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Expected utility maximization problems in mathematical finance lead to
a generalization of the classical definition of entropy. It is demonstrated that
a necessary and sufficient condition for the second law of thermodynamics
to operate is that any one of the generalized entropies should tend to its
minimum value of zero.

1. Introduction. The maximization of expected logarithmic utility is well
known to be related to the classical notion of Boltzmann–Gibbs entropyH(f ) =∫
� f lnf dµ, namely

H(f ) = sup
w

∫
�

f lnw dµ

for any densityf , the supremum being taken over all densitiesw under the
probability measureµ on �. This is a consequence of the integrated Gibbs
inequality

∫
� f lnf dµ ≥ ∫

� f lnwdµ, valid for any densitiesf andw (see, e.g.,
[20, 22]).

Several authors, including Bismut [3], Pikovsky and Karatzas [23], Amendinger,
Imkeller and Schweizer [1], Frittelli [9, 10], Bellini and Frittelli [2],
Schachermayer [27], Kramkov and Schachermayer [17, 18], Cvitanić,
Schachermayer and Wang [7], Delbaen et al. [8], Rouge and El Karoui [26], Goll
and Rüschendorf [12] and others, developed duality methods in the context of
semimartingale theory, and in recent years have applied them in mathematical
finance to investigate supw

∫
� u(w)dν over all possible finite valuesw ≥ 0 of

self-financing trading strategies with fixed initial wealtha for a general class of
utility functionsu, whereν is a probability measure that captures the true proba-
bilities of possible market scenarios. According to [9, 10] and [2], in a wide class
of arbitrage-free markets, there is a pricing measureµ, called a minimax martin-
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gale measure, such that this supremum is equal to supw

∫
� u(w)dν over all random

variablesw ≥ 0 with
∫
� wdµ = a; see also [11–15].

We take unit initial wealtha = 1. Whenµ � ν with densityf = dν
dµ

, the last
supremum can be written as supw

∫
� fu(w)dµ and is taken over all densitiesw

with respect to measureµ. In particular, for the logarithmic utilityu(x) = lnx,
x > 0, the supremum is equal toH(f ) = u(eH(f )), where

H(f ) =
∫
�

f lnf dµ

is the Boltzmann–Gibbs entropy off . Moreover, in the case of isoelastic utility
u(x) = 1

γ
xγ , x > 0, whereγ ∈ (−∞,0) ∪ (0,1), it is not hard to verify that the

supremum is equal tou(eHα(f )), where

Hα(f ) = 1

α − 1
ln

∫
�

f α dµ

is the Rényi entropy of orderα = (1− γ )−1 ∈ (0,1) ∪ (1,∞); see [25].
These observations suggest that for a large class of utility functionsu, the

functionalHu(f ), defined by

u
(
eHu(f )

) = sup
w

∫
�

fu(w)dµ

for any densityf underµ, where the supremum is taken over all densitiesw

with respect toµ, may share some general properties of the Boltzmann–Gibbs
entropyH(f ) or the Rényi entropyHα(f ). We propose to callHu(f ) the utility
maximizing entropy oru-entropy; see Definition 4.

The class of utility functions considered here consists of all strictly concave,
strictly increasing, continuously differentiable functionsu : (0,∞) → R such that
limx↘0 u′(x) = ∞ and limx↗∞ u′(x) = 0, satisfying the asymptotic elasticity
condition

AE(u) = lim sup
x↗∞

xu′(x)

u(x)
< 1

of Kramkov and Schachermayer [17]. The asymptotic elasticity condition is
imposed to ensure that the supremum is realized for some densityw; see
Theorem 20.

In this paper we demonstrate thatHu(f ) plays a similar role in the thermo-
dynamic equilibrium limit as the classical Boltzmann–Gibbs entropyH(f ). The
states of a thermodynamic system are identified with the densitiesf on a phase
space� equipped with measureµ. The evolution of a statef can be described
in terms of the iterationsf,Pf,P 2f, . . . of a Markov operatorP , that is, a lin-
ear operator onL1(µ) that transforms densities into densities. The existence of a
stationary densityf = Pf corresponds to a state of thermodynamic equilibrium.
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Thesecond law of thermodynamics (in its strong form) stipulates the existence
of only one statef of thermodynamic equilibrium that is approached regardless of
the initial state of the system and is associated with the minimum value zero
of Boltzmann–Gibbs entropyH(f ). On a space of measure 1 this state must
necessarily be given by the uniform densityf ≡ 1. A necessary and sufficient
condition for the second law to operate is that the Markov operatorP should be
exact, that is,P nf → 1 in L1(µ) asn → ∞ for any densityf ; equivalently, the
Boltzmann–Gibbs entropy should tend to its minimum value of zero,H(P nf ) ↘ 0
asn → ∞ for any densityf such thatH(f ) < ∞; see [20] or [22].

The main result of this paper, Theorem 29, is that the Boltzmann–Gibbs entropy
can be replaced by theu-entropy for any given utility functionu that satisfies the
asymptotic elasticity condition. That is to say,P nf → 1 in L1(µ) asn → ∞ for
any densityf if and only if Hu(P

nf ) ↘ 0 asn → ∞ for any densityf such
thatHu(f ) < ∞. In other words,u-entropy can play exactly the same role in the
second law as the Boltzmann–Gibbs entropy. The results also extend to Markov
semigroups; see Theorem 31.

The behavior of Boltzmann–Gibbs entropy under the action of a Markov
operator has been studied by many authors.

The fact that the sequenceH(P nf ) is decreasing (H -theorem) can easily be
derived from the Jensen inequality for Markov operators. The idea goes back at
least as far as the early papers of Csiszár (see also [20, 21, 28]).

The implication

H(fn) → 0 �⇒ fn
L1→ 1,(1)

which is true for an arbitrary sequence of densities{fn}n∈N, follows immediately
from the Pinsker–Kullback-Csiszár inequality:1

2‖f − 1‖2
L1 ≤ H(f ) (see [5, 19,

24]; for another proof, see [21]). In fact, Łoskot and Rudnicki [21] proved this
implication for a larger class of entropy-like quantities, Csiszár’sη-entropies [5]
Hη(f ) = ∫

� η(f ) dµ, whereη : [0,∞) → R is an arbitrary convex function such
that η(0) = 0. The result was applied in [4] and [21] to analyze the stability of
solutions of parabolic equations. The notion ofη-entropy also covers the case
of Rényi entropy of orderα ∈ (0,1) ∪ (1,∞). The proof of the implication
in [20] applies to a sequence of the special formfn = P nf (n ∈ N) with P a
Markov operator and uses the Komornik–Lasota spectral decomposition theorem
for Markov operators [20].

