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Let f, denote a kernel density estimator of a continuous dengity
in d dimensions, bounded and positive. L&tr) be a positive continuous
function such that|¥ f# | < co for some 0< B < 1/2. Under natural
smoothness conditions, necessary and sufficient conditions for the sequence

#{idluwm(fn(z) — Efu(t))|loo to be stochastically bounded and to

converge a.s. to a constant are obtained. Also, the case of larger values of
B is studied where a similar sequence with a different norming converges a.s.
either to O or to+oo, depending on convergence or divergence of a certain
integral involving the tail probabilities o¥ (X). The results apply as well to
some discontinuous not strictly positive densities.

1. Introduction. Over forty years ago, Parzen (1962) studied basic properties
of kernel density estimators following their introduction by Rosenblatt (1956).
Since then the kernel density estimator has become a classical object looked at
by both statisticians and probabilists. For statisticians, it has been a canonical
example of nonparametric curve estimators, which brought many important ideas
from approximation theory and harmonic analysis into nonparametric statistics.
Probabilists used the study of this estimator to test the strength of the methods
from weak and strong convergence, empirical processes and probability in Banach
spaces. In this paper, we consider a couple of problems about asymptotic behavior
of kernel density estimators uniformly over allRf that do not seem to have been
considered before, particularly in the 1980s, when the basic results on uniform a.s.
convergence were obtained.

The kernel density estimataf, of f corresponding to a sample of size
a kernelK and a bandwidth > 0 is

1 & Xi—t
(1.1) fn<r)=wizzll<( - )
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whereX; are i.i.d. with densityf. To ensure its consistendy,is chosen to be a
function #,, of n such thath,, — 0 andnh,, — oo asn — oo. This is a biased
estimator, but we will not deal with the bias; we will only be interested in the sup
norm of the deviation off,, from its mean.

Our starting point is the following well-known result due to Stute (1984):

d _
m [ By, as,

n=oo\ 2lloghglll F s

whereJ is a compact parallellepiped with sides parallel to the ake§; means

“sup overJ,” f is a uniformly continuous density which is bounded away from 0

on J, andK is continuous and satisfies some additional assumptions [see, e.g.,

condition (K)]. Much later it was shown that

: nhd
@3)  Jm o= Efille =IKI2fI2 as,

whereK satisfies condition (K) angf is uniformly continuous [Giné and Guillou
(2002) for anyd, and Deheuvels (2000) far= 1; a weaker result of this type was
obtained much earlier by Silverman (1978)]. In both results the bandseqignce
satisfies Stute’s (1982) conditions. In fact, these results can be slightly extended
as follows: if @ is uniformly continuous and bounded dn whereJ is either a
bounded parallellepiped & with sides parallel to the axes, dr= R¢, then

(1.2)

(1.4)  lim (WO (fa) = EfL )], = 1K 2007215 as,

2|I hd| |
a result formulated in Deheuvels (2000) 0= 1 and which follows for any/
from Einmahl and Mason (2000) and Giné and Guillou (2002) (with simple
modifications in their proofs). Note that (1.4) contains (1.2) and (1.3).

The first question on which we wish to shed some light is whether one can
interpolate between the two results (1.2) and (1.3) by replatingR¢ and f ~1/2
by f~—# for some O< B <1/2 in (1.2). A more general formulation of the same
problem is whether unbounded functioisare allowed in (1.4) whet = R¢.

Notice that, in casef > 0 over all of R and liminf, | f(x) = 0, (1.4)
implies thatonly powersof 8 not exceeding 1/2 can lead to finite a.s. limits for the

sequence
00
fﬁ Oo}nzl

nhd
15 =
(-9 [ 2|logh|

This is the case of classical norming, and in this case we find necessary and
sufficient conditions (on the densifyand on the bandsequengg for (1.5) to be
stochastically bounded (Theorem 2.1); in fact, Theorem 2.1 gives necessary and
sufficient conditions for

o0

49 { 2o ¥ OUa(®) = Ef"(t))‘}“}nzl
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to be stochastically bounded, assumingf? || < oo for somes e (0, 1/2). This
result further clarifies the role of the sequence of maximum terms
maXi<i<n lIJ(X,-)/\/nhﬁ| logh,| in the asymptotic behavior of &) in probability
or in law. We also obtain a necessary and sufficient condition f&f)(tb converge
a.s. to the constanitk |»||¥ /2|« and show that if this condition is violated,
then the sequence.fl) is a.s. unbounded (Theorem 2.6).

A second question is that of determining the right norming constants in the se-
guences (1.5) or (&) for larger values of8 in order to obtain convergence. In
this case, we also give necessary and sufficient conditions for stochastic bounded-
ness (Theorem 3.1) and for a.s. convergence of the sequences (Theorem 3.4). The
almost sure limit is shown to be either O ¢0, depending on convergence or
divergence of a certain integral describing the tail behaviok f). The situation
in this case is somewhat similar to what is well known about weighted empirical
processes; see Einmahl and Mason (1985a, b, 1988).

We consider a slightly more general situation whegraneed not be strictly
positive, however, we still require that, s = { f > 0}, then f be bounded away
from zero onB; N {|t| < a} for all @ > 0. Even this case requires unusual but
somewhat natural smoothness conditionsforMore general situations seem to
require a strengthening of the smoothness conditions, and we refrain here from
considering them (see, however, Example 2.12).

Assumptions and notation. We introduce here some notation and conditions
that are used throughout the paper.

For x = (x1,...,xq) € RY, we set|x| := maxi<i<q |xi|. We assume that the
kernelK satisfies the following condition:

(K) K >0, K #0, is a bounded measurable function with support contained
in [—1/2,1/2]¢ which belongs to the linear span (the set of finite linear
combinations) of functionsk > 0 satisfying the following property: the
subgraph ofk, {(s,u):k(s) > u}, can be represented as a finite humber of
Boolean operations among sets of the form

{(s,u) 1 p(s,u) > o)},
wherep is a polynomial orR¢ x R andg is an arbitrary real function.

Conditions of a similar type were used, for example, in Koltchinskii and
Sakhanenko (2000).

In particular, the above property is satisfied if the subgraphkofs a
semialgebraic setiR? x R [see Dudley (1999), page 165].Af(x) = ¢ (p(x)), p
being a polynomial ang a real function of bounded variation, th&nsatisfies (K)
[see Nolan and Pollard (1987)].

