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Expected utility maximization problems in mathematical finance lead to
a generalization of the classical definition of entropy. It is demonstrated that
a necessary and sufficient conditiar the second law of thermodynamics
to operate is that any one of the generalized entropies should tend to its
minimum value of zero.

1. Introduction. The maximization of expected logarithmic utility is well
known to be related to the classical notion of Boltzmann—Gibbs entfb@y) =

Jo fIn fdup, namely
H(f)=sup[ finwdp

for any density f, the supremum being taken over all densitiesunder the
probability measurex on Q. This is a consequence of the integrated Gibbs
inequality [, fIn fdu > [ fInwdp, valid for any densitieg andw (see, e.g.,
[20, 22]).

Several authors, including Bismut [3], Pikovsky and Karatzas [23], Amendinger,
Imkeller and Schweizer [1], Frittelli [9, 10], Bellini and Frittelli [2],
Schachermayer [27], Kramkov and Schachermayer [17, 18], Céijtani
Schachermayer and Wang [7], Delbaen et al. [8], Rouge and El Karoui [26], Goll
and Ruschendorf [12] and others, deyeed duality methods in the context of
semimartingale theory, and in recent years have applied them in mathematical
finance to investigate syp, u(w)dv over all possible finite values > 0 of
self-financing trading strategies with fixed initial weadttfor a general class of
utility functionsu, wherev is a probability measure that captures the true proba-
bilities of possible market scenarios. According to [9, 10] and [2], in a wide class
of arbitrage-free markets, there is a pricing meagurealled a minimax martin-
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gale measure, such that this supremum is equal tg fyp(w) dv over all random
variablesw > 0 with [, wdu = a; see also [11-15].

We take unit initial wealtt: = 1. Wheny > v with density f = 4%, the last
supremum can be written as suf}, fu(w)du and is taken over all densities
with respect to measure. In particular, for the logarithmic utility:(x) = Inx,

x > 0, the supremum is equal #( /) = u(e/)), where

H(f)=f9f|nfdu

is the Boltzmann—Gibbs entropy gf. Moreover, in the case of isoelastic utility
ulx) = %x}’, x > 0, wherey € (—o0,0) U (0, 1), it is not hard to verify that the
supremum is equal te(e (")), where

1
I “d
a—1 n /Q frdu
is the Rényi entropy of order = (1 — y)~1 € (0, 1) U (1, 00); see [25].

These observations suggest that for a large class of utility functioribe
functional H, (), defined by

Hyo(f) =

u(efny = Sup/Q fu(w)du

for any densityf underu, where the supremum is taken over all densities
with respect tou, may share some general properties of the Boltzmann—Gibbs
entropy H (f) or the Rényi entropyH, (/). We propose to calH, ( f) the utility
maximizing entropy or-entropy; see Definition 4.

The class of utility functions considered here consists of all strictly concave,
strictly increasing, continuously differentiable functians(0, co) — R such that
lim\ou'(x) = oo and lim, ~ou’(x) = 0, satisfying the asymptotic elasticity
condition

AE(u) =lim supxu *)

x /100 ux

<1

of Kramkov and Schachermayer [17]. The asymptotic elasticity condition is
imposed to ensure that the supremum is realized for some dewsityee
Theorem 20.

In this paper we demonstrate thH}, () plays a similar role in the thermo-
dynamic equilibrium limit as the césical Boltzmann—Gibbs entrogy(f). The
states of a thermodynamic system are identified with the dengities a phase
spaceR2 equipped with measurg. The evolution of a stat¢' can be described
in terms of the iterationd, Pf, sz, ... of a Markov operatorP, that is, a lin-
ear operator oi.1(1) that transforms densities into densities. The existence of a
stationary density’ = P f corresponds to a state of thermodynamic equilibrium.
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The second law of thermodynamics (in its strong form) stipulates the existence
of only one statef of thermodynamic equilibrium that is approached regardless of
the initial state of the system and is associated with the minimum value zero
of Boltzmann—Gibbs entropy (). On a space of measure 1 this state must
necessarily be given by the uniform densjfy= 1. A necessary and sufficient
condition for the second law to operate is that the Markov oper@tehould be
exact, that is, P" f — 1 in L1(1) asn — oo for any densityf; equivalently, the
Boltzmann—-Gibbs entropy should tend to its minimum value of ZB(@&" f) \, 0
asn — oo for any densityf such thatH (f) < oo; see [20] or [22].

The main result of this paper, Theorem 29, is that the Boltzmann—Gibbs entropy
can be replaced by the-entropy for any given utility functiom that satisfies the
asymptotic elasticity condition. That is to sa/! f — 1 in L1(u) asn — oo for
any densityf if and only if H,(P"f) \, 0 asn — oo for any densityf such
that H,(f) < oo. In other wordsu-entropy can play exactly the same role in the
second law as the Boltzmann—Gibbs entropy. The results also extend to Markov
semigroups; see Theorem 31.

The behavior of Boltzmann—-Gibbs entropy under the action of a Markov
operator has been studied by many authors.

The fact that the sequend@&(P” f) is decreasing i -theorem) can easily be
derived from the Jensen inequality for Markov operators. The idea goes back at
least as far as the early papers of Csiszar (see also [20, 21, 28]).

The implication

(1) H(f)—0 — f51,

which is true for an arbitrary sequence of densifigs,,cn, follows immediately
from the Pinsker—Kullback-Csiszar inequali%/]if — 1||§l < H(f) (see [5, 19,
24]; for another proof, see [21]). In fact, Loskot and Rudnicki [21] proved this
implication for a larger class of entropy-like quantities, Csiszar&ntropies [5]
H,(f) = Jon(f)dur, wheren:[0, oo) — R is an arbitrary convex function such
that n(0) = 0. The result was applied in [4] and [21] to analyze the stability of
solutions of parabolic equations. The notionpentropy also covers the case
of Rényi entropy of ordew € (0,1) U (1, 00). The proof of the implication
in [20] applies to a sequence of the special fofin= P" f (n € N) with P a
Markov operator and uses the Komornik—Lasota spectral decomposition theorem
for Markov operators [20].