The reverse implication to (1) is not true in general; see [6] for a counterex-
ample. For sequences of the formfn = P nf (n ∈ N) with H(f ) < ∞ andP a
Markov operator, the implication

fn
L1→ 1 �⇒ H(fn) → 0(2)

was proved in [20].
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Our results in Theorems 27 and 26 generalize both implications (1) and (2)
to the case ofu-entropy. The proof of Theorem 27 rests on the data-reduction
inequality technique invented by Csiszár. To prove Theorem 26 we derive a
formula for u-entropy by convex duality methods, inspired by the work of
Kramkov and Schachermayer [17, 18].

To conclude the introductory part, let us remark that mathematical finance has
enjoyed unprecedented growth in recent years, not least because of considerable
input from other disciplines, including physical sciences, in general, and thermo-
dynamics, in particular. Here we see it returning the favor: Theu-entropy intro-
duced above, hinted upon in many recent works on expected utility maximization,
turns out to play a major role in the second law of thermodynamics, on an equal
footing with the classical notion of Boltzmann–Gibbs entropy.

1.1. Notation. The following notational conventions are used throughout the
paper:

1. Take∞ · 0= 0 and−∞ · 0= 0.
2. TakeR

+ = (0,∞).
3. Take(�,�,µ) to be a probability space.
4. TakeD(µ) to denote the set of all densities on(�,�,µ),

D(µ) =
{
w ∈ L1(µ) :w ≥ 0 and

∫
�

w dµ = 1
}
.

5. Takefµ to be the probability measure absolutely continuous with respect toµ

with densityf ∈ D(µ), that is, for anyA ∈ �,

(f µ)(A) =
∫
A

f dµ.

6. Take‖ · ‖α to denote the norm inLα(µ) for anyα ∈ [1,∞], and a pseudonorm
for anyα ∈ (0,1).

2. Entropy. In this section we defineu-entropy and establish its principal
properties. In particular, in Theorem 20 we obtain a formula foru-entropy.

2.1. Utility functions. We begin by recalling the definitions and properties
concerned with utility functions and convex analysis that are needed throughout
this paper.

DEFINITION 1. Let u :R+ → R. We call u a utility function wheneveru is
strictly concave, strictly increasing, continuously differentiable and such that

u′(0) = lim
x↘0

u′(x) = ∞, u′(∞) = lim
x↗∞u′(x) = 0.

We also use the notation

u(0) = lim
x↘0

u(x), u(∞) = lim
x↗∞u(x).
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PROPOSITION 1. The function I = (u′)−1 :R+ → R
+ is strictly decreasing

and satisfies

I (0) = lim
x↘0

I (x) = ∞, I (∞) = lim
x↗∞ I (x) = 0.

DEFINITION 2. Let u : R
+ → R be a utility function. Theconvex dual

u∗ :R+ → R is defined by

u∗(y) = sup
x>0

(u(x) − yx)(3)

for anyy ∈ R
+.

The following basic properties of convex functions and convex duals can be
found in various books, for example, [16].

PROPOSITION2. Let u :R+ → R be a utility function. Then:

1. The function u∗ is strictly convex, strictly decreasing and continuously
differentiable.

2. The equalities u∗(0) = u(∞), u∗(∞) = u(0), (u∗)′(0) = −∞ and (u∗)′(∞) = 0
hold.

3. For any y ∈ R
+,

u∗(y) = u(I (y)) − yI (y).(4)

4. For any x ∈ R
+,

u(x) = inf
y>0

(
u∗(y) + xy

)
.(5)

5. For any y ∈ R
+,

(u∗)′(y) = −I (y).

LEMMA 3. Let u :R+ → R. Then u is concave if and only if there exist an > 0,
bn ∈ R for any n ∈ N such that u(x) = inf{anx + bn :n ∈ N} for every x > 0.

EXAMPLE 1. Letγ ∈ (−∞,1). Defineuγ :R+ → R by

uγ (x) =



1

γ
xγ , for x ∈ R

+ andγ ∈ (−∞,0) ∪ (0,1),

lnx, for x ∈ R
+ andγ = 0.

We call uγ the isoelastic utility of order γ if γ �= 0 and thelogarithmic utility
if γ = 0.

The following definition of asymptotic elasticity and its properties is due to
Kramkov and Schachermayer [17].
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DEFINITION 3. Let u :R+ → R be a utility function. Then we define the
asymptotic elasticity of u by

AE(u) = lim sup
x↗∞

xu′(x)

u(x)
.

Note that AE(uγ ) = γ for γ < 1.

PROPOSITION4. Let u :R+ → R be a utility function. Then

AE(u) ∈



[0,1], if u(∞) = ∞,

{0}, if 0 < u(∞) < ∞,

[−∞,0], if −∞ < u(∞) ≤ 0.

PROPOSITION 5. Let u :R+ → R be a utility function, let a > 0 and let
b ∈ R. Then ũ = au + b :R+ → R is a utility function. If u(∞), ũ(∞) > 0, then
AE(u) = AE(ũ).

COROLLARY 6. Let u :R+ → R be a utility function and let ũ = au + b for
a > 0, b ∈ R. Then AE(u) < 1 if and only if AE(ũ) < 1.

PROPOSITION 7. Let u :R+ → R be a utility function such that u(∞) > 0
and AE(u) < γ < 1. Then there is an x0 > 0 such that 0< u(λx) ≤ λγ u(x) for all
λ ≥ 1 and x ≥ x0.

PROOF. The following argument slightly simplifies the proof of Kramkov
and Schachermayer [17]: From the definition of asymptotic elasticity, it follows
that there existsx0 > 0 such that 0< γu(x) − xu′(x) for any x ≥ x0. For such
an x we define a functionGx : [1,∞) → R by Gx(λ) = λγ u(x) − u(λx) for
λ ≥ 1. ThenGx(1) = 0 andG′

x(1) = γ u(x) − xu′(x) > 0. Moreover,G′
x(λ) =

γ λγ−1u(x) − xu′(λx) = γ
λ
(Gx(λ) + u(λx) − λ

γ
xu′(λx)) >

γ
λ
Gx(λ) for λ > 1.

Using the theory of differential inequalities, we can deduce thatGx(λ) ≥ 0 for all
λ ≥ 1, which completes the proof.�

2.2. Definition and basic properties of u-entropy. Throughout the rest of this
paperu :R+ → R denotes a utility function in the sense of Definition 1.

DEFINITION 4. For anyf ∈ D(µ) we put

Nu(f ) = sup
w∈A(f )

∫
�

u(w)f dµ,

where

A(f ) = {w ∈ D(µ) :u(w)− ∈ L1(fµ)}.
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Note that
∫
� u(w)f dµ ∈ (−∞,∞] for eachw ∈ A(f ). Now we define

Hu(f ) = lnu−1(Nu(f ))

and call it theutility maximizing entropy or u-entropy of f .

PROPOSITION8. The following inequalities hold for any f ∈ D(µ):

u(1) ≤ Nu(f ) ≤ u(∞),

0 ≤ Hu(f ) ≤ ∞.