Condition (K) is maiy imposed because iK satisfies it, then the class of
functions

?:{K(%):teRd,h>0}
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has covering numbers
A v
N(F La(P) K ) = (2) . 0<e=<i

for someA andv finite and positive and for all probability measurBsIndeed,
for a fixed polynomialp, the family of sets

s, u):p((s =)/ h,u) = o)} :t € R, 1 > 0}

is contained in the family of positivity sets of a finite-dimensional space of
functions, and then the entropy bound follows by Theorems 4.2.1 and 4.2.4 in
Dudley (1999). The entropy bound will be crucial in the proofs below. Since the
map (x, ¢, h) — (x — t)/h is jointly measurable an& is measurable, the class
F is image admissible Suslin [Dudley (1999), page 186], and this implies that
the measurability of the empirical process indexedjor even by{W¥ (1) K ((- —
t)/ h)} with & continuous] is as good as if the class were countable; that is, we can
ignore measurability of the sup of the empirical process gverF [cf. Dudley
(1999), Corollary 5.3.5 and Theorem 5.3.6, or Pollard (1984), pages 195-197]. We
setk := || K || (Which is strictly positive).

The following assumptions on the densjtywill be used repeatedly:

(D.a) f is a bounded density oR? continuous on its positivity sel; = {t €
RY: f(r) > 0}, which is assumed to be open, and Jim, SUPyj=q f () =0.

(D.b) For allé§ > 0, there exist € (0, co0) andhg > 0 such that, for ally| < kg
andallx e Bf,x+y € By,

} S f(x + y) -8
Cf (x) < TR <cf ().
(D.c) Forallr >0,
jm  sup  [LEEY 1‘ =
h—0 X,y fF)=h" f(x)
x+y€eBy,|yl<h

In particular, if logf is uniformly continuous oRR?, then conditions (D.a)—(D.c)
are satisfied (this is true, e.g., for the symmetric exponential density or for
uniformly continuous nonvanishing densities with power tails). The above con-
ditions are satisfied as well by normal and double exponential densities even
though their logarithms are not uniformly continuous. Note also that (D.b) implies
infyep; . xj<a f(x) > 0 for all a < co such thatB; N {|x| < a} # &, in particular,
a continuous density with bounded support does not satisfy (D.b). Similarly, a den-
sity that has an isolated zero where it is continuous does not satisfy condition (D.b)
either. In fact, Example 2.12 shows that, for such a density, the stochastic bound-
edness of the sequence (1.5) depends on the local behavior of the density at its
zero points, and not only on the tails of the random varigbté (X), as is the
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case under condition (D.b) (see Theorem 2.1). On the other hand, the exponential
density does satisfy (D.a)—(D.c).

Conditions (D.b) and (D.c) oif are not found in Stute’s result (1982, 1984) or
in Einmahl and Mason (2000) because they consider bounded intervalsfwith
bounded away from zero on them, and they are not found either in Giné and
Guillou (2002) since there igo division by a power off in their result. These
conditions seem natural for the results that will follow and we will indicate below
that conditions of this type are indeed needed; see Example 2.11.

We assume that the weight functidn satisfies the following conditions that
resemble the above conditions on the density:

(W.a) W: B+ Ry is a positive continuous function af.
(W.b) For alls > 0, there exist € (0, c0) andhg > 0 such that, for ally| < kg
andallx e By, x +y € By,

1 4
() < M <cW(x).
c W(x)
(W.c) Forallr > 0,

. 4

lim sup Yoty 1‘ =0.

h—>0x’y: W(x)<h™" \IJ(X)

X+y€EBy,|y|<h

In particular, by (W.b)\ is bounded on bounded subsetsigf, but ¥ may be
unbounded ifB ¢ is unbounded.

We also need the following conditions that establish a relationship between
andw:

(WD.a) I FPllw.0o = SURe3; W (1) fB(1)| < oo, whereg is a positive number.
(WD.b) Forallr >0, '

lim sup
h=0 y yv:wx)<h—r
X,Xx+T1€Bf,|y|<h

Note that (WD.a) and (WD.b) imply (D.c): if|Wf#|lz, <c and f() = A",
thenW (r) < ch™"P,
Also, if W = f~# (which is our main example), then (WDgais satisfied and

the set of conditions (D.a)—(D.c) is equivalent to (W.a)—(W.c) and (WD.b).
Regarding the window sizes, the assumptions are:

fx+y) _1‘=
fx)

(H1) h,, t > 1, is monotonically decreasing to 0 and’ is a strictly increasing
function diverging to infinity ag — oo, and
(H2) n? is regularly varying at infinity with exponenta for somea € (0, 1); in
particular, there exist & ng < n1 < 1 such that
limsupt™rd =0 and liminf™h? = oo.

t—00 =00
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Condition (H2) is quite restrictive compared to the bandsequence assumptions
in Stute (1982): besides the extra regularity, we do not allp¥o get too close to
the extremes Jr or 1/log¢, and in particularn,log ;| is comparableto log ¢ > 1.
If we set

A =Vthd|logh,l,

then, under (H1) and (H2), the functidn is strictly increasing and is regularly
varying with exponent larger than 0. This property xf is used throughout
Section 2.

Our results rely on the by now classical theorem of Stute (1984) about the a.s.
behavior of the uniform deviation of the kernel density estimator over compact
intervals, suitably modified. The version of his theorem we need is a reformulation
along the lines of Deheuvels (2000) of Proposition 3.1 in Giné and Guillou (2002),
which in turn is adapted from Einmahl and Mason (2000).

PROPOSITION1.1. Let f be a density on R?, continuous on an open set
containing D, := {t:|t| < a, f(t) > a~1}, for some 0 < a < co. Let ¥ be a
strictly positive function, continuous on an open set containing D,. Then

. nhg _ 1/2
(1.6)  lim mll‘y(t)(fn — Ef)Olp, = IKl20Wf~“lIp, as.

We omit the proof as it coincides with the proof of the abovementioned
proposition, except for obvious changes.

Proposition 1.1 applies tgf satisfying (D.a) and (D.b) and satisfying
(W.a) and (W.b).

Without further mentioningall the results we state in this paper beyond
this point assume conditions (K), (H1), (H2), (D.a)-(D.c), (W.a)—(W.c), (WD.b)
and (WD.a)g for some B. The number g is to be specified at each instance. We
will refer to these assumptions as the “usual hypotheses.”

