE(e‘Sd(F(x*Wl)*F(x*WZ))Z) < +00.
xeE
If there exist® < r < 1 such that
(3.3) E(d(F (x, W1), F(X, W1))) <rd(x,X) Vx,xeE,

or more generally for some constasit- O,
o

(3.4) ZE(d(X,,(x),Xn()E))) <Sd(x,x) Vx,xeE,
n=1

then there is some constait> 0 such that for any: > 1, for every probability
measure)” on E”,

Wfll @Q",P!) </ CnH(@Q"/PY),

whereP is the law of(X (x))1<k<n, ON E".
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PROOF By Theorem 2.3, condition (3.2) is equivalent t& (x, -) € T1(C)
Vx € E.” Notice that (3.3) is equivalent to (C1) (with= 1) in Theorem 2.5, and
(3.4) implies trivially (CI) with the same constaistin Theorem 2.11. Hence, this
proposition follows from Theorems 2.5 and 2.11]

REMARK 3.2. If the largest Lyapunov exponentir given by

5 1/n
Amax(LY) := lim (SupEd(Xn(X),~Xn(x))>
n—oo\, 4z d(x. %)

is strictly smaller than 1, then condition (3.4) is verified.

ExampPLE 3.3 (ARMA model). To see the difference between (C1) in
Theorem 2.5 and (Clin Theorem 2.11, let us consider the ARMA model

Xo(x) =x, Xnt1(x) = AXp(x) + W1

in E=R4, whereA € My, (the space ofl x d matrices) andW,,) is a sequence
of i.i.d. r.v. with values inG = R?. This model is a particular case of the general
model above withF (x, w) = Ax + w. Condition (C1), equivalent to (3.3), means
thatr = ||A| := suf{|Ax|; |x| < 1} < 1, however, (C) for this linear model is
equivalent to

rep(A) ;= max{|A|; A is an eigenvalue i of A} = Amax(L) < 1,

which is much weaker. This last condition is a well-known sharp sufficient
condition for the ergodicity of this linear ARMA modek,,).

REMARK 3.4. For this model, the known results mentioned in the Introduc-
tion cannot be applied, for the uniform mixing condition is, in general, not satisfied
when E is noncompact. For example, the ARMA model with~2 0 andW1 un-
bounded is never uniformly mixing. See [22].

3.2. T»(C). Consider a particular case of the preceding model
(3.5) Xo(x) =x, Xn1(x) = f(X, (%)) + 0 (X5 (x)) Wp1,

(the discrete time SDE), that is5(x, w) = f(x) + o(x)w, where E = R?,
G=R" f:R? > R o:RY - Myy, (the space ofl x n matrices) and the
noise (W, ),cz is a sequence of i.i.d. r.v. with values R' such thatEW,; = 0.
Assume that:

(i) Py :=P(Wye€ ) e To(C) onR" w.r.t. the Euclidean metric;
(i) lox)w| < K|w|V(x, w) e R? x R;
(i) for somer €[0, 1),

(3.6) \/lf(x) — fFOIP+E|(o(x) —a(i))W1|2 <r|x —X| Vx, ¥ eR?,
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Notice that conditions (i) and (i) imply tha® (x, -) € T>(CK?) for all x € R?,
by Lemma 2.1; and condition (iiimplies (C1) with the same for p = 2. Hence,
by Theorem 2.5P" e To,(CK?/(1 — r)?). That yields, by Bobkov, Gentil and
Ledoux [1], the following:

COROLLARY 3.5. For the model(3.5) above assume conditiorn(®—(iii).
ThenP” € T>(CK?/(1— r)?) and for any measurable functiofi(x, ..., x,) €

LY(®H", Py,
Eexp(pQF (X1(x), ..., X,(x))) < exp(pEF (X1(x). ..., X,(x))),
where
1—r)? "
:=Q QF(x1,...,x,) = inf (F(x+y)+%Z|yk|2).

CK?2”’ ye(RA)" =1

As noted in [1], several estimates of Laplace integrals are the consequence of
the functional inequality version of th&(C) above. For instance, Corollary 6.1
in [1] says that for any convex functiafi on (R%)",

Epr exp(/) [F -3 Z(akF)ZD < exp(pEp: F).

k=1

REMARK 3.6. Consider the Lyapunov exponentliA,
( Ed (X, (x), Xnoz))z)l/"

Amax(L?) := lim

n—oo

su —
LR

Obviously, (3.6) impliestmax(L?) < 1. It is then natural to ask whethér(x, ) €
T>(C) Vx plus AmaX(LZ) < 1 do imply “P} € To(K)” for some constantk
independent of: (for which we have no answer unlike f@h). Notice that for
the ARMA model,Amax(L?) = Amax(LY) = rep(A).