PROOF. Takingw ≡ 1 ∈ A(f ), we obtain the lower bound. The upper bound
follows immediately from the definition.�

PROPOSITION9. For any f ∈ D(µ), the following conditions are equivalent:

1. Nu(f ) < u(∞);
2. Nu(f ) < ∞;
3. Hu(f ) < ∞.

In particular, all three conditions are satisfied for any utility function u such that
u(∞) < ∞.

PROOF. The implications 1⇒ 3 ⇒ 2 are obvious, as is 2⇒ 1
whenu(∞) = ∞.

Let us prove 2⇒ 1 whenu(∞) < ∞. In this case, take ann ∈ N such that
µ(A) ≤ 1

n
⇒ (f µ)(A) ≤ 1

2 for each measurable setA. Such ann exists because
fµ is absolutely continuous with respect toµ. Letw ∈ A(f ). Thenµ{w ≥ n} ≤ 1

n

because
∫
� w dµ = 1. It follows that(f µ){w ≥ n} ≤ 1

2. As a result,∫
�

u(w)f dµ =
∫
{w<n}

u(w)f dµ +
∫
{w≥n}

u(w)f dµ

≤ u(n)
(
1− (f µ){w ≥ n}) + u(∞)(f µ){w ≥ n}

= u(n) + (
u(∞) − u(n)

)
(fµ){w ≥ n}

≤ u(n) + u(∞) − u(n)

2
= u(∞) + u(n)

2
.

Hence

Nu(f ) = sup
w∈A(f )

∫
�

u(w)f dµ ≤ u(∞) + u(n)

2
< u(∞),

as required. This also shows that all three conditions must be satisfied whenever
u(∞) < ∞, completing the proof. �
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PROPOSITION 10. For any f ∈ D(µ), the following conditions are equiva-
lent:

1. Hu(f ) = 0;
2. f = 1 (µ-a.e.).

PROOF. 2⇒ 1. Let f = 1 µ-a.e. Take anyw ∈ A(f ). By Jensen’s inequality,∫
� u(w)dµ ≤ u(

∫
� wdµ) = u(1). Hence Nu(f ) = u(1) and Hu(f ) = 0 by

Proposition 8.
1 ⇒ 2. Suppose thatµ{f = 1} < 1 and takeA = {f > 1}. Sincef is a density

underµ, it follows that 0< µ(A) < 1. Moreover,(f µ)(A) > µ(A). For any
a ∈ (0,1) we put

wa = a

µ(A)
1A + 1− a

µ(A�)
1A� ∈ A(f ),

ϕ(a) =
∫
�

u(wa)f dµ = u

(
a

µ(A)

)
(f µ)(A) + u

(
1− a

µ(A�)

)
(f µ)(A�).

Clearly,wµ(A) ≡ 1 andϕ(µ(A)) = u(1). Moreover,

ϕ′(µ(A)) = u′(1)
(fµ)(A) − µ(A)

µ(A)µ(A�)
> 0.

As a result, there is ana ∈ (0,1) such thatϕ(a) > ϕ(µ(A)). BecauseNu(f ) ≥
ϕ(a) for anya ∈ (0,1), it follows thatNu(f ) > u(1) andHu(f ) > 0. �

PROPOSITION11. Let a > 0 and let b ∈ R. If u :R+ → R is a utility function,
then au + b is also a utility function, and for any f ∈ D(µ),

Nau+b(f ) = aNu(f ) + b,

Hau+b(f ) = Hu(f ).

These properties follow immediately from the definition.

REMARK 1. Using Proposition 11, in many arguments we can assume without
loss of generality thatu(1) = 0.

PROPOSITION12. Let f ∈ D(µ). We define

Ab(f ) = {w ∈ D(µ) :u(w)− ∈ L1(fµ),w is bounded },
A0(f ) = {w ∈ D(µ) :u(w)− ∈ L1(fµ),wµ � f µ},

A0b(f ) = {w ∈ D(µ) :u(w)− ∈ L1(fµ),w is bounded,wµ � f µ}.
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Then

Nu(f ) = sup
w∈Ab(f )

∫
�

u(w)f dµ = sup
w∈A0(f )

∫
�

u(w)f dµ

= sup
w∈A0b(f )

∫
�

u(w)f dµ.

PROOF. PutAi = Ai(f ), Ni = supw∈Ai

∫
� u(w)f dµ for i = b,0,0b, N =

Nu(f ) and A = A(f ). Clearly, A0b ⊂ A0 ⊂ A and A0b ⊂ Ab ⊂ A. Hence
N0b ≤ N0 ≤ N and N0b ≤ Nb ≤ N . We can assume without loss of generality
thatu(1) = 0.

We show thatN ≤ Nb. Letw ∈ A. Definewn = w1{w<n}+an1{w≥n}, for n = 1,

2, . . . , wherean = µ{w ≥ n}−1 ∫
{w≥n} wdµ ≥ n. Then

∫
� wn dµ = 1 andwn → w

asn → ∞. Clearly, 0≤ wn ≤ an, sown is bounded. Moreover,{wn < 1} = {w< 1}.
Henceu(wn)

− = u(w)− ∈ L1(fµ). Thuswn ∈ Ab for everyn ∈ N. Applying the
Fatou lemma, we obtain

∫
� u(w)f dµ ≤ lim infn→∞

∫
� u(wn)f dµ ≤ Nb. Conse-

quently,N ≤ Nb.
Next, we show thatNb ≤ N0b. Let w ∈ Ab. If

∫
{f >0} w dµ > 0, then we take

w̃ = 1{f >0}w∫
{f >0} w dµ

.

Clearly,w̃ ∈ D(µ) is bounded and̃wµ � fµ. Sincew ≤ w̃ on {f > 0}, it follows
that

∫
� u(w)−f dµ = ∫

{f >0} u(w)−f dµ ≥ ∫
{f >0} u(w̃)−f dµ ≥ 0, sou(w̃)− ∈

L1(fµ). As a result,̃w ∈ A0b. Observe that
∫
� u(w)f dµ = ∫

{f >0} u(w)f dµ ≤∫
{f>0} u(w̃)f dµ ≤ N0b. If, on the other hand,

∫
{f>0} wdµ = 0, then we take

ŵ = 1{f>0}
µ{f > 0} ,

which clearly also belongs toA0b. Moreover,
∫
� u(w)f dµ = u(0) < u(1) ≤∫

� u(ŵ)f dµ ≤ N0b becausew = 0 and ŵ ≥ 1 on {f > 0} (µ-a.e.). As a
consequence,Nb ≤ N0b. �

PROPOSITION13. Let f1, f2 ∈ D(µ) and let a ∈ [0,1]. Then

Nu

(
af1 + (1− a)f2

) ≤ aNu(f1) + (1− a)Nu(f2).