Finally, we introduce the following notation, which will be used throughout: for
any functiong defined onB, we set

(1.7) lgllw,00 := SUP ()W (1)].
l‘EBf

2. Theclassical normingcase. The following theorem describes the stochas-
tic boundedness behavior of the sequence (2.1). It shows in particular that no
interpolation between (1.2) and (1.3) works for all strictly positive, bounded, con-
tinuous densities, andhat when it works, it does not work for all the range of
possible bandsequences. In what followss a random variable with densit.
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THEOREM 2.1. Assume the usual hypotheses, with condition (WD.a)s hold-
ing for some 8 < (0, 1/2), and, moreover, that either B = RY or K(0) = ||K |loo-
Then the sequence

nh >
(2.1) { logh, |||fn Efn”\IJ,oo}n:1
is stochastically bounded if and only if
(2.2) lim supr P{w (X) > (th?|logh,|)V/?} < co.

1—>00

Moreover, under condition (2.2),the sequence

/ nhd
{ 2|Ioghd ”fn fn”\ll,oo

(2:3) 1K oo W (X)) >
_ ( max “—) V(K 20l Y21 w,00)
1si=n [2nhd|loghd| n=1

convergesto zero in probability.

PROOF  We will use the notation, = (th¢|logh,|)*/?. As mentioned above,
conditions (H1) and (H2) imply that, is regularly varying with strictly positive
exponent. Note that, by regular variation, condition (2.2) is equivalent to
(2.4) limsupt P{W (X) > cAs} < o0

—00
for any O< ¢ < co. By Montgomery-Smith’s (1993) maximal inequality [see,
e.g., de la Pefia and Giné (1999), page 6] the stochastic boundedness of the
sequence (2.1) implies that of the sequence

[ IK((X; — 1)/ hn) — EK((X — 1)/ h)llw,c0

max
1<i<n An

Then, since, for alt, lettingu = (u1, ..., ug),

1/2 1/2

R(x=0/m)=nd [ [ K@ fhut 0 dus dug

-1/2 ~1/2
< hIK 1]l flloo = O,

takings = X1 — thy, ..., X, — th, for t € R satisfying K (r) > 0, we obtain

that the sequence

V(X; —thy)Il(X; —th B
{max ( Thy)I( Thy € f)}

1<i<n A
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is stochastically bounded. We take= 0 if K(0) = 0. Now, if K(0) £ 0, then
X; —th, = X; € By a.s.,and ifB; = R?, then obviouslyX; — th, € By, so that,
in either case, RX — th, € By} = 1. Thus, the sequence

V(X; —th
{max (Xi—1 n)}
1<i<n An

is stochastically bounded. In particulargit= 0,
{ W(X;) }

max
1<i<n Ay

is stochastically bounded, proving condition (2.4) in this case (ag; ire

independent, Rmax|&;| > ¢} > Y PH|&| > ¢}/ (1 + > Pr&| > ¢}). If T 40 but

By =RY, givene > 0, let M be such that

supPr{ max YXi — tha) > M} <e.

n 1<i<n n

If W(X; — th,) < MA,, then by regular variation there exists> 0 such
that W(X; — th,) < h,” (at least for alln large enough), and we can apply
condition (W.c) to conclude that there exists 1 such that, for alk large enough
(independent ofX;), ¥ (X;) < ¢¥(X; — thy,). Then, for these values of, we

obtain

p { W (X;) }
ry max >cM;} <e.
1<i<n n

Therefore, in this case, the sequeficex <;<, ¥(X;)/A,} is also stochastically
bounded, proving (2.4).

For the converse we note first that Proposition 1.1 takes care of the supgver
for anya > 0.

Next, we observe that the centering in (2.1) can be ignored for a certain range
of t’s. Lete, > 0and O< § < 1— B. Choose > 0 such that

prA=p=9)
(%EF:T———>O
Then there exist < +oo andng < oo such that, by (D.b) and (D.c), for amy B
andn > ng,
nV(OEK((X —1)/hy)

An
cknh?
< W) sup  f(t+ hyu)
n lu|<1/2
l‘-‘rhnuEBf
cknh ckn

=<

d hd
WO fOI(f () > hy) + T”W(t)fl‘5(t)1(f(t) <h’).
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Since, by condition (WD.g) (1) < cf~P (1), the last summand tends to 0O
uniformly in ¢ (asg < 1 — §8). The sup of the first summand over alsuch that
W) £ (1) <er P ((nh?)~1|logh,|)Y/? tends to O as well. Thus, we can ignore the
centeringE f,,(t) for all ¢t € By such that

|Ioghn|>1/2
nhd

for any sequence, — 0. We takes, = 1/logn.
In the rest of the proof, we consider the sup®fz)(f,, — Ef,)(t)| over several

(2.5) W) f (1) < s,}—ﬂ(

regions.
First, we consider the regions
(2.6) Ap:={te B W () > cPr,}

for the sequence, = (Ayiogn/*n)Y? Which tends to infinity becausg, is
regularly varying with positive exponent. Actually, #f > O is the exponent of
regular variation of;, the representation formula for regularly varying functions
[e.g., Feller (1971), page 282] gives that, for every ® < n andc > 1, there
existsng < oo such that

An logn

(2.7) }(Iogn)"‘s < < c(logn)"**
C

n

for all n > ng. Then, since8 < 1/2 < 1 — B, for a suitabled > 0 and alln large
enough, we have

Cod VB 5 /B8 5 yn/(A=P)+s

1/ dn \YOP 1/ ppd \YI-H)
(IIoghnI) <|Ioghn|)

gy &n

This yields, for allz € A,,

nh )ﬁ/(Z(l—ﬁ))

W(t) > !
()—_<|Ioghn|

B

En

and, using condition (WD.3g)(which without loss of generality can be written as
I fP w00 < 1), we get

|logh, |\ /24~
nh;{ ) '

f(t)58n<

This implies (2.5) for alt € A, sinceW ) f () < | fPlw.co A1) < f1P(1)
[again due to (WD.g)]. Therefore,

Supn\l’(t)EK((X —0/hn)

teA, )‘n

0,
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showing that we can ignore the centerifg;, on the regionA4,. For any point
a = (ai,...,aq) € R? and positive numbes, we set

J(a; p):=lar—p/2,a1+p/2] x --- x[ag — p/2,aq+ p/2] N By.