The reverse implication to (1) is not true in general; see [6] for a counterex-
ample. For sequences of the forfip= P" f (n € N) with H(f) <oco andP a
Markov operator, the implication

®) 51 — H(f)—0

was proved in [20].
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Our results in Theorems 27 and 26 generalize both implications (1) and (2)
to the case of:-entropy. The proof of Theorem 27 rests on the data-reduction
inequality technique invented by Csiszar. To prove Theorem 26 we derive a
formula for u-entropy by convex duality methods, inspired by the work of
Kramkov and Schachermayer [17, 18].

To conclude the introductory part, let us remark that mathematical finance has
enjoyed unprecedented growth in recent years, not least because of considerable
input from other disciplines, including physical sciences, in general, and thermo-
dynamics, in particular. Here we see it returning the favor: &kentropy intro-
duced above, hinted upon in many recent works on expected utility maximization,
turns out to play a major role in the second law of thermodynamics, on an equal
footing with the classical notion of Boltzmann—-Gibbs entropy.

1.1. Notation. The following notational conventions are used throughout the
paper:

1. Takeco-0=0and—oco-0=0.

2. TakeR™ = (0, 00).

3. Take(2, X, u) to be a probability space.

4. TakeD(u) to denote the set of all densities @R, =, ),

D(n) = {weLl(,u):wEOand/ wd,u:l}.
Q

5. Takef u to be the probability measure absolutely continuous with respect to
with density f € D(u), thatis, for anyA € %,

= [ fau.
6. Take| - ||, to denote the norm ik (u) for anya € [1, oo], and a pseudonorm
foranya € (0, 1).

2. Entropy. In this section we defin@-entropy and establish its principal
properties. In particular, in Theorem 20 we obtain a formulaf@ntropy.

2.1. Utility functions. We begin by recalling the definitions and properties
concerned with utility functions and convex analysis that are needed throughout
this paper.

DEFINITION 1. Letu:R* — R. We callu a utility function whenevem is
strictly concave, strictly increasing, continuously differentiable and such that
"(0) = lim u/(x) = o0, "(c0) = lim u/'(x) =0.

u'(0) = fim ' (x) u'(00) = lim u'(x)
We also use the notation

u(0) = )Ici\mou(x), u(oo) = xlg’noO u(x).
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PROPOSITION1. The function I = (u/)~1:R* — R* is strictly decreasing
and satisfies

1(0) = )Ici@OI(x) —oc0, I(c0)= xli/mool(x) —0.

DEFINITION 2. Letu : Rt — R be a utility function. Theconvex dual
u*:RT — Ris defined by

3) u*(y) =supu(x) — yx)

x>0

foranyy e R™.

The following basic properties of convex functions and convex duals can be
found in various books, for example, [16].

PROPOSITION2. Letu:R*T — R bea utility function. Then:

1. The function u* is strictly convex, strictly decreasing and continuously
differentiable.

2. Theequalities u*(0) = u(00), u*(00) = u(0), (u*)'(0) = —oo and (u*)'(c0) =0
hold.

3. Foranyy e RT,

(4) w*(y) =u((y)) — yI(y).
4. Forany x e RT,
() u(x)= yirlfo(u*(y) +xy).

5. Forany y e R,
™)' (y) =—1(y).

LEMMA 3. Letu:R*T — R.Thenu isconcaveif and onlyif thereexist a, > 0,
b, € R for any n € N such that u(x) = inf{a,x + b, : n € N} for every x > 0.

EXAMPLE 1. Lety € (—o0,1). Defineu, :R* — R by

1
—xv, for x e RT andy e (—o0, 0) U (0, 1),
uy(x) =1V

Inx, for x e RT andy =0.

We callu, theisoelastic utility of order y if y # 0 and thelogarithmic utility
if y =0.

The following definition of asymptotic elasticity and its properties is due to
Kramkov and Schachermayer [17].
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DEFINITION 3. Letu:R*™ — R be a utility function. Then we define the
asymptotic elasticity of u by
xu'(x)

AE(u) =limsup BE

x /o0 ux

Note that AKu, ) =y for y < 1.

PROPOSITION4. Letu:R™ — R bea utility function. Then

[0, 1], if u(oo) = o0,
AE(u) € { {0}, if 0 <u(o0) < o0,
[—o0, 0], if —oo <u(oc0) <0.

PROPOSITION 5. Let u:R™ — R be a utility function, let a > 0 and let
beR.Theni =au + b:RT™ — R isa utility function. If u(c0), i1 (c0) > 0, then
AE(u) = AE(%).

COROLLARY 6. Letu:R*T — R bea utility function and let & = au + b for
a>0,beR. ThenAE(u) < lifandonly if AE(%) < 1.

PROPOSITION7. Letu:RT — R be a utility function such that u(oc) > 0
and AE(u) < y < 1.Thenthereisan xg > Osuchthat 0 < u(Ax) < AYu(x) for all
A>1and x > xg.