4. Application: study of Ty(C) for paths of SDEs. Let us give here an
application of Theorem 2.3 to SDE. Consider the SDR

(4.1) dX,=o(X;)dB; +b(X,)dt, Xo=x e R?,

whereo : R4 — Mywpn, b:RY — RY and (B,) is the standard Brownian motion
valued inR” defined on some well filtered probability spage, F, (¥;), P).

Assume that, b are locally Lipschitzian and for all, y € R?,
(42) suplloWlks=A, (v =xb0)—b@) = BA+Iy—x?),

xeR

where ||o||ns := V/troo! is the Hilbert-Schmidt norm{x, y) is the Euclidean
inner product andx| := 4/{x, x). It has a unique nonexplosive solution denoted
by (X;(x)) whose law on the spac&R+, R?) of R?-valued continuous functions
onR™ will be denoted byP, .
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COROLLARY 4.1. Assume the conditions abo¥®r eachT > 0, there exists
some constar® = C(T, A, B) independent of initial point such thafP, satisfies
the T1(C) for everyx € R, on the space ([0, T], RY) of R?-valued continuous
functions on0, T'] equipped with the metric

dr(y1,y2) == sup |y1(t) — y2(0)|.
te[0,T]

PROOF Let (B,), (B,) be two independent Brownian motions defined on
some filtered probability(2, ¥, (#;),P) and X,(x), X;(x) strong solutions
of (4.1), respectively, driven byB,), (B;). Put

X =X (x) = X,(x), b :=b(X,(x)) —b(X,(x))
a(-) =00 (), a; = a(X,(x)) +a(X,(x))

t

t ~ ~
L, ;:/O cr(X,(x))dBt—/o o(X/(x))dB;.
Then
A t’\
X,=L,+/ bgds.
0

By Theorem 2.3, it is enough to show that there exists some positive constant
8§ =46(T, A, B) such that

(4.3) Eexp(a sup |X,|2) < +o0.
0<t<T

Let f(x) := h(|x]), whereh € C*°(R) is pair and such that(r) = r for r > 4 and
h(r)>r, O<h(@r)<1Ar, 0<h'(r<1 VrelO0,4].

ConsiderY; := (1+ f(X;))e #!, whereg > 0 is a constant to be determined later.
By Ito’s formula,

d
dY, = e P! EZ a’3;9; f(X) + (VF(X,), b)) | dt — BY,dt +dM
2 t V1Y) t t)» Ut t t

i,j=1
af1l o (X aX) 1., ~ [(tra, (X, aX,)
_ ﬁt(_h//(lx XeaXe) 1, ( 0 )
e D—= + zh (1 XD —= R
2 |X;|2 2 | X+ pak
WX, ~ « .
+ &;')<X,,bt>—ﬁ(1+h<|xf|)))dr+dM,,
t

where(M,) is a local martingaléM,) with My = 0, whose quadratic variational
proces§M] is given by

t . . t A2
(M1 = [ e 2 (V (R0, 8V F (X)) ds <242 [ 2 ds < &
0 0
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Using our condition (4.2), we see thBt< 1+ h(0) + M, once if
B > max0, 2A% + B).
Fix such a8. For anyA > 0, using the exponential martingale,

)\2
eXp<)»Mz - E[M]t> )

(Novikov’s condition is satisfied) and Doob’s maximal inequality [applied to the
positive submartingale expM;/2)], we have

A2A2
Ee*SUR<r Yi=1=h0) < p gupe*Mr < 4(EeMMT)? < 4ex;<—).
1<T B
Hence, by Chebychev’s inequality and an optimization ofve get
pr?
]P’(squ,>1+h(0)+r) §4ex;<——) Vr>0.

Consequently,

2 - p
Eexp(a tsgquYt ) < 400, if 0<a< 242"

Hence, (4.3) is true for ali € (0, e =#7 .£;), whereg > max(0, 242+ B}. O

REMARK 4.2. Ifb e C? verifies for some constai,
(4.4) Wb:45&w+ﬁﬁ5hﬂﬁd53g
in the order of nonnegative definiteness whéyeis the identity matrix, then
(y — x,b(y) — b(x)) < B|x — y|2 and the condition o in (4.2) is satisfied.

REMARK 4.3. Assumé|Vb| < K,n =d ando (x) =0 = I;. Capitaine, Hsu
and Ledoux [3] yields the log-Sobolev inequality below:
2
jQQQTLR% Ep, F?
whereDF be the Malliavin gradient and

F?log

cmggzﬁT/ IDF 2, dP,,
C([0,T],R4)

. T
H = {y(-) ::/0 h(s)ds; ||y||12q :/0 |h(s)|2a’s < +oo}

(the Cameron—Martin space). As the result of Otto and Villani [15] suggests that
the log-Sobolev inequality implies thE(C) inequality (that is proved on the
smooth Riemannian manifold), we should hage T>(C) on C([0, T']) w.r.t.

the following pseudo-metric,

lvr — v2llu, if y1—y2€eH,

du(y1. v2) = i
H(Y1, ¥2) {_,_OO’ otherwise.
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This last pseudo metric is much larger thé&n used in the Corollary above. We
shall give a simple proof of this lagb(C) inequality in Section 5.