PROOF. Put f = af1 + (1 − a)f2. First observe that
∫
� u−(w)f dµ =

a
∫
� u−(w)f1dµ+(1−a)

∫
� u−(w)f2dµ for anyw ∈ D(µ), soA(f ) = A(f1)∩
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A(f2). Hence

Nu(f ) = sup
w∈A(f )

∫
�

u(w)
(
af1 + (1− a)f2

)
dµ

≤ a sup
w∈A(f )

∫
�

u(w)f1dµ + (1− a) sup
w∈A(f )

∫
�

u(w)f2dµ

≤ a sup
w∈A(f1)

∫
�

u(w)f1dµ + (1− a) sup
w∈A(f2)

∫
�

u(w)f2dµ

= aNu(f1) + (1− a)Nu(f2),

as desired. �

REMARK 2. The (Arrow–Pratt) index of relative risk aversion is defined in
mathematical finance as

RAu(x) = −xu′′(x)

u′(x)
> 0 for x ∈ R

+.

For a twice differentiable utility functionu, it is clear that lnu−1 is convex if and
only if RAu(x) ≥ 1 for all x ∈ (0,+∞). Hence from Proposition 13, we can easily
deduce that if RAu ≥ 1, then the functionHu is convex. In particular, this is true
for the isoelastic utilityuγ of orderγ < 0 (RAuγ = 1− γ ) and for the logarithmic
utility u0 (RAu0 = 1).

2.3. Formula for u-entropy. Some results in this section can be deduced
from [17]. They are presented here with complete proofs to make the present paper
self-contained.

NOTATION 1. Let 	 > 0 and letf ∈ D(µ). We put u∗(	/f )f = 0 on
{f = 0}, which is consistent with the limit limx→0 u∗(	/x)x = 0.

PROPOSITION14. For any f ∈ D(µ) and 	 > 0,

Nu(f ) ≤
∫
�

u∗(	/f )f dµ + 	.

PROOF. Let w ∈ A0(f ). Then u(w) ≤ u∗(	/f ) + (	/f )w on {f > 0}
because of (5). Multiplying byf and integrating over{f > 0} with respect toµ,
we get

∫
� u(w)f dµ ≤ ∫

� u∗(	/f )f dµ + 	. Then we take the supremum of the
left-hand side over allw ∈ A0(f ) and apply Proposition 12 to obtain the assertion.

�

PROPOSITION15. Let f ∈ L∞(µ). Then

Hu(f ) ≤ ln‖f ‖∞.
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PROOF. PutK = ‖f ‖∞. Let 	 > 0. Applying Proposition 14, we get

Nu(f ) ≤
∫
�

u∗(	/f )f dµ + 	 ≤ u∗(	/K) + 	.

The last inequality holds becauseu∗ is a decreasing function. Taking the infimum
of the right-hand side over all	 > 0, we find thatNu(f ) ≤ u(K) by (5). This
implies thatHu(f ) ≤ lnK . �

NOTATION 2. In this section we assume that anf ∈ D(µ) and a utility
functionu :R+ → R are given. We define for anyx > 0,

Nu(f ;x) = sup
w∈A(f ;x)

∫
�

u(xw)f dµ,

where

A(f ;x) = {w ∈ D(µ) :u(xw)− ∈ L1(f µ)}.
Clearly,

Nu(f ) = Nu(f ;1) and A(f ) = A(f ;1).

In the sequel we often writeN(x) for Nu(f ;x) andA(x) for A(f ;x) if u andf

are unambiguous.

PROPOSITION16. Let f ∈ D(µ) and let Hu(f ) < ∞. Then:

1. The function N : R
+ → R is concave and increasing.

2. There exists a y > 0 such that supx>0(N(x) − yx) < ∞.
3. If AE(u) < 1, then supx>0(N(x) − yx) < ∞ for every y > 0.

PROOF. 1. First we show thatN is increasing. Let 0< x1 ≤ x2. Sinceu−
is decreasing,

∫
� u(x2w)−f dµ ≤ ∫

� u(x1w)−f dµ. Therefore,A(x1) ⊂ A(x2).
Hence we deduce that

N(x1) = sup
w∈A(x1)

∫
�

u(x1w)f dµ

≤ sup
w∈A(x1)

∫
�

u(x2w)f dµ

≤ sup
w∈A(x2)

∫
�

u(x2w)f dµ = N(x2).

Next we prove thatN is concave. Letp ∈ (0,1), x1, x2 > 0. Put x = px1 +
(1 − p)x2. We first observe thatw1 ∈ A(x1) and w2 ∈ A(x2) implies w =
x−1(px1w1 + (1− p)x2w2) ∈ A(x), since by the convexity ofu−,∫

�
u(xw)−f dµ =

∫
�

u
(
px1w1 + (1− p)x2w2

)−
f dµ

≤
∫
�

(
pu(x1w1)

− + (1− p)u(x2w2)
−)

f dµ < ∞.
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From this we conclude that

pN(x1) + (1− p)N(x2)

= p sup
w1∈A(x1)

∫
�

u(x1w1)f dµ + (1− p) sup
w2∈A(x2)

∫
�

u(x2w2)f dµ

= sup
w1∈A(x1)
w2∈A(x2)

∫
�

(
pu(x1w1) + (1− p)u(x2w2)

)
f dµ

≤ sup
w1∈A(x1)
w2∈A(x2)

∫
�

u
(
px1w1 + (1− p)x2w2

)
f dµ

≤ sup
w∈A(x)

∫
�

u(xw)f dµ = N(x).

The last inequality holds becausex−1(px1w1 + (1 − p)x2w2) ∈ A(x). Finally,
we show that−∞ < N(x) < ∞ for any x > 0. Takingw ≡ 1, we can see that
N(x) ≥ u(x) > −∞ for anyx > 0. SinceN is increasing andN(1) = Nu(f ) < ∞
by Proposition 9, we getN(x) < ∞ for anyx ≤ 1. On the other hand, for anyx > 1
we takep ∈ (0,1) such thatpx + (1− p)x−1 = 1 and deduce from the concavity
of N thatN(x) ≤ p−1(N(1) − (1− p)N(x−1)) < ∞, which completes the proof.

2. SinceN is concave, it follows from Lemma 3 that there exist ana > 0 and a
b ∈ R with the propertyN(x) ≤ ax + b for all x > 0. Thus supx>0(N(x) − ax) ≤
b < ∞.

3. First consider the caseu(∞) > 0. Letγ = AE(u) < 1. By Proposition 7 there
is anx0 > 0 such that 0< u(λx) ≤ λγ u(x) for all λ ≥ 1 andx ≥ x0. Then for any
λ ≥ 1 andx > 0,

N(λx) = sup
w∈A(λx)

∫
�

u(λxw)f dµ

≤ sup
w∈A(λx)

∫
�

u
(
λ(xw + x0)

)
f dµ

≤ λγ sup
w∈A(λx)

∫
�

u(xw + x0)f dµ

≤ λγ sup
v∈A(x+x0)

∫
�

u
(
(x + x0)v

)
f dµ = λγ N(x + x0).