Then, discarding the centering,

sup () Zi:l K((X; —1)/ hn) < Supi\y([) ZI(X,‘ e J(1; hn))
teAy An teA, /n i=1

Now we divideA,, into two parts:

Ap1:={teB;:W(t)>h,"} and A,2:={reBs:clr, <W@)<h,"},

wherer is such thath;’(l_‘s) > cff/\n for somes > 0 and alln. It follows from

condition (W.b) that € A,, 1 ands € J(¢; hy,) imply that there are andng such
that

Yis) > W (1)
(1)

for all n > ng, so that¥(s) > cq,l—S(t) > ch;’(l_‘”. Hence, for the same values
of n and some&” < oo, we have

o sup V) Sy K(Xi =0/ h)

teAy 1 An

} <nP{U(X) > h, 49}

<

< —0
logn

It follows from condition (W.c) that € A, » ands € J(¢; h,) N B imply that there

arec andng such that (s) > c,’?kn/c, for all n > ng. Hence, for these values of
we have

-0

Pr{ sup V() Y K((Xi =)/ hn) e

teA, 2 )‘n

B
A
} §nPr{lIJ(X) > & ”} < C
logn
for someC < oo by (2.4). The last two limits imply that

V@) Y K((Xi =0)/hn) _

(2.8) nl|_>moo tselj\E) . 0 in pr.
Now we consider the regions
1/2
— : 1-p( |10ghy|
B, = {z €By f()W(1) <er ( Y :

2.9)
W) < b (nh] Ioghnnl/z}
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and notice that in these regions we can also ignore the centering [by (2.5)]. Our
goal is to show that

{ sup W(r) i K((Xi — 1)/ hy) }Oo
n=1

teBy, )\n

is stochastically bounded under condition (2.2) and that, moreover, if éither
R4 or K (0) = «, then also

v " JK({(X;—1t)/h W(X;
(2.10)  sup (12 i1 K(( 1)/ hn) . max (Xi)

teB, An 1<i<n n

+0,(1).

As above,

sup\p(t) Zi:lK((Xi — 1)/ hn) < Supw ZI(Xi e J(t; hn)),
teBy, An 1€By =1

and we set

Zy = suplp(t) ZI(X,- € J(t; hy)).

teBy, noi_1

Forj=1,...,n,set
By j:=B,NJ(Xj;hy).
If ¢ ¢ Uj_1 Bn,j, thenZ, = 0. Hence, we have

Z,= max sup kel Q) > I(X; € J(t; hy)).

1sj=ntep,; *n ;3
By conditions (W.c) and (WD.b), e B, ; implies that
W(r) < cW(X))
and also

IIoghnl)l/2

V(X)) <chr,  FXHEX)) gcs,}—ﬂ( —
n

for anyc > 1, provided that: is large enough.

Set
_g(llogh, \V/?
Ij=1,; :=I<1D(Xj) Sccf)»n,f(Xj)lI/(Xj) Scsi /3< nhdn ) )
n
Then
Z, < max WXL Y1 T(Xi — Xj| < hn)
1<j<n A
(2.11)

; W(Xi)I; en i T(|Xi —Xi|<h
< max C\IJ(XJ)+ maxc ( 1)12151571,17&] (1X; j|— n)

Tisjsn Ay 1<j<n An
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By condition (2.2), the first term in the above bound is the general term of a
stochastically bounded sequence. We now show that the second term tends to zero
in probability. To handle this term, l&t; denote conditional expectation given)

and set

pj:=Pi{lX — X;[ < hn}.
It follows from condition (D.a) that
29l f (X)) < pj <29l f(X )

(provided that/; = 1). A standard bound on binomial probabilities [e.g., Giné and
Zinn (1984), page 958] shows that
Pj{ IiW(X;) Zl<i<n,i;;j I(1X; — Xj| < hyp) . 8}

_ : ) (Ex/W(X)VL
<<(n 1)ep,tv(X,>) ML
- An€

Using the bound omp;, this probability can be further bounded by

<2decnh§ff(Xj)qJ(Xj))(exn/\v(xj))w
An€ )

We can and do assume that = 1 (otherwise the conditional probability in
question is 0). Then

_g( [logh,|\*?
FXNW(X)) < ced ﬁ( i ) ,
and we have

2ecnhd f(X)W(X;) _ Cinhdex P (|loghy,|/nhd)Y2 _ Ciel P
A€ - (nhd|logh,|)Y/2e &

for someC1 < oo (and alln large enough). Note also that

2ecnhd f(X)W(X;) C( nhd \Y?
hnt _?(lloghnl) SNV,

. - . 1-p . .
whereC is a finite positive cosntant. For large ClsT < e 1 which yields

I;W(X;) Zlgifn,i;ﬁj I(1X; — Xj| < hy)
P]’ o > £

An C [/ nhd \V?
= (eXp{_wX,-) D " <?<| Ioghn|) f(X")q'(Xf))'
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Let

1._ N . _ 1_ﬁ<|loghn|>1/2)
imi(vo < s oo < et (5

and let/?:=I; — I}. Then we have

IV (X; i T(| X — X < h
Pr{ max j ( ‘/)lelfn,lsﬁj (| i j| = n) 28}
1<j<n An

" IiW(X; iz L(Xi —Xi|<h
< ZEI]'P]'{ J ( ])Zl<z<n,z;§] (| i ]| = n) 28}
j=1 "

1 n 2 n
<Y EI exp{_w(x_)}+ZEz,;<|logh ) e
j=1 J j=1 n

=:(I)+ ().