Notice that asdy above is only a pseudo-metric anf.| gy = +o0, a.s.,
Theorem 1.1 cannot be applied f61(C) associated witldy (since its sufficient
partis no longer valid) and Theorem 2.3 (whose proof is based on Theorem 1.1) is
no longer true w.r.tdy.

REMARK 4.4. Without essential change of proof, the same result holds if the
locally Lipschitzian condition ob, b is replaced by the well posedness of the
martingale problem associated wiiho’, b), in the sense of Stroock—Varadhan.

REMARK 4.5. If the condition on the driftb in (4.2) is substituted by
(x,b(x)) < B(1+|x|?) Vx € R?, then with the same proof as above, we can prove
thatE exp(6 supco,7) 1 X+ (x)|?) < 400 for somes > 0 depending on initial point.
Hence P, satisfies th&-inequality with a constant = C, depending onx.

Note the following drawback of the previous corollary: the consgait the 7y
inequality obtained through Theorem 2.3 via inequality (2.2) is of o¢Emwhich
is not natural in regard of the results obtained via weakly dependent sequences. We
now show how Theorem 2.5 enables us to get the correct order.

We know from Corollary 4.1 that the law afX;(x));c[0,1) Satisfies theT-
inequality with a constar@ independent of. In other words, the transition kernel
of the Markov chairt,, := X, ,+1) valued inC ([0, 1], RY) satisfiesT; (C). Let us
check (C1) below.

Given two different initial points:, x, let

Xr =X (x) — X; (%),
Gr=0(X,(x)) —o(X;(®), b =b(X,(x)) —b(X,(%)).

By Ito’s formula,
o2 -2 [ e A > 7
| X =|x — X| —{—/0 (tr(656)) + 2(X;, bs)) ds + M,

where(M,) is a local martingale witidfg = 0, whose quadratic variational process
is given by

t A A N A
[ML=4A(X&wmQXQd&

Let %, :=inf{r > 0; | X,| vV [M], = n}. If there is§ > 0 such that
str[(0(x) — o (@) (0 (x) — o (®)']+ (x — &, b(x) — b(F))

(4.5)
<-8lx—%®> Vx,ieR?



TRANSPORTATION COST-INFORMATION INEQUALITIES 2721
then
E|X 0z 2 < |x — %2 = 2 /Ot E| X, 5 |2 ds.
This entails by Gronwall’s inequality and Fatou’s lemma,
(4.6) ElX,(x) - X,®P=E|X, P <|x — 52 ? V>0

Moreover, if o is globally Lipchitzian, then by Burkholder—Davis—Gundy’s
inequality and Gronwall’s inequality, we obtain easily from the estimate above
that

E sup [Xs(x) — X;(®)* < K|x — i[%e?"
t<s<t+1
for some constank’. Thus, the Markov chaitr, := X[, ,+1 valued inC ([0, 1],
R?) satisfies (C) too. Consequently, we obtain by Theorem 2.11, the following:

PROPOSITION4.6. Assumg4.2), (4.5)and o is globally Lipchitzian Then
there is some constant > 0 such that for any: > 1 and any initial pointx, the
law P, of (X;(x)):e[0,,1 ONC([O, n], R?) satisfies the inequality, (C - n) wir.t. the
metric

n—1
d(y1,y2) =) sup |yi(t) — y2(0)l.
k=0k=<t<k+1

REMARK 4.7. Let(P;) be the semigroup of transition probability kernels of
our diffusion (X,). Notice that under (4.5), we have (4.6) which entails not only
the existence and unigueness of the invariant probability measofe( P;), but
also

WE(Py(x, ), (%, ) <e ¥ |x — &,

which gives us the exponential convergence below:
1/2
Wg(Pt(x,-),/L)se—‘”(/ |x—)2|2d,u()2)) vxeRY r>0.

Let us present a Hoeffding type inequality for
Fo) = [ Vo

whereV :R¢ — R satisfies|V |Lip < «. For suchV, || F||Ljp <« w.r.t. the metric
given in the proposition above. Hence, by Theorem 1.1, Proposition 4.6 entails

2

]P’(/On[V(X,(x)) _EV(X,(x)]dt > r) < exp(—ﬁ) Vr>0.
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5. A direct approach to T>(C) for SDEsvia stochastic calculus.

5.1. Tr-inequality of the Wiener measure w.r.t. the Cameron—Martin metric.
Let us extend thdxs-inequality of the Gaussian measure due to Talagrand to the
Wiener measur® on C ([0, T], R?), by means of Girsanov formula. Givéh« P
such thatd (Q/P) < +o0, then undefQ, there exist a Brownian motiofB;) and
a predictable proces,) such that the coordinates systépp) of C([0, T'], R)
verifies

dyr=dB; + B (y)dt, yo=0.
Moreover, it is well known that [see the proof of (5.7) below in a much more
complicated case]

T
(5.1) H(Q/P) = 1EQ /0 1B12(y) dt.