ProOF The following argument slightly simplifies the proof of Kramkov
and Schachermayer [17]: From the definition of asymptotic elasticity, it follows
that there existsg > 0 such that O< yu(x) — xu’(x) for any x > xq. For such
an x we define a functionG, :[1,00) — R by G, (A) = AYu(x) — u(ix) for
A >1. ThenG,(1) =0 andG'. (1) = yu(x) — xu’(x) > 0. Moreover,G'.(») =
YA "hu(x) — xu' (x) = LG (M) + u(hx) — %xu/(xx)) > LG (n) for A > 1.
Using the theory of differential inequalities, we can deduce ¢hat.) > 0O for all
A > 1, which completes the proof.[]

2.2. Definition and basic properties of u-entropy. Throughout the rest of this
papern: : RT — R denotes a utility function in the sense of Definition 1.

DEFINITION 4. For anyf € D(u) we put

Nuy(f)= sup [ u(w)fdu,
weA(f)

where

A(f) ={w e D(u):u(w)™ € LX(f)}.
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Note that/, u(w) f dpu € (—o0, oc] for eachw € A(f). Now we define

H,(f) =Inu= (N, (f))

and call it theutility maximizing entropy or u-entropy of f.

PROPOSITIONS8. Thefollowing inequalities hold for any f € D(u):
u(1) = Nu(f) = u(o0),
0< H,(f) =o0.

PRoOOF Takingw =1 e A(f), we obtain the lower bound. The upper bound
follows immediately from the definition.

PROPOSITIONS. For any f € D(u), the following conditions are equivalent:

1. Nu(f) <u(o0);
2. Nu(f) <o0;
3. H,(f) < o0.

In particular, all three conditions are satisfied for any utility function « such that
u(00) < oo.

PROOF The implications 1= 3 = 2 are obvious, as is 2 1
whenu (oo) = oo.

Let us prove 2= 1 whenu(oco) < co. In this case, take an € N such that
n(A) < % = (fuwA) < % for each measurable sat Such am exists because

fu is absolutely continuous with respeciitoLetw € A(f). Thenu{w > n} < %
becausg, wdu = 1. It follows that( f u){w > n} < % As a result,

/u(w)fdu=/ u(w)fdu+/ u(w) fdu
Q {w<n} {w>n}

<um)(1—-(fu{w > n})+u(c0)(fu){w > n}
=u(n) + (u(00) —u(n))(fu){w = n}

u(o0) —u(n) _ u(oco) + u(n)

<
<u(n)+ > >

Hence

Nuy(f)= sup | u(w)fdu=<
weA(f) I

u(o0) +u(m) _ 1(00)
5 )

as required. This also shows that all three conditions must be satisfied whenever
u(o0) < 0o, completing the proof. O
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PrRoPOSITION10. For any f € D(u), the following conditions are equiva-
lent:

1. H,(f)=0
2. f=1(u-ae).

PROOF 2= 1 Let f =1 pu-a.e. Take anw € A(f). By Jensen’s inequality,
Jouw)dpu < u(fqwdw) = u(l). Hence N,(f) = u(1) and H,(f) = 0 by
Proposition 8.

1= 2. Suppose that{f =1} <1 andtaked = {f > 1}. Sincef is a density
under u, it follows that O< w(A) < 1. Moreover,(fu)(A) > uw(A). For any
a € (0,1) we put

a

1—a
a = ]l ‘I:[I-—‘ ‘A ’
Wa =y ATt €AY

0(a) =/Qu(wa)fdu=u(

(A))um)( )+u(1(A )>(fu)(

Clearly,w;, 4y =1 andg(u(A)) = u(1). Moreover,

(f)(A) — n(A)
A - 0.
@' ((A) =u'(D) ARAD >
As a result, there is an € (0, 1) such thatp(a) > ¢(u(A)). Becausev, (f) >
¢(a) foranya € (0, 1), it follows thatN, (f) > u(1) andH,(f) > 0. O

PROPOSITION11. Leta >Oandleth e R.Ifu:RT — Risautility function,
then au + b isalso a utility function, and for any f € D(u),

Nau+p(f) =aN,(f) + b,
Hau-i—b(f) = Hu(f)

These properties follow immediately from the definition.

REMARK 1. Using Proposition 11, in many arguments we can assume without
loss of generality that (1) =
PROPOSITION12. Let f e D(u). Wedefine
Ap(f) ={we D(u):u(w)™ € L*(fu), w isbounded},

Ao(f) ={we D) :u(w)” e LA fu), wu < ful,
Aop(f) ={w e D(u):u(w)™ e LY(fu), w isbounded, wu < fu}.



UTILITY MAXIMIZING ENTROPY 2269

Then

Ny(f)= sup u(w)fdu= sup u(w) fdp
weshy(f) IR weAg(f) 72

= sup u(w)fdu.
weAw (f) /2

PROOF  Puts; = #4;(f), N; =SUp,c4, Jqu(w)fdu fori =5,0,0b, N =
N,(f) and A = A(f). Clearly, Ag, C A9 C A and Ag, C Ap C A. Hence
Nop < Ng < N and Ng, < N, < N. We can assume without loss of generality
thatu (1) = 0.

We showthatV < N,,. Letw € A. Definew, = wljy,<py+anlpw=n), forn =1,
2,...,whereq, = u{w > n}_1[{w>n} wdp >n.Thenfqw,du =1andw, - w
asn — oo. Clearly, 0< w,, < a,, SOw, is bounded. Moreovefw, < 1} = {w < 1}.
Henceu(w,)~ = u(w)~ € L1(fn). Thusw, € #,, for everyn e N. Applying the
Fatou lemma, we obtaift, u(w) f du <liminf,_, « [qu(w,) f du < Np,. Conse-
quently,N < Np.