The last inequality holdsbecause 0< u(x0) ≤ u(xw + x0) for anyw ∈ A(λx) and
consequently(xw + x0)/(x + x0) ∈ A(x + x0).

From the above, for anyx > 0,

N(x) ≤ N(x + x0) ≤
(

x + x0

x0

)γ

N(2x0) ≤ axγ + b,(6)
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where

a = x
−γ
0 N(2x0) ≥ x

−γ
0

∫
�

u(2x0)f dµ = x
−γ
0 u(2x0) > 0,

b = N(2x0).

Now let y > 0. From (6) we deduce that there is ac > 0 such thatN(x) ≤
axγ + b ≤ 1

2yx + c for all x > 0. This means that supx>0(N(x) − yx) ≤
supx>0(−1

2xy + c) = c < ∞, as required.
We now turn to the caseu(∞) ≤ 0. Let ũ = u − u(∞) + 1. Then, according

to Corollary 6,ũ is a utility function and AE(ũ) < 1. Moreover,̃u(∞) > 0 and
Nu − u(∞) + 1 = Nũ. Hence the proof of the assertion reduces to the first case.

�

LEMMA 17. Let f ∈ D(µ) and let 	 > 0. Then∫
�

u∗(	/f )f dµ ≤ sup
x>0

(
N(x) − 	x

)
.(7)

PROOF. We put

u∗
n(y) = sup

n≥x>0

(
u(x) − yx

)
for anyn = 1,2, . . . andy > 0. Thenu∗

n(y) = u(In(y)) − yIn(y), whereIn(y) =
min{I (y), n}. Moreover,u(1) − y ≤ u∗

n(y). Puttingy = 	/f , multiplying by f

and integrating overµ, we obtain

u(1) − 	 ≤
∫
�

u∗
n(	/f )f dµ

=
∫
�

(
u
(
In(	/f )

) − (	/f )In(	/f )
)
f dµ(8)

=
∫
�

u(xnwn)f dµ − xn	

for any 	 > 0, where we putIn(	/f ) = 0 on {f = 0} and where 0< xn =∫
� In(	/f )dµ ≤ n < ∞ andwn = x−1

n In(	/f ). Observe thatwn ∈ A(xn), since∫
� u(xnwn)

−f dµ ≤ 	 − xn	 − u(1) + u(n)+ < ∞ by (8). As a result,∫
�

u∗
n(	/f )f dµ ≤ sup

x>0
(N(x) − 	x).

Becauseu(1)f − 	 ≤ u∗
n(	/f )f ↗ u∗(	/f )f pointwise on{f > 0} asn → ∞,

by monotone convergence we obtain (7).�

PROPOSITION18. Assume that f ∈ D(µ) and Hu(f ) < ∞. Then:
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1. For every 	 > 0,

−∞ < u∗(	) ≤
∫
�

u∗(	/f )f dµ.

2. There exists a 	0 > 0 such that for each 	 ≥ 	0,∫
�

u∗(	/f )f dµ < ∞.

3. If AE(u) < 1, then for each 	 > 0∫
�

u∗(	/f )f dµ < ∞.

PROOF. 1. Let	 > 0. Then, applying (3) fory = 	/f , we getu(x)f −	x ≤
u∗(	/f )f on the set{f > 0} for eachx > 0. Hence, integrating with respect
to µ, taking the supremum over allx > 0 and applying (3) once again, we obtain
u∗(	) ≤ ∫

� u∗(	/f )f dµ, as desired.
2. It is enough to prove that

∫
� u∗(	0/f )f dµ < ∞ for some	0 > 0, because

for 	 ≥ 	0, we have
∫
� u∗(	/f )f dµ ≤ ∫

� u∗(	0/f )f dµ < ∞, sinceu∗ is
nonincreasing. Now, the assertion follows from Proposition 16.2 and Lemma 17.

3. This follows from Proposition 16.3 and Lemma 17.�

PROPOSITION19. Let f ∈ D(µ). Then the following conditions are equiva-
lent:

1. The inequality Hu(f ) < ∞ holds.
2. There exists a 	0 > 0 such that∫

�
u∗(	0/f )f dµ < ∞.

3. There exists a 	0 > 0 such that for each 	 ≥ 	0∫
�

u∗(	/f )f dµ < ∞.

PROOF. The implication 1⇒ 3 follows from Proposition 18.2, 3⇒ 2 is
obvious and 2⇒ 1 follows from Propositions 9 and 14.�

NOTATION 3. Let	 > 0 and letf ∈ D(µ). We putI (	/f ) = 0 on{f = 0}.
THEOREM 20. Let f ∈ D(µ). Assume that AE(u) < 1 and Hu(f ) < ∞.

Then:

1. We have
∫
� I (	/f )dµ ∈ R

+ for all 	 > 0.
2. There exists a unique 	f > 0 such that∫

�
I (	f /f ) dµ = 1.(9)
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3. We have I (	f /f ) ∈ A0(f ).
4. The following formulae hold:

Nu(f ) =
∫
�

u
(
I (	f /f )

)
f dµ =

∫
�

u∗(	f /f )f dµ + 	f ,(10)

Hu(f ) = lnu−1
(∫

�
u
(
I (	f /f )

)
f dµ

)
.(11)

PROOF. 1. Sinceu∗ is convex,I (	/f )(	 − 	̃) = −(u∗)′(	/f )(	 − 	̃) ≤
(u∗(	̃/f ) − u∗(	/f ))f on {f > 0} for any	 > 	̃ > 0. It follows that

(	 − 	̃)

∫
�

I (	/f )dµ ≤
∫
�

I (	/f )(	/f − 	̃/f )f dµ

≤
∫
�

(
u∗(	̃/f ) − u∗(	/f )

)
f dµ < ∞,

because−∞ <
∫
� u∗(	/f )f dµ and

∫
� u∗(	̃/f )f dµ < ∞ by Proposition 18.1

and 18.3. As a result,
∫
� I (	/f )dµ < ∞. Moreover, since 0< I (	/f ) on

{f > 0}, it follows that 0<
∫
� I (	/f )dµ, as desired.

2. Statement 1 above means that
∫
� I (	/f )dµ as a function of	 ∈ (0,∞) has

values in(0,∞). It is a strictly decreasing function becauseI is. It is continuous
with limit 0 as 	 ↗ ∞ and ∞ as 	 ↘ 0 by monotone convergence, because
I has the same properties. As a result, there is a unique	f > 0 such that∫
� I (	f /f ) dµ = 1.

3. Clearly,I (	f /f ) ≥ 0, so it is a density by statement 2 above. Moreover,
I (	f /f ) = 0 on{f = 0} by the notational convention adopted (Notation 3).