Consider the Girsanov transformatidn(y) := y (-) — o B:(y)dt. Then the law
of (y, ®(y)) underQ is a coupling of(Q, IP). Hence, w.r.t. the Cameron—Martin
metricdy given in Remark 4.2,

T
(5.2) (Wi (@, )2 <E%dy(y, d(y))? = EC /0 \B:2(y) dt = 2H(Q/P).

thatis,IP € T»>(1) on (C([O, T, Rd), dgr). We see now why this is sharp. Indeed, if
B: is determinist (or, equivalentl{) is a Gaussian measure), we claim that

dy 2 T 2
Wi (Q, )2 = /O \Bi[2dt = 2H(Q/P).

This follows by the following observation:

LEMMA 5.1. LetX be arandom variable valued in a Banach spdaand H
be a separable Hilbert space continuously embeddel.ifthen for any element
he H,

W3H (Px. Pxn) = |kl
wherePy is the law ofX, dy (x, y) ;== ||x — y||g if x — y € H and+oo otherwise
PROOF. At first [Ws" (Px, Px.n)]2 <E|X — (X 4+ h)[|%, = [|h]%. To show
the inverse inequality, let be a probability measure ai? such that its marginal
laws are, respectively, laws of and X + &, and [/ ||y — x||%, 7w (dx, dy) < +oc.

Sincey — (x + h) is centered in the sense tH&% (¢;, y — (x + h))y = 0 where
(e;) is an orthonormal basis df, we have by Jensen'’s inequality,

[ 1y =xim@xan = [ [In+ (- o+ m) 5 w@x. v = 1ai,
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the desired result.[

Considering the mapping (y) = y (T), which verifies

W(y) —VY(2)| =~vTdu(yi, v2),

we get by Lemma 2.1 and (5.2) that(0, T'I;) € T»(C) onR¢ w.r.t. the Euclidean
metric with the sharp constagt= T (the theorem of Talagrand).

REMARK 5.2. Gentil [7] proved the dual (functional) version of the
T»>-inequality of the Wiener measure w.rthe Cameron—Martin metric by gen-
eralizing the approach in [1]. The proof here is completely different and seems to
be simpler and direct.

REMARK 5.3. Recall the method of Talagrand for proving HigC) for
N (0, I;). At first by independent tensorization, he reduces to dimension 1. And in
dimension one, he uses the optimal transportation of Fréchet putting fopnard
M(0,1) to fdy, and a direct integration by parts yields miraculously Bi&C).
The method here is completely different, we use the Girsanov transformation
which putsQ back toP instead of an (eventual) optimal transportation putfthg
forward to Q. The approach of Talagrand is generalized recently by Feyel and
Ustunel [6] who succeed to construct the optimal transportation freéo1Q on an
abstract Wiener spacdv, H, P).

We learned very recently (10 monthes after our first version) from Fang that the
method of Girsanov transformation here has been used by Feyel and Ustunel [5]
in a less elementary manner. So the result of this paragraph is due to them.

5.2. T»-inequality of diffusions w.r.t. the Cameron—Martin metriéVe now
generalize the preceding argument to solution of the SDE

dX,=dB,+b(X,)dt, Xo=xeR?
where(B,) is aR?-valued Brownian motion. We assume that C* and
Vbl < K.
For any pathy e C([0, T'], R?) with y(0) =0, let®(y) = n be the solution of

t
nt)=x+y@) +/(; b(n(s))ds.

Then the solution of the SDE above is given ¥y= ®(B.). Hence, for proving
the T»-inequality of X. w.r.t. the metricdy, it is enough to show tha® is
dy-Lipschitzian. To this end, consider

d
g() = d—q’()’ + ¢eh)le—o,
P
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whereh € H is fixed. It satisfies
80 =)+ [ Tbn(s)es)ds.
Its solution is given by
g0 = [ 160K ) ds,
whereJ (s, t) is the solution of the matrix differential equation
(5.3) J(s,8) =14, %J(s,t):Vb(n(t))J(s,t).

Since V*b < BI, for someB < K, we have|J(s,1)y| < eB=9|y| Vy e RY.
Consequently,

t
lg (@) 5/ eBU R (s) ds.
0
Thus, by Cauchy—Schwarz,

T T
nm2524|wmﬁm+24|vmmnmmﬁm

T t 2
52||h||§,+21(2/ U eB(’_S)|h/(s)|ds] dt
0 0
Note that

Tr pt 2 T T T
/ [ / eB(’_S)lh/(s)|ds} dt = / / |h/(u)||h/(v)|[ / eZB’_(“Jr”)dt}dudv
0 0 0 JO uvv

= (TIK'|, I1'1) L20.7))»
where

2B
T —uvVvo, if B=0

andI'f (u) := fo I'(u,v) f(v)dv. Let \max(I") be the largest eigenvalue bfin
L2([0, TY). We haveimax(I’) < ||F||1, the norm ofl" in Ll([O T]) It is easy to