Next, we show thalv, < Ngp,. Letw € Ap. If f{f>o} wdu > 0, then we take

Lir>qw

W= .
Jir=qwdn

Clearly,w € D(u) is bounded an@u <« fu. Sincew < w on{f > 0}, it follows
that [ u(w)” fdu = f{f>o}u(w)_fd,u > f{f>0}u(ﬁ))_fdu >0, sou(w)~ €
LY(fu). As aresultib € sqp. Observe thalg u(w) fdu = [ ;.o u(w) fdu <
f{f>0} u(w) f du < Nop. If, on the other handj{_f>0} wdu =0, then we take

Lir>0
p{f >0}

which clearly also belongs tetg,. Moreover, [ u(w)fdp = u(0) < u(l) <
Jou(@)fdun < Nop, becausew =0 andw > 1 on {f > O} (u-a.e.). As a
consequencéy, < Ngp. O

W=

PROPOSITION13. Let f1, foe D(u) andlet a € [0, 1]. Then

Ny(afi+ (1 —a) f2) <aNy(f1) + (L —a)N,(f2).

PROOF Put f = afi + (1 — a) fo. First observe that/qu™(w)fdu =
afqu™(w)fidu+1—a) [qu™(w) faduforanyw € D(u), SOA(f) = A(f1)N
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A(f2). Hence

Ny (f)= sup [ u(w)(afr+@A—a)f2)du
weA(f) /R

<a sup u(w) frdu+ (1—a) sup u(w) fadp
weA(f) IR weA(f) I

<a sup u(w)fidpu+ (1 —a) sup u(w) fadp
weA(fr) /2 weA(f2) /€2

=aN,(f1) + (L —a)N,(f2),
as desired. O

REMARK 2. The @rrow—Pratt) index of relative risk aversion is defined in
mathematical finance as

xu” (x)
u'(x)

For a twice differentiable utility functiom, it is clear that Inc—1 is convex if and
only if RA,(x) > 1 for all x € (0, +00). Hence from Proposition 13, we can easily
deduce that if RA > 1, then the functiorfd,, is convex. In particular, this is true
for the isoelastic utilitys,, of ordery <0 (RA,, =1 — y) and for the logarithmic
utility ug (RA,, = 1).

RA,(x) =— >0 forx e RT.

2.3. Formula for u-entropy. Some results in this section can be deduced
from [17]. They are presented here with complete proofs to make the present paper
self-contained.

NOTATION 1. Let A >0 and letf € D(n). We putu*(A/f)f =0 on
{f = 0}, which is consistent with the limit lig,gu™(A/x)x = 0.

PrRoPOSITION14. Forany f € D(u) and A > 0,

Nu(f) < /Qu*(A/f)f du+ A,

PROOF Let w € Ag(f). Thenu(w) < u*(A/f) + (A/f)w on {f > 0}
because of (5). Multiplying by and integrating oveff > 0} with respect tou,
we getfou(w) fdu < [qu*(A/f)fdun+ A. Then we take the supremum of the
left-hand side over alb € Aq(f) and apply Proposition 12 to obtain the assertion.
O

PROPOSITION15. Let f e L*(u). Then
H,(f) =In]| flloo-
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PROOF PutK =| f|lc- Let A > 0. Applying Proposition 14, we get
N(f) = [ W AJF)f dp+ A <u*(A/K) + A,

The last inequiity holds because™ is a decreasing function. Taking the infimum
of the right-hand side over alA > 0, we find thatv, (f) < u(K) by (5). This
implies thatH, (f) <InK. O

NOTATION 2. In this section we assume that ghe D(u) and a utility
functionu :R™ — R are given. We define for any> 0,

N,(f;x)= sup u(xw)fdpu,
weA(f;x) /L
where
ACf:x)={we D) u(xw)” e LX(fw)}.
Clearly,
N.(f)=Nu(f; D and A(f)=A(f; D).

In the sequel we often writ&/ (x) for N, (f; x) andA(x) for A(f; x) if u and f
are unambiguous.

PROPOSITION16. Let f € D(u) andlet H,(f) < oo. Then:

1. Thefunction N : RT™ — R is concave and increasing.
2. Thereexistsa y > O such that sup,. (N (x) — yx) < o0o.
3. If AE(u) < 1, then sup,. (N (x) — yx) < oo for every y > 0.

PrRooF 1. First we show thatV is increasing. Let O< x1 < x2. Sinceu™
is decreasingfq u(xow)~ fdpu < [qu(xiw)~ f du. Therefore A(x1) C A(x2).
Hence we deduce that

N(x1) = sup u(xiw) fdu
we(xy) /2

< sup [ u(xow)fdu
we(xy) /2

< sup [ u(xow)fdu=N(x2).
weA(xp) J 2

Next we prove thatV is concave. Letp € (0,1), x1,x2 > 0. Putx = px; +
(1 — p)xo. We first observe thatv; € A(x1) and wp € A(x2) implies w =
x Y(pxiw1 + (1 — p)xowy) € A(x), since by the convexity af

/ u(xw)_fdMZ/ u(pxawi+ (1 — p)xowz)” fdu
Q Q

= /Q(pu(xlwl)_ + (1= pulxow2)™) fdp < .
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From this we conclude that
pPN(x1) + (11— p)N(x2)

=p sup u(xqwy) fdu+ (1 —p) sup u(xowz) fdu
wiEA(xy) /2 woEA(xp) /2

= sup [ (pu(xiwy)+ (11— plu(xowy))fdu
wyEA(xy) L
woEA(xD)

< sup | u(prxiwi+ (1— p)xawz)fdu
wiEA(xy) /2
wpEA(x)