4. Proposition 2 yieldsu(x) − yx ≤ u∗(y) = u(I (y)) − yI (y) for all x, y > 0.
This implies that

u(w) − (	f /f )w ≤ u
(
I (	f /f )

) − (	f /f )I (	f /f ) = u∗(	f /f )

on {f > 0} for anyw ∈ A0(f ). Integrating with respect tofµ, we get∫
�

u(w)f dµ ≤
∫
�

u(I (	f /f ))f dµ =
∫
�

u∗(	f /f )f dµ + 	f

for anyw ∈ A0(f ). Taking the supremum of the left-hand side over all suchw’s
and applying Proposition 12, we obtain (10) becauseI (	f /f ) ∈ A0(f ). Finally,
(11) follows immediately from (10). �

REMARK 3. To use (11) to compute theu-entropyHu(f ), we need to know
the constant	f defined implicitly by (9). Although the constant is determined
uniquely by (9), it may not be possible to find a closed-form expression for it,
except in some particular, though important, cases such as the logarithmic or
isoelastic utility (see below). In general, the fact that	f is only defined implicitly
is a limitation in using formula (11) forHu(f ).
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REMARK 4. Adopting the methods of Kramkov and Schachermayer ([17],
Section 5), it is possible to show that AE(u) < 1 is a minimal assumption on the
utility function u for the validity of Theorem 20. If AE(u) = 1, then the supremum

Nu(f ) = sup
w∈A(f )

∫
�

u(w)f dµ

may fail to be attained at anyw ∈ A(f ), invalidating the assertions of Theorem 20.
According to Proposition 18.3, the condition AE(u) < 1 implies that∫

�
u∗(	/f )f dµ < ∞ for all 	 > 0.(12)

By a similar argument as in [18], it can be demonstrated that (12) is in fact a
necessary and sufficient condition for the assertions of Theorem 20 to hold.

2.4. Examples.

EXAMPLE 2 (Logarithmic utility). Letu :R+ → R be given byu(x) = lnx

for x ∈ R
+. ThenHu is equal to theBoltzmann–Shannon conditional entropy H1

given by

H1(f ) =
∫
�

f lnf dµ

for f ∈ D(µ).

EXAMPLE 3 (Isoelastic utility). Letu :R+ → R be given byu(x) = 1
γ
xγ for

γ ∈ (−∞,0) ∪ (0,1) andx ∈ R
+. ThenHu is equal to theRényi entropy Ha of

orderα = (1− γ )−1 ∈ (0,1) ∪ (1,∞) given by

Hα(f ) = 1

α − 1
ln

∫
�

f α dµ = α

α − 1
ln‖f ‖α

for anyf ∈ D(µ) ∩ Lα(µ).

3. Markov operators. Here we collect the definitions and properties that
involve Markov operators. They can be found, for example, in [20].

DEFINITION 5. Let P :D(µ) → D(µ). We say thatP is a Markov (or
stochastic) operator on densities if

P
(
λf1 + (1− λ)f2

) = λP (f1) + (1− λ)P (f2)(13)

for all f1, f2 ∈ D(µ) andλ ∈ [0,1].

REMARK 5. A Markov operatorP on D(µ) can be uniquely extended to an
operator�P :L1(µ) → L1(µ) such that:
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1. �P is linear;
2. �Pf ≥ 0 for every 0≤ f ∈ L1(µ);
3. ‖�Pf ‖1 = ‖f ‖1 for every 0≤ f ∈ L1(µ).

The extended operator satisfies the condition:

4. ‖�Pf ‖1 ≤ ‖f ‖1 for everyf ∈ L1(µ) [i.e., �P is a contraction onL1(µ)].

We call �P aMarkov operator in L1(µ) or simply a Markov operator. For simplicity
we use the same letterP for a Markov operator onD(µ) and for its extension
to L1(µ).

PROPOSITION21. Let P :L1(µ) → L1(µ) be a Markov operator. Then there
exists a unique operator P ∗ :L∞(µ) → L∞(µ) such that:

1. P ∗ is linear;
2. P ∗1= 1;
3. P ∗g ≥ 0 for every 0 ≤ g ∈ L∞(µ);
4. ‖P ∗g‖∞ ≤ ‖g‖∞ for every g ∈ L∞(µ) [i.e., P ∗ is a contraction on L∞(µ)];

5. for all f ∈ L1(µ) and g ∈ L∞(µ),∫
�
(Pf )g dµ =

∫
�

f (P ∗g)dµ.(14)

We call P ∗ the adjoint operatorto P .

PROPOSITION 22 (Jensen inequality).Let P :L1(µ) → L1(µ) be a Markov
operator, let u :R+ → R be a concave function and suppose that g,u(g) ∈ L∞(µ).
Then

P ∗(u(g)) ≤ u(P ∗g).

PROOF. The idea of this proof is from [21]. Letg ∈ L∞(µ). According
to Lemma 3, we can find anan > 0 and abn ∈ R for any n ∈ N such that
u(x) = inf{anx + bn :n ∈ N}. By Proposition 21,

P ∗(u(g)) = P ∗(inf{ang + bn :n ∈ N})
≤ inf{P ∗(ang + bn) :n ∈ N}
= inf{anP

∗g + bn :n ∈ N} = u(P ∗g),

as desired. �

DEFINITION 6. Let P :L1(µ) → L1(µ) be a Markov operator and letf ∈
D(µ). We say thatP is doubly stochastic if P 1 = 1, that is, 1 is a stationary
density forP . Note thatP is doubly stochastic if and only if‖P ∗g‖1 = ‖g‖1 for
all g ∈ L∞(µ), g ≥ 0.
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DEFINITION 7. LetP :L1(µ) → L1(µ) be a doubly stochastic operator. We

say thatP is exact (asymptotically stable) if P nf
L1→ 1 as n → ∞ for every

f ∈ D(µ).

4. Evolution of entropy.

4.1. H-theorem.

THEOREM 23. Let P :L1(µ) → L1(µ) be a doubly stochastic operator and
let f ∈ D(µ). Then

Hu(Pf ) ≤ Hu(f ).

PROOF. If Hu(f ) = ∞, then the assertion is obvious. Assume thatHu(f )<∞.
Take w ∈ A0b(Pf ). Define wn = w ∨ (1/n) and xn = ∫

� wn dµ for n = 1,

2, . . . . Then wn and u(wn) are bounded, 1≤ xn ≤ 1 + 1/n and 0< x−1
n wn ∈

D(µ). Furthermore,wn ↘ w, u(wn) ↘ u(w) and xn ↘ 1 as n → ∞. More-
over,

∫
� u(wn)

−Pf dµ ≤ ∫
� u(w)−Pf dµ < ∞ for n ∈ N. Hence, applying the

monotone convergence theorem, formula (14) and Proposition 22, we get∫
�

u(w)Pf dµ = lim
n→∞

∫
�

u(wn)Pf dµ

= lim
n→∞

∫
�

P ∗(u(wn))f dµ

(15)
≤ lim

n→∞

∫
�

u(P ∗wn)f dµ

= lim
n→∞

∫
�

u
(
xnP

∗(x−1
n wn)

)
f dµ.