Bt )eZBT _ p2Bwvv)
—Blutv .
n%wz{e — . itB#0,

get||F||1< > if B <O, ||F||1< e Spz if B>0, and||F||1_ 2 if B=0. Thus,
setting
K? :
2(1+ﬁ>’ if B<0,
2 2 ZBT
(5.4) a’:=a (T, K, B) = 2<1+K2 2) if B >0,
( ) if B=0;
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we get by the estimates above thati?, < «?||h||%,, thatis,| ®||Lipw,) < «. Thus,
Lemma 2.1 (which remains valid for the pseudo-metijg) together with the
T»-inequality for the Wiener measure gives us the following:

PROPOSITION5S.4. AssumeVsh < BI; and|Vh| < K, then for every initial
point x, P, € T»(@?) on C([0, T], RY) wr.t. the metricdy, wherea? is given
by (5.4).

REMARK 5.5. Of course, the estimate || ip,) < o together with the
log-Sobolev inequality of Gross for the Wiener measure gives us also

2
EPXFZ

which is better than the Capitaine—Hsu—Ledoux’s estimate in Remark 4.3 when
B < 0.

It is interesting to investigate whether this proposition and the corresponding
log-Sobolev inequality continue to hold in the case wheété < BI; with B <0
without condition||Vb| < K.

F2log AP, < zaZ/ IDF[2, dPP,,

/C([O,T],]Rd) C([0,T],R9)

5.3. Tr-inequality of diffusions w.r.t. the2-metric. Perhaps the most elemen-
tary metric onC ([0, 7], RY) is the foIIowingLZ[O, T1-metric,

T
dz(y1, y2) == /O|)/l(l‘)—yz(t)|2dt.

Indeed, the argument leading to theinequality of the Wiener measure will yield
the following robustr>-inequality w.r.t. the metric above:

THEOREMb5.6. Assume thad, b are locally Lipschitzian and satisfy.5)for
somes > 0,and||o ||« := Sup|o (x)z|; x e R?, |z| <1} < +o0. ThenP, € T>(C)
on C([0, T], RY) wirt. the L2-metric d> above for allx € RY and T > 0, where
the constanC is given by

Coo lo 112,
=

2
Moreover Pr(x, -) € Tz(%) onRR?, as well as the unique invariant probability
measureu of (Py).

REMARK 5.7. The twol»-inequalities in this theorem are both sharp. Indeed,
letd =1,0(x) =1, b(x) = x/2, that is, (X;) is the standard real Ornstein—
Uhlenbeck process, whose invariant measureVi®, 1). By this proposition,
€ To(C) with € = ||o||2,/28 = 1, which is sharp.
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For the sharpness of tHe-inequality forP, w.r.t. d>, note that any Gaussian
measureN (m, ¥) on R" satisfiesT>(C) with the sharp constar@ being the
largest eigenvaluemax(X) of the covariance matrix:. This can be extended
easily to any Gaussian measure- N (m, ) on any separable Hilbert space
where the covariance matriX is a Hilbert—Schmidt operator oG. Hence, if
(X1)i>0 is a Gaussian process with paths a.sLf(0, T1,dr), then its lawP
satisfies thel»(C) on L2([0, T, dt) with the sharp constar@ = Amax(Z), the
largest eigenvalue of the operator

T
2f(s) :=/ Cov(Xy, X)) f(t)dt Y f € L%([0, T1, dt).
0
For the Ornstein—Uhlenbeck process [Byvabove starting from 0, C@X, X;) =
exp(—|t — s|/2) — exp(—(s +t)/2). In that case,

(10,77, Lj0,77)
T

Hence, the constar® = ||o'||2/8% = 4 in the T»-inequality for Py given by our
theorem becomes sharp whEn— +oo.

— 4 asT — oo.

Amax(X) >

PrOOF We shall prove that for any > 0, for any probability measur® on
C(I0, T1,RY),

(L— 203

TR H(Q/P)

(5.5) (WS2(@Q.P,))? < 2

and for any probability measuteonR",

SURco.71 ¢ o |12

< H(v/Pr(x,-)).

Choosinge = § in (5. 5) we get the first claim in the theorem; letting 25, we
get Pr(x,-) € Tz(”””“) by (5.6) and thenu Tz(”"”m) by Lemma 2.2 and the
fact thatPr(x, ) — p asT — oo (see Remark 4. 7)

It is enough to prove (5.5) fo « P, and H(Q/P,) < +o00. We divide its
proof into two steps.