Then, using the definition of and/?, we get

(I Snexp{—m;gn)\n} —n2

n

and

C/ nh?d \Y2 (3logn)1-P/k An
I - n Priw (X .
( )§"s<lloghn|) (nhd|logh,|)1-P)/@h) r{ ( )Z<3logn)}

Now, sincej, is regularly varying with a strictly positive exponent, the representa-
tion theorem for regularly varying functions gives thay/ (3logn) > c,/1ogn)”

for somey > 0, ¢ > 0 and alln large enough [see (2.7)]. Hence, by (2.4), there
existsC > 0 such that, for these valuesmof

C (logn)d=P/b+y 1
ah = e [loghy, |1/2+1=P)/2B) (npd)1-F)/(2B)—1/2

By (H1) and (H2), this is at most of the order of logarithmic factors times
n1=ml1/2-1-$)/2P)] g negative power of because & B < 1/2. Thus(I1) also
tends to zero. Since botlf) and(ll) tend to Q we have

LW (X ) Ya<i<n,izj TUXi — Xj| < hn) >8}_)0 251 > o0

Pr{ max
1<j<n An

This implies [see bound (2.11)] that

W(t " K X;—1)/h W (X;
(2.12) sup D 2ia KU )/ ) <«kZ, <ck max (Xi)
teB, An 1<i<n

+0p(1)a
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for anyc > 1. The stochastic boundedness of
v " JK({(X;—t)/h
{Sup (12 i1 K(( 1/ hn) }

teB, )‘n

follows immediately from this inequality and condition (2.2).

To bound the supremum from below, choassuch thatK (t) > « — § (for a
small §) with the understanding that i (0) = «, then we choose = 0, so that
eithert =0 or By =R¢. Then

Sup‘I’(l) Y K((Xi =0/ hn) > (k — §) max W(X; — thy)Ip,(Xi — Thn)'

teBy An 1<izn An

Hence, in view of this and the two-sided bound fdz,, immediately above, to
establish (2.10), it is enough to show that

W(X; —thy)lp, (X; —th W (X;
(2.13)  max ( vhn) I, th) _ max (Xi)

1<i<n An 1<i<n n

+o0,(D).

Since condition (W.c) implies that, for amy> 1 and for large enough,
-1 V(X; —thy)
< _—
V(X;)
(assuming thak; — th, € B,), takingc arbitrarily close to 1 reduces the proof
of (2.13) to showing that

V(X)) Ip (X;—71h W (X;
max ( 1) B,,( i T n)= max ( l)

1<i<n An 1<i<n Ay

+Op(1)7

or, put in another way, (2.13) will be proved if we show that
W (Xi)ps(Xi — Thy)
X —

1<i<n An

(2.13) 0 in pr.
B¢ naturally decomposes into the union of three regions and we look separately at
eachofthem. B, = R, thenIB;_ (X; —th,) =0, andift = 0, then this indicator
is 0 a.s., so that, in either case,
W (X)) s (Xi = Thy)

max -0 a.s.
1<i<n An

Next, we consider

. _ p
Pr{ max W(X)I(W(X; — thy) = cnin) - 8}

1<i<n An
<nPHW(X — thy) > cPa,)
<nPHcPr, <W(X —th,) <h, "} +nP{¥(X —th,) > h,"}.
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Using condition (W.c), we get (for any> 1)
nPHP L, < W(X —th,) <h,"} <nPH¥(X) >c 1P, ) — 0.
Similarly, using condition (W.b) (recall th& — th, € By with probability 1),
nPHW(X — Thy) > h,"} <nP{W(X) > ¢ th, /1)
for somec > 0 ands > 0. Assuming that is large enough (so thahl;f’/a”) >
c,’fxn), we then conclude that
nPHW(X —th,) > h,"} =0

and, hence,

. L B
Pr{ max W(X) I (W(X; Thy) > cyin) >

1<i<n An

e}—>0.

Before considering the last piece 8f, we note that, sincg P (1w (r) < 1 for

all ¢, if moreover f (u)W¥(u) > L, then f1=#(u) > L and consequently (1) <
f~Pw) < L=/A=P) an observation that we will use several times below. This
observation and condition (W.c) give

. C_ . 1-p d\\1/2
maX\IJ(Xz)I(f(Xz thy)V(X; — Thy) > &; " (1l0ghy|/(nhy))™°)

1<i<n A
= may YD (W(Xi — thy) < cen” (uhg /| logh, /24P
T 1<i<n An
ahd N\ B/2A-P)) 1
=< CEn_ﬂ( - ) d 1/2
| Ioghn| (nhn| IOghnD

C
el | logh, | /261 @A) (nhd)1/2-B/(0A-F)

Now, sinceg < 1/2 < 1 — B andnh¢ > nl=™ [by (H2)], whereas, = 1/logn
and|logh,| is comparable to log, it follows that the above bound is dominated by
a negative power ot so that, in particular, it tends to zero. This and the previous
two limits conclude the proof of (2.18and hence of (2.10).

Finally, we consider the sup over the remaining setofFora large, fixed, just
as above, set

(2.14) Cp,=Cha:={te DN Bs: fO)V () > e P(|logh,|/nh)Y/?),

whereg, is as defined in the previous paragraph. In this range the centering cannot
be ignored. We will apply an estimate for the expected supremum of the empirical
process over bounded VapniRervonenkis type classes of functions [Giné and
Guillou (2001), inequality (2.1) and Talagrand (1994), for classes of sets; see also
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Einmahl and Mason (2000) for a similar inequality]: if a class of functi@hss
measurable (in particular, if it is image admissible Suslin) and satisfies

(2.15) N(F,L20),¢|Fllo) < (g) , O<e<1,

for somev > 1, A > 3,/e finite and all finite probability measure$, whereF is
a measurable envelope for the cl&sthen

| A A
(2.16)  E|n(P,— P)||z < C(ﬁﬁa Iog—U +vU log —U>
o o

wheres andU are any numbers satisfyingo < U and

(2.17) o?>supVarp(g), U > sup|glleo
gEF gEF

andC is a universal constant. [In Giné and Guillou (2001), condition (2.15) has
| Fllz,0) instead of|| F|l«, but it can be easily checked that their proof works as
well under condition (2.15).] As mentioned immediately below the statement of
condition (K), there exisa andv finite such that

A v
N({K((-—f)/hn)iteR},Lz(Q),e)5(—K), O<e<l,
&
for all i, > 0 and all probability measurg® on R. Now, the class of functions
Fn = {VOK((-—1)/hy):t €Cy)
is contained in
Gn :={uK((- —1)/hy):t €eR,0<u <U,},

where

pd N\ B/2A-p))
(2.18) U, :=%< adf )
e \[logh,|

[recall that, as observed above, under condition (WR.g)¥ > o implies
U < o A/1=P)]. Therefore, since thd.»(Q) distance betweenK ((- — 1)/ h,)
andvK((- — s)/hy,) is dominated by |u — v| + U, ||K((- — t)/h,) — K((- —
$)/ hn) o0, it follows by taking optimal coverings of0, U, ] with respect to
the Euclidean distance, and &%, with respect to theLo(Q) distance, that the
entropy bound