< sup u(xw)fdu=N(x).
weA(x) /2

The last inequiity holds becauser~1(px1w1 + (1 — p)xowz) € A(x). Finally,
we show that-oco < N(x) < oo for anyx > 0. Takingw = 1, we can see that
N(x) > u(x) > —oo foranyx > 0. SinceN is increasing an&/ (1) = N, (f) < oo
by Propositim 9, we getV (x) < oo for anyx < 1. On the other hand, for any> 1
we takep € (0, 1) such thatpx + (1 — p)x~1 =1 and deduce from the concavity
of N thatN(x) < p~1(N(1) — (1 — p)N(x~1)) < 0o, which completes the proof.
2. SinceN is concave, it follows from Lemma 3 that there existias 0 and a
b € R with the propertyN (x) < ax + b for all x > 0. Thus sup_ o(N (x) —ax) <
b < o0.
3. First consider the cas€oco) > 0. Lety = AE(u) < 1. By Proposition 7 there
is anxg > 0 such that O< u(Ax) < AYu(x) for all A > 1 andx > xg. Then for any
A>1andx >0,

N(Ax)= sup u(Axw) fdu
weA(rx) /2

< sup u(A(xw + xp)) fdp
weA(rx) /2

<AY sup u(xw+xo)fdu
weA(lx) Y

<A’ sup u((x +x0)v) fdp = AV N (x + x).
veA(x+xg) 7 2

The last inguality holdsbecause G u(xg) < u(xw + xg) for anyw € A(Ax) and
consequentlyxw + xg)/(x + xg) € A(x + xg).
From the above, for any > 0,

X+ x0

©) NG < N(x + x0) s( )yN(Zxo) <ax” +b,
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where
a =" N @) 255" [ u@x0)f dp=xg” u2x0) 0.
b= N(2xp).

Now let y > 0. From (6) we deduce that there isca> 0 such thatV(x) <
ax¥ + b < %yx + ¢ for all x > 0. This means that supy(N(x) — yx) <
SUP,.-o(—3xy +¢) = ¢ < 00, as required.
We now turn to the case(oo) < 0. Letw = u — u(co) + 1. Then, according
to Corollary 6, is a utility function and AEx) < 1. Moreover,ii(co) > 0 and
N, — u(o0) + 1 = Nj. Hence the proof of the assertion reduces to the first case.
O

LEMMA 17. Let f € D(u) andlet A > 0. Then

(7) /u*(A/f)fd,ugsuyiN(x) — Ax).
Q x>0

PrROOF We put
u, (y) = SUPO(M(X)—yX)
n>x>

foranyn =1,2,... andy > 0. Thenu}(y) = u(l,(y)) — y1,(y), wherel,(y) =
min{I(y),n}. Moreover,u(1) — y < u}(y). Puttingy = A/f, multiplying by f
and integrating ovef, we obtain

u(l)— A < /QMZ(A/f)fdu
® = [ @A L9) = AT A/D)f dn

= / u(xpwy) fdu —x, A
Q

for any A > 0, where we putl,(A/f) =0 on {f = 0} and where O< x, =
JoIn(A/f)dp <n < oo andw, = x, 11,(A/f). Observe that, € 4(x,), since
Jouxnwy)~ fdu < A —xyA —u(l)+u(@m)™ < oo by (8). As aresult,
[ dye < supv G = A,
Q x>0

Becausei(1) f — A <uj(A/f)f 7 u*(A/f)f pointwise on{ f > 0} asn — oo,
by monotone convergence we obtain (7.

PROPOSITION18. Assumethat f € D(u) and H,(f) < oo. Then:
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1. Forevery A >0,

—oo <ut(A) < /Q WAJf) S dp.

2. Thereexistsa Ag > 0 such that for each A > Ao,

/Q AP fdp < oo
3. If AE(u) < 1,thenfor each A >0

/Q W (AJF) fdp < oo,

PrROOF 1.LetA > 0. Then, applying (3) fop = A/f, we getu(x) f — Ax <
u*(A/f) f on the set{f > 0} for eachx > 0. Hence, integrating with respect
to u, taking the supremum over all> 0 and applying (3) once again, we obtain
u*(A) < Jqu*(A/f) fdu, as desired.

2. Itis enough to prove that, u*(Ao/f) f du < oo for someAg > 0, because
for A > Ao, we have[qu*(A/f)fdu < [qu*(Ao/f)fdun < oo, sinceu™ is
nonincreasing. Now, the assertioiéavs from Proposition 16.2 and Lemma 17.

3. This follows from Proposition 16.3 and Lemma 17

PROPOSITION19. Let f € D(n). Then the following conditions are equiva-
lent:

1. Theinequality H,(f) < oo holds.
2. Thereexistsa Ag > 0 such that

/Q W (Mo/f) [ dp < .

3. Thereexistsa Ag > 0 such that for each A > Ag
JLwr s an<oo.

PrRoOOF The implication 1= 3 follows from Proposition 18.2, 3+ 2 is
obvious and 2= 1 follows from Propositions 9 and 14[]

NOTATION 3. LetA >0andletf € D(u). We put/(A/f)=0on{f =0}.

THEOREM 20. Let f € D(u). Assume that AE(u) < 1 and H,(f) < oc.
Then:
1. Wehave [ I(A/f)dwn € R for all A > 0.
2. Thereexistsa unique A y > 0 such that

©) | 1aspan=1
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3. Wehave I(Ar/f) € Ao(f).
4. The following formulae hold:

(10) Nu(f) = /Q u(I(A /1)) f dp = /Q WA /) fdi+ Ay,
) H = ([l fdu).

PROOF 1. Sinceu* is convex,/ (A/f)(A — A) = —(u*) (A/f)(A — A) <
W*(A/f) —u*(A/f))f on{f >0} foranyA > A > 0. It follows that

(A —K) /Q I(A/f)dp < /Q IAHA/f —R/f) fdp

< /Q (W (R/F) — (A1) fdp < 00,

because-oo < [qu*(A/f)fdu and [qu*(A/f) f du < oo by Proposition 18.1
and 18.3. As a resultf, I(A/f)dn < oo. Moreover, since G< I(A/f) on
{f > 0}, it follows that O< [, I (A/f)dpu, as desired.