(5.6)  (Wg2(v, Pr(x,")))* <2

Stepl. We do at first some preparation of stochastic calculus(2etF , P)
be a complete probability space on whichwalimensional Brownian motion
(By) = (Bi’)jzl .n Is defined and letf; = “B =0 (B, s < I)P (completion
by P). Let X, (x) be the unique solution of (4.1) starting fraom Then the law
of X.(x) isP,. Consider

Q_ Q M,::EED<%(X.()C))/$}) Vielo,T].
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Remark that, a§) is a probability measure and the law &f(x) underP is
exactlyP,, we have

~ dQ
Q dPy C([0,T1,RY) dPy
(M;) is a martingale can and will be chosen as a continuous martingale. Let
=inf{r € [0, T]; M, = 0} with the convention that in¥ := T+, whereT+
is an artificial added element larger th@n but smaller than any > 7'. Then
Q(z=T+)=1and

=Q(C([0, T],RY)) =1.

My =1,..exp(L, — 3[L],),

where L, := f§ 4 dM* vVt < 7. (Ly), being aP-local martingale ori0, ), can be

represented in the following way: there is a predictable pro¢éss= (ﬂf)05,<,
such that/§ | 8s|?ds < +oo, P-a.s. onlt < ] and

L= Z/ﬂde/ /ﬁs,dB) Vi<rt.

Lett, =inf{r € [0, t[; [L], = n} with the same convention that iaf:= T+. Itis
elementary that, 1 t, P-a.s. Hence, by martingale convergence,

H(Q/P) = H(Q/P) =E"MrlogMy = lim B M7, 109 M7,

= lim EQ(L7ng, — 3[L17As)-

n—oo

By Girsanov’s formula(L;r, —[L]iaz, )ref0.1] 1S a@—local martingale, then atrue
martingale since its quadratic variation process u@,dyeing again[L]iaz,), is
bounded byx. ConsequentME@(LTMn — [L]r Ar,) = 0. Substituting it into the
preceding equdy and noting thatQ(z, 1 T = T+) = 1, we get by monotone
convergence,

67 H@/P =1} im ELlr., = 35011 = 380 L
Notice that this is an extension of (5.1).
Step2. By Girsanov’s theorem,
B, =B, —/Otﬂsds

is a Q-local martingale with[B’, B/, = [B', B/], = 1,;t, hence, a Brownian
motion under). UnderQ, X, = X, (x) verifies

dX;=0(X;)dB; + b(X;)dt + o (X;) B dt, Xo=x.



2728 H. DJELLOUT, A. GUILLIN AND L. WU

We now consider the solutior} (underQ) of
dY; = o (Y;)dB; + b(Y;)dt, Yo =x.

The law of (Y;),c0.7] underQ is exactlyP, . In other words(X, Y) underQ is a
coupling of (Q, Py).
Setting

Xz =X; -1, 61 :=0(X;) — o (), Bt3=b(Xt)—b(Yt),
we have
(5.8)  dIX/I?=1[2(X;, b + 0 (X)B) + (G0 dt +2(X,, 6, dBy).

Letting 7, :=inf{r € [0, T]; |)?,| =n}, we have that for any > 0,

EQPA(M?"

to~ - PINT,
?< -2 [ B 0, Pas+28¢ [ (R, 0 (X080 ds
0 0

toa 1 =~ gt
5(8—23)/0 EQ|XSAfn2ds+;EQfO o 11318517 ds.

Gronwall's lemma, together with Fatou’s lemma, gives us
o0 2 1915md 1 —25)0—s)a 12
(5.9) E¥|X;|* < ——E e |Bs|“ds Vt>O0.
£ 0
Thus,

~ T
2 A
(W@ P0)* <BC [ 1% 2dr
2
- ||GIIOOE@/T |ﬂs|2ds/Te(8_25)("*‘) dt
& 0 s

2 (28—e)T . /T
o 1-e¢
< ” ”oo . EQ/ |,3s|2dS,
0

¢ 25 —¢
the desired (5.5). For (5.6), notice that by the key remark (2.1),
H(v/Pr(x,-)) =Inf{H(Ql¢qo,71,re)/Pxlcqo,r1,re)); O := Qx1 € ) = v}.
And for each suchp, defineQ as before, we have
[We (v, Pr(x,dy))]* < EQ|X1|2

and conclude using (5.9).

REMARK 5.8. After the first version was submitted, we learned from M.
Ledoux the work of Wang [20] who obtained thHe(C) w.r.t. the L2-metric for
the elliptic diffusbns with lower bounded', condition of Bakry on a Riemannian
manifold. His method consists of a continuous time tensorization offtli€)
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of the heat kernels (which is true by the log-Sobolev inequality due to Bakry).

Hence, the method and the result here are very different from his: the volatility
coefficiento could be completely degenerated in Theorem 5.6, and our proof does
not rely on the log-Sobolev inequality which is unknown in our context.

REMARK 5.9. By the proof above, we see that (5.5) and (5.6) hold under (4.5)
even withé < 0, except now th@»-constant goes to infinity a6 — +oc0.