24 v+1
(2.19) N(Fp. L2(0), eUy) < (TK) . O<e<l,

holds for all probability measure@ and alln large enough. The clasg, is also
image admissible Suslin since the m@apr) — W () K ((x —t)/ h,) is measurable.
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So, inequality (2.16) applies to it. We can talke= U,, as defined in (2.18). Next
we estimates 2. It follows from a previous observation and from regular variation
that, onC,, we have bothf > A/ and¥ < k] for somer and alln large enough.
Then, (D.c) and (W.c) give that there existC, ng < oo independent of: such
that, for alln > ngand allz € C,, = C,, 4,

W2 EK2((X — 1)/ hy) < cE(K?((X — 1)/ hy)W2(X))
= ch? / K2u)V2(t + hou) f(t + hpu) du
lul<1/2
t+hnu€Bf
< ch? 1K 150 2l pgns,
< Chd (I F 92 perg, v Y.
So, we can take
of = Chy (I f Y2 pgns, vV n Y.

The constanfi = A,, must be taken to b@A«x) v (3/e), whereA is the constant
in (2.15) for the class consisting of translations and dilation& ofn particular,
since by (H2) logh,| is comparable to log, we have

AUy

log <c|loghy|

n
for some constant < oo independent of:. So, inequality (2.16) applied t&,,
gives

E sup
teCy,

V() Y (K((Xi = 1)/ hp) — EK((X — t)/hn))‘
An

1( nhg )/3/(2(1—/3))

C 1/2 —1/2
= |:)\n(||f Wllpgns, vn~T) + |logh,|

n

= logh, |

el "

for a constanC independent of, for all sufficiently largen. We should note that
the numerical constants in the above inequalities are not only independent of

but they are independent afas well. Since8 < 1/2 and thereforg/(1— 8) < 1,
and since, by (D.a) and (WD &)

1/2 1/2— 1/2—-8
172l g, < 1FY% Pllpgns, =11 flping, >0 asa— oo,

we obtain
lim limsupE sup V()Y i (K(X; —1)/hy) — EK((X —1)/hy))

a—>X0 psoo t€Cp.q An

: 1/2 . _
< lim_C|l /W pgn, =0,
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Now, the theorem follows from (1.6), (2.8), (2.10) and (2.2Q)
Now we make two comments on the assumptions.

REMARK 2.2. The assumptionB; = R? or K(0) = |[K|«" has been
imposed because in general we may not hive th, € By with small enough
probability, asn Pr{X — th, ¢ B} could well be of the order ohh, — oc.

Now, this condition has been used in full only in the proof of (2.3). Proving
that tightness of the sequence (2.1) implies condition (2.2) has only required
By = R? or K (0) > 0, whereas proving that condition (2.2) implies tightness of
the sequence (2.1) does not require any hypothesis of this type.

The above proof justifies, a posteriori, having taléea 1/2:

COROLLARY 2.3. Assume (K), (H1), (H2), (D.a)—~(D.c)and B = R<. Then
fn - Efn

the sequence
nhd >
{V 2llogndll  VF ooLzl

[which coincides with (2.1)for W = f~1/?] is not stochastically bounded.

PROOF. By the first part of the previous proof, if (2.1) withh = f~1/2 is
tight, then there i€ > 0 such that

1 2

Since f takes all the values between 0 ahfl||~, for n large enough there is,
in R? such thatf (x,) = 1/(2A,%). Then, by condition (D.c), there is a subde}

containingx,, and of Lebesgue measure larger théﬁ/’, where Y f(x) > k,% and
f(x) = 1/(4r2), and therefore, if we take > ny/d with n; as in condition (H2),

>,\,§}znpr{XeDn}z 0,
4

n
—_—
k’%(l—i-d/r)

1
n Pr{
f(X)
contradiction. J

Theorem 2.1 has the following obvious corollary regarding convergence in
distribution:

COROLLARY 2.4. Under the assumptionsin Theorem 2.1,the sequence (2.1)
convergesin distribution if and only if the sequence of maxima,

)

1<i<n Ay
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converges in distribution. Then, if Z is a random variable with distribution the
limit of this last sequence, we have

nhd d 12
2loghs ———Ilfa — Efallw.co = (1Kl Z) V (K ll20l 7 1lw,00)-

Next we consider the a.s. counterpart to Theorem 2.1. The following proposition
will help. It is perhaps relevant to recall first a well-known fact, whose proof we
omit as itis similar to a classical result of Feller [e.g., Lemma 3.2.4, Corollary 3.2.3
and Theorem 3.2.5 in Stout (1974)].

LEMMA 2.5. Let V; be i.i.d. real random variables and let {c(n)} be a
nondecreasing sequence, regularly varying with strictly positive exponent. Then,
Vil . Vil

either lim sup max | =00 as. or
n—oo 1<i<n c(n) n—>o01<i<n c(n)

=0 a.s.

And this happens according to whether
> PH|Vul > Ccn)} =00 or > PH|V,| > Cc(n)} < oo
n n

for some (or, equivalently, all ) C > 0.

PROPOSITION2.6. Assumethat conditions (D.a), (W.a)— (W cand (WD.a)g,
(WD.b) hold for some g > 0 and that, moreover, either By = R or K(0) > 0. Let
c(n) /" oo bearegularly varying function of n. Assume

(K((Xi =)/ hn) — EK((X —1)/ hy))

(2.21) lim supH 2zt

as.
c(n) W, 00
Then,
\IJ(X)
2.22 Pr
(222) Z { c(n) } =
for all 0 < C < oo or, what turns out to be the same by Lemma 2.5,
W (X;
(2.22) lim max (Xi) = as.

n—>0l1<i<n c(n)

ProOOF The proof is standard, but we give it here for completeness. First
we note that if (2.21) holds and(n) / oo is regularly varying, there(n) has
necessarily positive exponent, which by Lemma 2.5 gives the equivalence between
(2.22) and (2.22. This follows because, by (2.21), thererisvith ¥ (r) # 0 and
f () # 0 such that the sequeng¢'_; \IJ(t)(K(X'_’) — EK(X ’))/c(n) neN,
is tight, which, by boundedness and finite supporKoﬁmplles that the sequence
of its second moments is uniformly bounded, thus, that the sequﬂﬁfdez(n)
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is bounded; hence, since by (H2}¢ is regularly varying with strictly positive
exponent and:(n) is regularly varying, it follows that the exponent ofn) is
strictly positive as well.