2. Statement 1 above means tiigt/ (A/f) du as a function ofA € (0, o) has
values in(0, c0). It is a strictly decreasing function becauses. It is continuous
with limit 0 as A 7 oo andoo as A N\, 0 by monotone convergence, because
I has the same properties. As a result, there is a unigye> 0 such that
Jol(Ap/f)du=1.

3. Clearly,I(Ay/f) =0, so it is a density by statement 2 above. Moreover,
I(Ar/f)=0o0n{f =0} by the notational convention adopted (Notation 3).

4. Propositio 2 yieldsu(x) — yx <u*(y) =u(I(y)) — yI(y) forall x, y > 0.
This implies that

u(w) — (Ag/Hw <u(l(Ag/f)) = (Ap/NHI(Af/f) =u*(Ag/f)
on{f > 0} for anyw € Ao(f). Integrating with respect t¢ ., we get

/Qu(w)fdui/Qu(l(Af/f))fdM=/Qu*(Af/f)fdu+Af

for any w € Aq(f). Taking the supremum of the left-hand side over all sué&h
and applying Proposition 12, we obtain (10) becaliges/f) € Ao(f). Finally,
(11) follows immediately from (10). O

REMARK 3. To use (11) to compute theentropyH, (f), we need to know
the constant ; defined implicitly by (9). Although the constant is determined
uniquely by (9), it may not be possible to find a closed-form expression for it,
except in some particular, though important, cases such as the logarithmic or
isoelastic utility (see below). In general, the fact thgt is only defined implicitly
is a limitation in using formula (11) foH, (f).
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REMARK 4. Adopting the methods of Kramkov and Schachermayer ([17],
Section 5), it is possible to show that &5 < 1 is a minimal assumption on the
utility function « for the validity of Theorem 20. If A&:) = 1, then the supremum

Nu(f)= sup | u(w)fdu
weA(f) /2
may fail to be attained at any € A ( f), invalidating the assertions of Theorem 20.
According to Proposition 18.3, the condition AB < 1 implies that
(12) /u*(A/f)fdu<oo forall A > 0.
Q

By a similar argument as in [18], it can be demonstrated that (12) is in fact a
necessary and sufficient condition for the assertions of Theorem 20 to hold.

2.4. Examples.

EXAMPLE 2 (Logarithmic utility). Letu:RT — R be given byu(x) =Inx
for x e RT. ThenH, is equal to theBoltzmann—Shannon conditional entropy H;
given by

Hy(f) =fo|nfdu
for f € D(w).

EXAMPLE 3 (Isoelastic utility). Let:R™ — R be given byu(x) = %x?’ for
y € (—00,0) U (0,1) andx € R*. ThenH,, is equal to theRényi entropy H, of
ordera = (1—y)~1 € (0,1) U (1, o0) given by
1 o
Ho(f) === [ redu=—"mifl
a—1 Jo a—1

forany f € D(u) N L*(w).

3. Markov operators. Here we collect the definitions and properties that
involve Markov operators. They can be found, for example, in [20].

DEFINITION 5. Let P:D(u) — D(un). We say thatP is a Markov (or
stochastic) operator on densities if

(13) P(Afi+ 1A —=1)f2) =AP(f1) + A —=1)P(f2)
for all f1, fo € D(n) anda € [0, 1].

REMARK 5. A Markov operator? on D(u) can be uniquely extended to an
operatorP : L1(n) — L(w) such that:
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1. Pislinear;
2. Pf >0forevery 0< f € L(w);
3. IPflla=Ifl1forevery 0< f € L1(w).

The extended operator satisfies the condition:
4. |PfllL<|lfll1foreveryf e L(w) [i.e., Pis acontraction oL1(u)].

We call P aMarkov operator in L(1) or simply a Markov operator. For simplicity
we use the same letté? for a Markov operator orD (1) and for its extension
to Li(p).

PROPOSITION21. Let P:LY(n) — L1(n) beaMarkov operator. Then there
exists a unique operator P*: L°°(u) — L°°(u) such that:

1. P*islinear;

2. P*1=1;

3. P*g>0forevery0<ge L®(u);

4. |P*glloo < llglleo fOr every g € L () [i.e., P* isacontractionon L (u)];
5

forall feLl(w) andge L®(w),

(14) fQ (Pfrgdp= /Q F(P*g)dp.

Wecall P* the adjoint operatoto P.

PROPOSITION22 (Jensen inequality).Let P: L1(u) — L1(n) be a Markov
operator, let u : Rt — R be a concavefunction and supposethat g, u(g) € L= ().
Then

P*(u(g)) <u(P*g).

PROOF The idea of this proof is from [21]. Leg € L°°(u). According
to Lemma 3, we can find an, > 0 and ab, € R for any n € N such that
u(x) =inf{a,x + b, :n € N}. By Proposition 21,

P*(u(g)) = P*(inf{a,g + b, :n € N})
<inf{P*(a,g +b,):n €N}
=inf{a,P*g + b,:n e N} =u(P*g),
as desired. [J
DEFINITION 6. Let P:LY(u) — LY(u) be a Markov operator and left €
D(u). We say thatP is doubly stochastic if P1 =1, that is, 1 is a stationary

density forP. Note thatP is doubly stochastic if and only ifP*g||1 = ||g]|1 for
all g e L>(n), g = 0.
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DEFINITION 7. LetP:LY(u) — L1(n) be a doubly stochastic operator. We
1
say thatP is exact (asymptotically stable) if P”" f L1 asn — oo for every
feD).
4. Evolution of entropy.

4.1. H-theorem.

THEOREM 23. Let P:LY(u) — L1() be a doubly stochastic operator and
let f e D(w). Then

H,(Pf) = H/(f).