REMARK 5.10. The local Lipschitzian condition om, b in this theorem
can be substituted by their continuity together with the well-posedness of the
martingale problem associated witlao’, b). Indeed, one can findo", b")
tending locally uniformly to(o, b), such that(c”, b") is locally Lipschitzian,
lo" oo < llollso @nd verifies condition (4.5) with the sanie Now the desired
result follows from Theorem 5.6 and Lemma 2.2.

As indicated in [1], many interesting consequences can be derived from this
result. For instance

COROLLARY 5.11. Under the assumptions of Theoré&n®, we have for any
T >0,

(a) for any smooth cylindrical functiorF on G := L2([0, T],ds; RY) >
C([0, T1,RY), that is,
= {f((y, 1)y, (Vo)) in =1 hi € H, f € CP(RM)

[where(y1, y2) fo y1(t)y2(2) dt], the following Poincaré inequality holds

o113
(5.10) Varg, (F) < =5 IVF)IIE dP (),
C([0,T],R4)
whereVarp, (F) is the variance of” under lawP,, andV F (y) € G is the gradiant
of Faty
(b) Foranyg € Ci°(RY),

lo 1% 2
(5.11) Varp, () < 15 [ Vg PPr(x.dy).

(c) (Inequality of Tsirel'son type.for any nonempty subsét in G such that
Z(y) :=sup,cx (v, h) € L1(Py), then

|h|2 52 P
(5.12) /exp( sup[ h) — —GD dP, < exp( 5B Z)
lo 12, nek 2 oIl
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(d) (Inequality of Hoeffding type.for any V :R¢ — R such that| VilLip < «,
1 /T 1 (T
]P)<?/0 V(Xt(x))dt_ET/o V(Xt(x))dt>r)

Tr?|o||%
Sexp(—w) V}’ > 0.

ProoOF.  For part (a), for anyF(y) = f({y,h1),..., (v, hn)) € FC;°, we
may assume without loss of generality that .. ., #,, are orthonormal. In such
case,

Q:y = (v, h1), ..., (v, b)), G—>R"

is Lipschitzian with||® || jp < 1. Hencep :=P, o @1 € Tu(||o]|,/6%) onR" by
Lemma 2.1. Thus, the result of [1], Section 4.1 entails

lo 3
= [ vy

Varp, (F) = Var,(f) =

- ”“”g‘)f IVFG)I12 dPy(y).
82 Jeqo, 1, RY)

Part (b) is a consequence of Theorem 5.6 by [1], Section 4.1. One can derive
part (c) from Theorem 5.6 by the same argument as in the finite-dimensional case
given in [1], Section 6.1. For part (d), note thBi(C) = T1(C). Moreover, the
function F(y) :=(1/T) fOT V(y(t))dt onC([0, T, R%) is Lipschitzian w.r.t. the
L2-metric and| Flip < a/~/T. Hence, part (d) follows from Theorem 1.1

REMARK 5.12. Let us compare thi(C)-inequality onC ([0, T'], R¢) w.r.t.
the L2-metric d» or the Cameron—Martin metridy, denoted, respectively, by

T2(C/dp), To(C/dp).

(@) If y1(0) = »2(0), thendz(y1, y2) < 27TdH(y1, y2) by the classical Poincaré
inequality. Hence, if the lawP, of our diffusion starting fromx verifies
To(C/dy) on C([0, T1, RY), thenP, € To(C(4T?/n?)/d2) on C([0, T1, RY).
That orderT? in the lastT»-inequality is of correct order. For example, for
the real Wiener measur®, we see by Section 5.1 th&t e T>(1/dy) on
C([0, T1,R%), but the largest eigenvalugnax(I") of the covariance function
[(s,t)=s Atin L2([0, T]) verifies

(Tlo.ry, To.ry) T2
Amax(I') > T =3
Thus, by the same analysis as in Remark B.2,T>(CT?/d>) with 4/72 >
C = Aimax(I') > 1/3.
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(b) The contribution ofy1(r) — y2(1)| to the L2-metric is homogeneous in time
t, but not at all to the Cameron—Martin metdg . This is the principal reason
for

(b.1) TheT»(C/dy) is well adapted to the small time asymptotics of the
diffusions, but not for their large time asymptotics. For instanceR,ife
To(C/dp)), since for Z(y) = supy<,<7 Iy @) — y O, IZllLip@y < VT,
then by Theorem 1.1 (its necessary part remains truedfpiLipchitzian
function F which is, moreover, integrable, by following the proof in [2]),

2
P X —x|—E* X —x|>r) <expl — il )
o sup 1,0 =1 SUp [X(x) JEC e

which is of the correct order whelh — O+, but completely meaningless far
large. See [21] for the nonadaptability of the log-Sobolev inequality w.t.
for the large time asymptotics of the diffusions.

(b.2) In contrary, we have seen that th&C/do) is very well adapted for
the large time asymptotics of the diffusions.