For anyn ∈ N, we have∫
�

P ∗(x−1
n wn) dµ = x−1

n

∫
wn P 1dµ = x−1

n

∫
�

wn dµ = 1.(16)

Using Proposition 22 and (14) once again (for the concave function−u−), we get∫
�

u
(
xnP

∗(x−1
n wn)

)−
f dµ =

∫
�

u
(
P ∗(wn)

)−
f dµ

≤
∫
�

P ∗(u(wn)
−)

f dµ

(17)
=

∫
�

u(wn)
−Pf dµ

≤
∫
�

u(w)−Pf dµ < ∞.
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From (16) and (17) we deduce thatP ∗(x−1
n wn) ∈ A(xn) (see Notation 2). From

this and (15), it follows that∫
�

u(w)Pf dµ ≤ lim
n→∞

∫
�

u
(
xnP

∗(x−1
n wn)

)
f dµ

≤ lim
n→∞N(xn).

According to Proposition 16.1,N is concave and hence continuous, so it follows
that limn→∞ N(xn) = N(1). Thus∫

�
u(w)Pf dµ ≤ N(1) = Nu(f ).

Taking the supremum over allw ∈ A0b(Pf ), we get Nu(Pf ) ≤ Nu(f ). The
assertion of the theorem follows because ln◦u−1 is an increasing function.�

REMARK 6. Let P :L1(µ) → L1(µ) be a doubly stochastic operator and
let f ∈ D(µ) be such thatHu(f ) < ∞. As a consequence of Theorem 23,
the sequenceHu(P

nf ), n = 1,2, . . . , is nonincreasing. IfP is invertible, then
Hu(P

nf ), n = 1,2, . . . , is a constant sequence.

4.2. Inequalities.

LEMMA 24. Suppose that f ∈ D(µ) and w ∈ A0b(f ). Then∫
�

u(w)f dµ ≤ u′(1)‖w‖∞‖f − 1‖1 + u(1).

PROOF. Let f ∈ D(µ) and letw ∈ A0b(f ). By the concavity ofu we have
u(x) ≤ (x − 1)u′(1) + u(1) for anyx ≥ 0. Hence∫

�
u(w)f dµ ≤ u′(1)

∫
�
(w − 1)f dµ + u(1)

= u′(1)

∫
�
(f − 1)w dµ + u(1) ≤ u′(1)‖w‖∞‖f − 1‖1 + u(1),

as required. �

PROPOSITION25. Let u :R+ → R be a utility function such that AE(u) < 1
and let f ∈ D(µ) ∩ L∞(µ). Put K = ‖f ‖∞ ≥ 1. Then for each 0 < C < 1,

Nu(f ) ≤ u′(1)I

(
u′

(
K − C

1− C

)
C

K

)
‖f − 1‖1 + u(1).

PROOF. Since

1 =
∫
{f≥C}

f dµ +
∫
{f<C}

f dµ ≤ Kµ{f ≥ C} + C(1− µ{f ≥ C}),
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it follows thatµ{f ≥ C} ≥ 1−C
K−C

. Let us take	f as in Theorem 20. Then

1 =
∫
�

I

(
	f

f

)
dµ ≥ I

(
	f

C

)
µ{f ≥ C} ≥ I

(
	f

C

)
1− C

K − C
.

Consequently,	f ≥ u′(K−C
1−C

)C and so

I

(
	f

f

)
≤ I

(
u′

(
K − C

1− C

)
C

f

)
≤ I

(
u′

(
K − C

1− C

)
C

K

)
.

Now, using Theorem 20 and Lemma 24, we haveI (	f /f ) ∈ A0b(f ) and

Nu(f ) =
∫
�

u

(
I

(
	f

f

))
f dµ ≤ u′(1)I

(
u′

(
K − C

1− C

)
C

K

)
‖f − 1‖1 + u(1),

as required. �

4.3. Main theorems. Throughout this section we assume thatu :R+ → R is a
utility function and thatP :L1(µ) → L1(µ) is a doubly stochastic operator.

THEOREM 26. Let us assume that AE(u) < 1. Let f ∈ D(µ) be such that
Hu(f ) < ∞. Then

P nf
L1→ 1 as n → ∞ �⇒ Hu(P

nf ) ↘ 0 as n → ∞.

PROOF. Step 1. First observe that the conditionHu(P
nf ) → 0 asn → ∞ is

equivalent toNu(P
nf ) → u(1) asn → ∞. Moreover, according to Theorem 23,

the sequenceNu(P
nf ) is nonincreasing.

Step 2. Let f ∈ D(µ) ∩ L∞(µ). Then the assertion follows immediately from
Proposition 25 and the fact thatu(1) ≤ Nu(f ).

Step 3. Now we assume thatf ∈ D(µ) \ L∞(µ). Then we can define two
densitiesfc = (f/ac)1{f <c} andf c = (f/ac)1{f ≥c} for any c > (µ{f > 0})−1,
whereac = ∫

{f <c} f dµ > 0 andac = ∫
{f ≥c} f dµ > 0. Clearly,ac + ac = 1, f =

acfc +acf c andP nf = acP
nfc +acP nf c for everyn = 1,2, . . . . Moreover,fc ∈

D(µ) ∩ L∞(µ). According to Proposition 18.3,
∫
� u∗(y/f )f dµ < ∞ for each

y > 0. Let	 > 0. Then
∫
�u∗(	/f c)f c dµ = (1/ac)

∫
{f ≥c}u∗(	ac/f )f dµ < ∞.

Applying Proposition 19, we deduce thatHu(f
c) < ∞. According to Proposi-

tion 13,

Nu(P
nf ) ≤ acNu(P

nfc) + acNu(P
nf c)(18)

for eachn ∈ N. To estimate the second term, observe that by Theorems 23 and 20
there is awc ∈ A0(f

c) such that

acNu(P
nf c) ≤ acNu(f

c) = ac
∫
�

u(wc)f c dµ =
∫
{f≥c}

u(wc)f dµ.
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Let ε > 0. Sinceu(wc) ≤ u∗( ε
3f

) + ε
3f

wc on {f ≥ c} by (3),

acNu(P
nf c) ≤

∫
{f≥c}

u∗
(

ε

3f

)
f dµ + ε

3
.(19)

As
∫
� u∗( ε

3f
)f dµ < ∞ by Proposition 18.3, there is ac > (µ{f > 0})−1 such

that ∫
{f ≥c}

u∗
(

ε

3f

)
f dµ ≤ ε

3
.(20)

It follows from Step 2 that the first term on the right-hand side of (18) tends to
acu(1). We can therefore take anN ∈ N such that for eachn > N ,

acNu(P
nfc) ≤ u(1) + ε/3.(21)

Inequalities (18)–(21) and Proposition 8 lead to

u(1) ≤ Nu(P
nf ) ≤ u(1) + ε

for eachn > N , which completes the proof.�

THEOREM 27. Let f ∈ D(µ). Then

Hu(P
nf ) → 0 as n → ∞ �⇒ P nf

L1→ 1 as n → ∞.