PrROOF If H,(f) = oo, thenthe assertion is obvious. Assume Hatf) < oco.
Take w € Aq,(Pf). Definew, = w v (1/n) andx, = [qw,dp for n =1,
2,.... Thenw, andu(w,) are bounded, k¥ x, <1+ 1/n and O< xn‘lwn €
D(w). Furthermorew, \, w, u(w,) \ u(w) andx, \( 1 asn — oo. More-
over, [qu(w,)"Pfdu < [qu(w)~Pfdu < oo for n € N. Hence, applying the
monotone convergence theorem, formula (14) and Proposition 22, we get

/u(w)Pfd,u: lim /u(wn)Pfdu
Q n—oo Q

lim_ /Q P*(u(wn)) f die

(15)
< lim u(P*w,) fdu
Q

n—oo

= lim u(an*(xn_lwn))f du.

n—oo Q
For anyn € N, we have
(16) / P*(xn_lwn)duzxn_l/wn Pldu:xn_lf w,dp =1
Q Q
Using Proposition 22 and (14) once again (for the concave funetion), we get

/Q (e P hw)) ™ f djp = /Q u(P*(wn) ™ f dpe

< fQ P*(u(wa) ") fdp
(17)

= / u(wy)” Pfdu
Q

5/ u(w) " Pfdu < oo.
Q
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From (16) and (17) we deduce tth‘(xn_lwn) € A(x,) (see Notation 2). From
this and (15), it follows that

/u(w)Pfduf lim /u(an*(xn_lwn))fdu
Q n—oo Q
< lim_N(x).

According to Proposition 16.1y is concave and hence continuous, so it follows
that lim,_. o0 N(x,) = N(1). Thus

/Q ww)Pfdp < N(L) = Nu(f).

Taking the supremum over alb € Ag,(Pf), we getN,(Pf) < N,(f). The
assertion of the theorem follows becausedn? is an increasing function.

REMARK 6. Let P:LY(u) — LY(u) be a doubly stochastic operator and
let f € D(u) be such thatH,(f) < co. As a consequence of Theorem 23,

the sequencé!,(P"f), n =1,2, ..., is nonincreasing. IfP is invertible, then
H,(P"f),n=1,2,...,is aconstant sequence.
4.2. Inegqualities.

LEMMA 24. Supposethat f € D(u) and w € Agp(f). Then

/Qu(w)fdu < i/ wlloll £ — 11+ u(D).

PROOFE Let f € D(n) and letw € 4y (f). By the concavity oz we have
u(x) < (x —Du'(1) +u(d) for anyx > 0. Hence

/ u(w) fdp < u’<1>/ (w—1)fdu+u()
Q Q

=u/(1)/9(f —Dwdp+u@) <u'Dlwlooll f — L1 +u(d),

as required. [

PROPOSITION25. Letu:R™ — R be a utility function such that AE(u) < 1
andlet f e D(u)NL>®(w). Put K = || f|loo > 1. ThenforeachO < C < 1,

c\C

N = @1(u (=5 ) 2 )1 — U+

PROOE Since

1=/ fdu+/ Fdu<Ku(f>Cl+CA-plf =),
{f=C} {f<C}
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it follows thatu{f > C} > 1% CC Let us takeA r as in Theorem 20. Then

=L (F) ez (G puzozi(F e

ConsequentlyA ; > u/( )C and so

() =((=c)5) = («(5=c)%)

Now, using Theorem 20 and Lemma 24, we héva ¢/ f) € Aq,(f) and

Nu<f)=/gu(1(%))fdufu’a)l(u’(li_g)c)nf Uz + u(D),

as required. O

4.3. Main theorems. Throughout this section we assume thaR™ — R is a
utility function and thatP : L1(x) — L1(w) is a doubly stochastic operator.

THEOREM 26. Let us assume that AE(#) < 1. Let f € D(u) be such that
H,(f) < oo. Then

1
P51 asn—soo = Hu(P"f)N\O asn— .

PROOF Sep 1. First observe that the conditidi, (P" f) — 0 asn — oo is
equivalent tov, (P" f) — u(1) asn — oo. Moreover, according to Theorem 23,
the sequencs, (P" f) is nonincreasing.

Sep 2. Let f € D(u) N L°°(u). Then the assertion follows immediately from
Proposition 25 and the fact tha{l) < N, (f).

Sep 3. Now we assume thaf € D(uw) \ L*°(n). Then we can define two
densitiesf. = (f/ac)li{r<c} and f¢ = (f/a)1ir>¢ for anyc > (u{f > 0)~L,
wherea, = f{f<c} fdu>0anda® = f (f>cy fdu=>0.Clearlyac +a“=1, f =
acfe+afCandP” f =a.P" f.+a“P" f¢ foreveryn =1, 2, .... Moreover,f. €
D(n) N L*(w). According to Proposition 18.3, u*(y/f) f du < oo for each
y > 0.LetA > 0. Then[qu*(A/f) f¢du= (1/a‘)f squ(Aa“/f) fdp < oo.
Applying Proposition 19, we deduce that, (f¢) < oo Accordlng to Proposi-
tion 13,

(18) Nu(Pnf)SacNu(Pnfc)'i'acNu(Pnfc)

for eachn € N. To estimate the second term, observe that by Theorems 23 and 20
there is aw® € Ag(f€) such that

aNy(P" f€) < a Ny (f€) = a® /Q u(w) £ dp = /{ O du,

>c}
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Lete > 0. Sinceu(w®) < u*(38—f) + 3?—fwc on{f >c} by (3),

(19) a° N, (P" £€) < /{f>c} u*(%)fdu n g

As [o u*(%)fdu < 0o by Proposition 18.3, there is@> (u{f > 0})~! such
that

(20) /{f>c} u*(%)fd,u < %

It follows from Step 2 that the first term on the right-hand side of (18) tends to
a.u(1). We can therefore take avi € N such that for each > N,

(21) acNu(Pnfc)fu(l)+8/3~
Inequalities 18)—(21) and Propdtson 8 lead to
u() <N, (P"f) <u()+e

for eachn > N, which completes the proof.(]
THEOREM27. Let f € D(u). Then
1
H, (P"f)—>0 asn—oo =— P'f51 asn— .