Let {X]} be an independent copy @X;}. We can symmetrize in (2.21) and still
have the lim sup finite. By continuity of on B, there isn(w) < oo a.s. such that,
forall n > n(w),

H K(X(w) =1)/hy) — K((X"(@) = 1)/ hy) - K(W(X)+¥(X)+1)
c(n) Woo c(n) .

This tends to zero and therefore the limsup in (2.21) is a.s. constant by the zero—
one law. Hence, we have

s EL VO ) KX
n>k c(n) B
ask — oo

for somec < co. Set

H (X, X'y e LOEX = 0)/ ) = K(X' =0/ 1))

c(n)

and, fork € N,

Zig = (He(X;, X)), Heo1(Xi, X0, o Hieor (X0, XD, L)
if i <k, and

Zl,k = (O’ r) ’ 07 Hk—l—r(Xk—i-r’ X]/(+r)v Hk+r+1(Xk+rv X]/(+r) . )
fori =k+r,r=1,.... Then, the above sup over> k is simply

o0
> Zix
i=1

where [|(x1(t), ..., x,(?), .. )|l = sup, llx,(t)|ls,. The random vectorg; ; are
independent and symmetric, and we can apply Lévy’s inequality to get that

’

Pr{sup|||Z,-,k||| > Zc} —-0
ieN
ask — oo. By independence, this implies that

o0

> PHlIZisll > 2c} — O

i=1
ask — oo. Lett =0if K(0) > 0 and otherwise ldtr| < 1 be such thakK (t) > 0.
Then,
V(X — h,1)

) I(1X = X'| > hy)

| Ho (X, X)) |5, =
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for somec > 0, and we get that

, cV (X)) ,
I Zikll = sup Hp(Xi, X;) > — I(1X; — X;| > hivk)
m>ivk c(i Vk)

whent =0 and

cinfini<in

I(1X; — X{| > hivk)

IZikll = sup Hu(X;, X\) > | W(X; —h)
o m=>ivk mAS = c(i vk)

whenBy = RY. The case = 0 is easier to handle, so we will complete the proof

only for the second case. In this case, sin¢gRr— X'| > h;} > 1— || flloch?, the

previous inequality yields l

cinfini<in  W(X —h
cInfp<in; ) W( )>2c}.

o0
> PRI Zixll > 2c} = ,
i=1 c(i)

3@ 1 ook Pr{

i>k
Then by (W.b) there are 8 § < 1 and¢ > 0 such that

oo
> PH{E(X) > éc/ ()} < o0,
n=1

But by regular variation, there exists> 0 such thath;” > éct/1*9 (), and
therefore

o0
> PHW(X) > h,"} < o0.
n=1
Now by (W.c), forn large enough, there exists< oo such that

cinfip <, W(X —h)
c(n)

Pr{W(X) > Cc(n)} < Pr{ > 2c} FPHY(X) > k"),

Therefore,

o
> PH¥(X) > Ce(n)} < 0.
n=1 O
We are now prepared to give an integral test for a.s. convergence of the
sequence (2.1). Notice the difference with the tightness criterion, which is due
to the fact that, by Lemma 2.5, we have
v (X; . W(X;
(Xi) =0a.s. or limsupmax (Xi) =00

An n—oo 1<i<n Ay,

(2.23) either lim max

n—>xX1<i<n
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THEOREM 2.7. Assume the usual hypotheses, with condition (WD.a)s hold-
ing for some g € (0, 1/2), and, moreover, that either By = RY or K(0) = ||K |l0o-

Set A(t) = Vth¢|logh,|, as before. Then, either

d

. nh§ _ 1/2
(2.24)  lim_ 2l10g hd|”f" Efullw,co = IK2lf7“llw,00 as.

or

. / nhd
(2.25) ||’£n_)50.l!|p 210 | ”fn — Efnllw,00 =00 as.,

according to whether

(2.26) /lOOPr{ID(X)>k;}dt<oo or /lOOPr{\IJ(X)>k,}dt:oo

PROOFE By Proposition 2.6, since., is regularly varying, if the integral
in (2.26) is infinite, then (2.25) holds. So, we must prove that

(2.27) /100 Pr{W(X) > cAs}dt < o0

for all ¢ > 0 implies (2.24). We proceed as in the proof of Theorem 2.1, with the
addition of the usual blocking and replacing, in the estimation of the sup@yer

the moment bound by an exponential inequality. By (2.4), we only have to consider
the sup of our statistics ovet;,, B, andC,, the three sets defined as in the proof
of Theorem 2.1, but witle,, = 1 (ande,, = 1/logn as before), and we can ignore
the centerings on,, and B,,. By monotonicity ofz,, anda,,, we have

max  sup V() i K((Xi = 1)/ h)

2k <p<2k+1 €A, kn

WO Y2 1X; e T h
<k sup ()Z 1 [(X; e J( zk))
tGAZk )"Zk

Hence, we have, as before,

veO)Y? K(X; —1/h
Pr{ max  sup )i KX —1)/ n)>8}
2k<p<2ttlica, An
/B

< g 1ok+1 Pr{\lJ(X) > 2 }
C
for all k large enough and some> 0. But, by (2.27), this is the general term of a
convergent series, thus proving that

(2.28) ||m sup ly(t) Z?:1 Kk((Xi - t)/hn)
teAn n

=0 a.s.
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RegardingB,, (with ¢, = 1 ande, N\, 0), we first note that, by regular variation,

ok+1 1/2

U B, C By —{t FOW@) < e 1- ﬁ<||09h2k|) ’
2kpd,

n=2k 2

W(r) < 'l (2N, logh |)1/2}

for somec’ > 1. Then, asin (2.11),
)\ n KX —
max  sup ()27 K((X; — 1)/ hy)

2k<n<2k+1 teB, }»n

W) Y2 1(X; € Tt hy))

< sup

te[?zk )\'zk
W(X;)I; I(X; = Xj|<h
S max C\'I’(X ) max Cc ( ) Zl<l<l’l JAF£] (l | Zk)
1<j<2bl A 1<152"+1 Ak

where I; is defined as before but with = 21 andc may be different from
the constant in (2.11). Now, the maximum term tends to zero a.s. by (2.7) and
Lemma 2.5, and the remainder term satisfies

WX Xaciznizj TUXi = X1 < hoe) = 8} z -

Pr{ max
1<j<2k+l Aok

— g2ak

for somex > 0 and allk large enough, as in the proof of Theorem 2.1. Therefore,
v " JK({(X;—1t)/h

(2.29) lim_sup 027 K 0/ 1tn)

teBn )‘n

=0 a.s.