PROOF. By Proposition 11 the theorem is a straightforward consequence of
the lemma below. �

LEMMA 28. Let u(1) = 0 and fn ∈ D(µ) for n = 1,2, . . . . Then

Nu(fn) → 0 as n → ∞ �⇒ fn
L1→ 1 as n → ∞.

PROOF. Clearly, we can assume that none of thefn’s is identically (µ-a.e.)
equal to 1. We defineAn = {fn ≥ 1} and �n = {∅,An,A

�
n,�}. Put 0< qn =

µ(An) < 1 andpn = ∫
An

fn dµ for n = 1,2, . . . . Then

Eµ(fn|�n) = pn

qn

1An + 1− pn

1− qn

1A�
n
.

Hence

Nu

(
Eµ(fn|�n)

) = N(pn, qn),(22)

where

N(p,q) = sup{u(w1)p + u(w2)(1− p) :w1q + w2(1− q) = 1,w1,w2 ≥ 0}
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for 0 ≤ q ≤ p ≤ 1. BecauseL1(µ) � g �→ Eµ(g|�n) ∈ L1(µ) is a doubly
stochastic operator, we can apply Theorem 23 to get

Nu(fn) ≥ Nu

(
Eµ(fn|�n)

)
.(23)

From (22) and (23) it follows thatN(pn, qn) → 0 asn → ∞.
Moreover, it is easy to check that

‖fn − 1‖1 = ‖Eµ(fn|�n) − 1‖1 = 2|pn − qn|.
Suppose, contrary to our claim, that‖fn − 1‖1 � 0 as n → ∞. This would
mean that|pn − qn| � 0 asn → ∞. Therefore, by passing to a subsequence
if necessary, we can assume that(pn, qn) → (p, q) such thatp �= q. Then
N(p,q) > 0 and hence there existw1,w2 ≥ 0 such thatw1q + w2(1 − q) = 1
andδ = u(w1)p + u(w2)(1− p) > 0. Let us consider two cases.

Case 1. u(w1), u(w2) �= −∞. Then 0< zn = w1qn + w2(1 − qn) → 1 as
n → ∞. Put wn

1 = w1/zn andwn
2 = w2/zn for n = 1,2, . . . . We havewn

1qn +
wn

2(1 − qn) = 1. HenceN(pn, qn) ≥ u(wn
1)pn + u(wn

2)(1 − pn) → δ > 0 as
n → ∞, a contradiction.

Case 2. u(w1) = −∞ or u(w2) = −∞. We can assume thatu(w1) = −∞,
since the other case is similar. Thenw1 = 0, w2 = 1

1−q
> 1, p = 0 andq < 1.

Putwn
1 = u−1(−1/

√
pn ) andwn

2 = (1 − wn
1qn)/(1 − qn) for n = 1,2, . . . . Then

wn
1qn + wn

2(1− qn) = 1, wn
1 → 0 andwn

2 → 1
1−q

asn → ∞. HenceN(pn, qn) ≥
u(wn

1)pn + u(wn
2)(1− pn) → u( 1

1−q
) = δ > 0 asn → ∞, a contradiction. �

THEOREM 29. Suppose that AE(u) < 1. Then the following conditions are
equivalent:

1. P is exact;
2. Hu(P

nf ) → 0 as n → ∞ for all f ∈ L∞(µ) ∩ D(µ);
3. Hu(P

nf ) → 0 as n → ∞ for all f ∈ D(µ) such that Hu(f ) < ∞.

PROOF. 1⇒ 3. The assertion follows from Theorem 26.
3⇒ 2. Obvious.

2 ⇒ 1. By Theorem 27,P nf
L1→ 1 asn → ∞ for all f ∈ L∞(µ) ∩ D(µ). Now

let f ∈ D(µ) be an arbitrary density. Take anyε > 0. There exists ac > 0 such that∫
{f ≥c} f dµ ≤ ε/4. Letfc = (

∫
{f <c} f dµ)−11{f <c}f . Thenfc ∈ L∞(µ) ∩ D(µ),

and so we can findN ∈ N such that‖P nfc − 1‖1 ≤ ε/2 for everyn ≥ N . Finally,
we get

‖P nf − 1‖1 ≤ ‖P nf − P nfc‖1 + ‖P nfc − 1‖1

≤ ‖f − fc‖1 + ε/2 = 2
∫
f ≥c

f dµ + ε/2 ≤ ε,

which completes the proof.�
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COROLLARY 30. Let α ∈ (0,1) ∪ (1,+∞). The following conditions are
equivalent:

1. P is exact;
2. ‖P nf ‖α → 1 as n → ∞ for all f ∈ L∞(µ) ∩ D(µ);
3. ‖P nf ‖α → 1 as n → ∞ for all f ∈ Lα(µ) ∩ D(µ).

PROOF. This follows becauseHα(f ) = α
α−1 ln‖f ‖α ; see Example 3. �

REMARK 7. The implication 3⇒ 1 in Corollary 30 follows from a result
proved by Łoskot and Rudnicki [21], already mentioned in the Introduction. The
reverse implication 1⇒ 3 for 0 < α < 1 is an easy exercise involving integral
inequalities.

4.4. Continuous time.

DEFINITION 8. We call a family of operators{Pt}t≥0 a doubly stochastic
semigroup if:

1. Pt :L1(µ) → L1(µ) is a doubly stochastic operator for eacht ≥ 0;
2. Pt ◦ Ps = Pt+s for anyt, s ≥ 0;
3. P0 = Id�.

We say that{Pt}t≥0 is asymptotically stable if P tf
L1→ 1 as t → ∞ for every

f ∈ D(µ).

THEOREM 31. Suppose that AE(u) < 1. Then the following conditions are
equivalent:

1. {Pt}t≥0 is asymptotically stable;
2. Hu(P

tf ) → 0 as t → ∞ for each f ∈ D(µ) such that Hu(f ) < ∞.

PROOF. 1 ⇒ 2. Let f ∈ D(µ). According to Theorem 23, the function
[0,∞) � t → Hu(P

tf ) ∈ R is decreasing. Moreover, it follows from Theorem 29
thatHu(P

nf ) → 0 asn → ∞. These two statements imply the assertion.
2 ⇒ 1. The assertion follows from Proposition 11 and Lemma 28.�
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