REMARK 5.13. Theorem 5.6, together with Corollary 3.5, is our main new
example for whichT>(C) is true but the inequality of log-Sobolev is unknown.
They are our (very partial) answer to Question 3 in the Introduction. We believe
that in the situations of Theorem 5.6 and Corollary 3.5, the log-Sobolev inequality
may fail without further regularity assumptions on the volatility coefficient

Acknowledgments. We are grateful to P. Cattiaux, S. Fang, M. Ledoux,
C. Villani and F. Y. Wang for their comments on the first version. We are
particularly indebted to the referee for his very numerous and conscientious
remarks which led to a complete re-organization of the paper and improved
the readability of the paper and for the suggestion of the simplified proofs of
Lemma 2.2 and of the example at the end of Remark 2.4.

REFERENCES

[1] BoBkov, S., GENTIL, |. and LEDOUX, M. (2001). Hypercontraatity of Hamilton—Jacobi
equationsJ. Math. Pures Appl. (930 669-696.

[2] BoBkov, S. and ®TzE, F. (1999). Exponential iegrability and transportation cost related
to logarithmic Sobolev inequalitied. Funct. Anal163 1-28.

[3] CaAPITAINE, M., HSu, E. P. and [EDOUX, M. (1997). Martingale representation and a simple
proof of logarithmic Sobolev inequality on path spacBsectron Comm. Probal2 71-81.

[4] DeEmBO, A. (1997). Information mequalities ad concentration of measur&nn. Probab25
927-939.

[5] FEYEL, D. and UsTUNEL, A. S. (2002). Measure transport on Wiener space and Girsanov
theoremC. R. Acad. Sci. Paris Sér. | MatB34 1025-1028.

[6] FEYEL, D. and WsTUNEL, A. S. (2004). The Monge—Kantorovitch problem and Monge—
Ampere equation on Wiener spaégobab. Theory Related Field$o appear.



2732 H. DJELLOUT, A. GUILLIN AND L. WU

(7]
(8]

&l
(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

(19]
(20]

(21]

GENTIL, |. (2001). Inégalités de Sobolev logarithquis et hypercontractivité en mécanique
statistique et en E.D.P. These de doctorat, Univ. Paul Sabatier Toulouse.

LEDoux, M. (2001). The Concentration of Measure Phenomendmer. Math. Soc.,
Providence, RI.

LEDOUX, M. (2002). Concentration, transportatiand functional ingualities. Preprint.

MARTON, K. (1996). Boundingd-distance by information divergence: A method to prove
measure concentratioAnn. Probab24 857-866.

MARTON, K. (1997). A measure concentration inality for contracting Markov chains.
Geom. Funct. Anab 556-571.

MARTON, K. (1998). Measure concentration for a class of random proce3sdsab. Theory
Related Field410 427-439.

MASSART, P. (2003). Concentration ineditees and nodel selection. Ir§aint-Flour Summer
School

McDIARMID, C. (1989). On the method of bounded differencggtveys of Combinatorics
(J. Siemons, ed.L.ondon Math. Soc. Lecture Notes Skt 148-188.

OT70, F. and MLLANI, C. (2000). Generalization of an inequality by Talagrand and links with
the logarithmic Sobolev inequality. Funct. Anal173 361-400.

Rio, E. (2000). Inégalités el Hoeffding pour les fonctions Lipschitziennes de suites
dépendante<. R. Acad. Sci. Paris Sér. | MatB30 905-908.

SAMSON, P. M. (2000). Concentration of measuinequalities ér Markov chains and
¢-mixing processAnn. Probabl 416—-461.

TALAGRAND, M. (1996). Transportation cost for Gaussian and other product meaS#aes.
Funct. Anal.6 587-600.

VILLANI, C. (2003).Topics in Optimal TransportatiorAmer. Math. Soc., Providence, RI.

WANG, F. Y. (2002). Transportation cost igealities on path sres over Riemannian
manifolds.lllinois J. Math.46 1197-1206.

Wu, L. (2000). A deviation inequality fonon-reversible Markov processe&nn. Inst. H.
Poincaré Probab. Statis86 435-445.

[22] Wu, L. (2002). Essential spectral radius for Markov semigroups. |: Discrete timeRadmb.
Theory Related Field$28 255-321.
LABORATOIRE CEREMADE
DE MATHEMATIQUES APPLIQUEES CNRS-UMR 7534
CNRS-UMR 6620 UNIVERSITEPARIS IX DAUPHINE
UNIVERSITEBLAISE PASCAL 75775 RARIS
63177 AUBIERE FRANCE
FRANCE E-mAIL : guillin@ceremade.dauphine.fr

E-MAIL : djellout@math.univ-bpclermont.fr

LABORATOIRE
DE MATHEMATIQUES APPLIQUEES
CNRS-UMR 6620
UNIVERSITEBLAISE PASCAL
63177 AUBIERE
FRANCE
AND
DEPARTMENT OFMATHEMATICS
WUHAN UNIVERSITY
430072
CHINA
E-MAIL : li-ming.wu@math.univ-bpclermont.fr