PROOF By Proposition 11 the theorem is a straightforward consequence of
the lemma below. [J

LEMMA 28. Letu(l)=0and f,, e D(n)forn=1,2,.... Then
1
Nu(f) =0 asn—o0 = f,51 asn— oo.
PrRoOF Clearly, we can assume that none of thés is identically («-a.e.)

equal to 1. We definel, = {f, > 1} and %, = {3, A,, A, Q}. Put 0< ¢, =
w(A,) <1andp, = [An frduforn=121,2,.... Then

n 1-
Eu(flZn) =010, + 2P0 o,
dn 1—g, ™
Hence
(22) Nu(E,u(fnlzn)) = N(Pn, CIn),
where

N(p,q) =supu(wi)p +u(w2)(1— p):wig +w2(l—g) =1 wy, wz >0}
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for 0 < ¢ < p < 1. BecauseL(u) > g — E,(g|Z,) € LY(n) is a doubly
stochastic operator, we can apply Theorem 23 to get

(23) Nu(fn) = Nu(Ep(ful Zn)).

From (22) and (23) it follows thaV (p,, g,) — 0 asn — oo.
Moreover, it is easy to check that

I fa = U= IEu(fulXn) — L1 =2|pn — qul-

Suppose, contrary to our claim, thiy, — 1|1 - 0 asn — oo. This would
mean that|p, — ¢g,| - 0 asn — oo. Therefore, by passing to a subsequence
if necessary, we can assume that,,q,) — (p,q) such thatp # ¢g. Then
N(p,q) > 0 and hence there exiat;, w2 > 0 such thatwig + w2(l —¢g) =1
andé = u(w1) p + u(w2)(1— p) > 0. Let us consider two cases.

Case 1. u(w1), u(wz) # —oo. Then 0< z, = wig, + w2(l — g,) —> 1 as
n — oo. Putw] = wi/z, andwj = wp/z, forn=1,2,.... We havewjq, +
wg(l — qn) = 1. HenceN (py, qn) = u(w’{)pn + M(wg)(l — pn) >8>0 as
n — oo, a contradiction.

Case 2. u(wy) = —oo or u(wp) = —oo. We can assume that(w1) = —oo,
since the other case is similar. Then =0, wy = ﬁ >1, p=0andg < 1.

Putw} =u=1(-1//pn) andwl = (1 — wig,)/(1 — gy) forn=1,2,.... Then

wiq, +wy(1—q,) =1, w] — 0 andw; — ﬁ asn — oo. HenceN (py, q,) >

w(wl) py 4+ u(Wi) (L — p,) — u(ﬁ) — 8 > 0 asn — oo, a contradiction. O

THEOREM 29. Suppose that AE(u) < 1. Then the following conditions are
equivalent:

1. Pisexact;
2. H,(P"f)—0asn— ooforall feL>®(u)ND(u);
3. H,(P"f)—> 0asn — oo forall f e D(u) suchthat H,(f) < oo.

PROOE 1= 3. The assertion follows from Theorem 26.
3= 2. Obvious.

1
2= 1. By Theorem 27pP" f L 1 asn — oo for all feL>®(u)N D(uw). Now
let f € D(u) be an arbitrary density. Take any- 0. There exists a > 0 such that
f{fzc} fdn=<e/d. Letf.= (f{f<c} fdll)_ljl{f«}f- Thenf. € L*(uw) N D(w),
and so we can find € N such that| P" f. — 1|1 < /2 for everyn > N. Finally,
we get

IP"f — 1L < [P"f — P" fully + | P" fu — L1
<Ilf - fc||1+8/2=2/f Fdu+e/2<e.

which completes the proof.(J
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COROLLARY 30. Let @ € (0,1) U (1, +o0). The following conditions are
equivalent:

1. P isexact;
2. |P"fll« > lasn — oo forall feL>®(uw)ND(u);
3. |P"fll« > lasn — oo forall feL(u)ND(w).

PROOF.  This follows becausél, (f) = ;%7 In|| f|l«; see Example 3.

REMARK 7. The implication 3= 1 in Corollary 30 follows from a result
proved by toskot and Rudnicki [21], already mentioned in the Introduction. The
reverse implication & 3 for 0 < @ < 1 is an easy exercise involving integral
inequalities.

4.4, Continuous time.

DEFINITION 8. We call a family of operator$P;};>0 a doubly stochastic
semigroup if:

1. P, LY(n) — LY(w) is a doubly stochastic operator for each O;
2. P,o Py = P, foranyt, s > 0;
3. Pp=ldg.

1
We say that{P,},>0 is asymptotically stable if P’ f L1 ast — oo for every
S € D).

THEOREM 31. Suppose that AE(u) < 1. Then the following conditions are
equivalent:

1. {Pi};>0 isasymptotically stable;
2. H,(P'f)— O0ast — oo for each f € D(u) suchthat H,(f) < oc.

PROOF 1= 2. Let f € D(u). According to Theorem 23, the function
[0,00) 3t — H,(P'f) € R is decreasing. Moreover, it follows from Theorem 29
that H,(P" f) — 0 asn — oo. These two statements imply the assertion.

2= 1. The assertion follows from Proposition 11 and Lemma 28.
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