In order to control the sup of our statistics ov€f, = C,, [as defined
in (2.14)], we will use Talagrand’s exponential inequality [Talagrand (1994, 1996)]
in conjunction with the bound on the expected value of the sup of an empirical
process given in (2.16). In a ready to use form for the problem at hand, it is
as follows [Giné and Guillou (2001), equation (2.12)]: under assumption (2.15)
above, and with the notation of (2.17) above, assuming further that

U
O<o<U/2 and /no>U,|log—,
\ o

there exist constants and L such that, for alk > C,

> so/n Iogg } < Lexp{—Dis) Iogg},
o o

n

S (fE) - Ef(£)

i=1

(2.30) Pr{

F
where

D(s) :=slog(l+s/4L) — o0 ass — oo.
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We apply this inequality to the clas%, defined on the last part of the
proof of Theorem 2.1, withU = U, and o = o0, as defined there, so that
Iogg—z = logn. Since, fora fixed andn large enoughg, — 0, U, — oo and

J/no, /(Uy,/log g—;’) — 00, the above applies to give that there exiSts: co such
that, for alla > 0 and for alln large enough (depending a,

Pr{ sup V() Y i (K((Xi =)/ hp) — EK((X — 1)/ hy))

teCp.q }&n

(2.31) - C| fl/Z\IJ”ngBf}
< Lexp(—2logn}.

Hence,

iimsup sup| YO ZinaK(Xi =0/ hy) — EK(X = 1)/ hn))
(2.32) 1= teCua o
<CIfY2W|pgnp,  as.
Combining (1.6), (2.28), (2.29) and (2.32), and letting> oo, we obtain the
limit (2.24). O

We conclude this section with a few examples. We téke) = f—#(¢). Other
choices of¥ are of course possible.

EXAMPLE 2.8. Suppos¢ :R — (0, M]is continuous and

fx)=cre~ 2

for all |x| large enough, for some> 0 and for some constants andcz. Then,
f satisfies (D.a)—(D.c). Take

h,=n"%, O<a<1.

For simplicity assume; = co = 1. It is easy to see that
PHIX| > u} <u'"e™™.

Hence,

1 1
(1-a)/(2B) /2| o
Pr{ x ! (log?) }“ 1=/ @B (log 1)L/ @B—A—n)]r
Then the above theorems imply the following. Foe 1, which includes the
symmetric exponential and the normal densities, the conclusion is that the
sequence (2.1) witlr (1) = f~P(r) is tight (stochastically bounded) if and only
if

26<l—«
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and that, if this is the case, then

nl=e | f, — Efy
(2.33) \' 2« logn

A
The same is true for exponential densities if we replace in (2.33) the supgrover
by the sup oveR™. For O< r < 1, if 28 < 1 — «, then the limit (2.33) holds.

If 28 =1 — «, different behaviors arise; namely, (i — »)/r > 1/(28), then the
sequence (2.1) is not stochastically boundedt i ) /r = 1/(28), the sequence
converges in distribution to the limit in distribution of the random variables

(max =)V KIS,
1<i<n /2qn?P logn fP(X;)

which is unbounded and can be easily computed (see the next example); if
r)/r —1/(28) < 0, we have convergence in probability in (2.33), but convergence
a.s. holdsonlyifl—r)/r —1/(28) < —1.

— Kl FIYZ2F  as.

o0

EXAMPLE 2.9. Suppose now the real densjtys strictly positive, continuous
and
C

fx) =

|x|”

for all |x| large enough, for some> 1 and for some constant These densities
also satisfy (D.a)—(D.c). Takke, =n~%, « € (0, 1) as above. Then, (2.1) [again,
with W (r) = f~P(r)] is tight if and only if

ﬂ<r—11—oz
— r 2 9

and, if this is the case, then (2.33) holds true.

EXAMPLE 2.10. Let now f(x) = 3¢~ ¥l be the symmetric exponential

density onR. Then,
n
} ’1_(1_3), it u>2,
>Up = u

1, otherwise,

Pr{ max
1<i=n f(Xi)
so that

d

max ——— % 7P,
1<i=n nP fB(X;)

whereZ has distribution

PHZ <1) = e~ 21, if +>0,
o 0, otherwise.
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Hence, if we takes € (0, 1/2) and

1

.
" nl-2Blogn

Theorem 2.1 gives that
K K

nhy fn - Efn 4 ma
2| logh,| 00 V2 =2B) 2v2-8

P
The next two examples show that the above results are not true in general
without conditions of the type of (D.b), (D.c) [and (W.b), (W.c)]. The first
addresses smoothness and the second the existence of z¢rasdhe closure
of Bf.

EXAMPLE 2.11. It is easy to see that the double exponential density still
satisfies conditions (D.a)—(D.c) and, hence, Theorems 2.1 and 2.7, but the density

f

f@t) :=ce ", t>0,

does not. Specifically, condition (D.b) fails for this density and we show below
that, for allg € (0, 1) and forh,, =n~¢,

nhy, Ju @) — Efy (1)
(2.34) N 2llogh] tS;(ﬁ 0 ‘ —~o00  a.s.

Indeed, ifK is continuous and strictly positive at the point —1/4, then

Efn(t) . o i X —t
A~ Cexplpe [
Y
= cexp{Be’ } 12K(u)f(h,,u+t)du
t r—4—1,—«
> crexp{fe —e° }

_ 7lnfot
= crexple’ [B—ed @ DL

Letr, :=logn. Then, for larges,

nhn Efn(tn) n . n(e,4fln7a_l) p{ {}
\/aloighnlfﬁ(rn) = caexplet[f —e I} = crexpip 1.

On the other hand,

o

Pt 01 = Prf max x> 1, — " < Cnexpt—e"7),
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nhy Su(tn)
\ 2logh,| () 0 as

and therefore (2.34) holds.

which implies that

ExXAMPLE 2.12. This example shows that if the densjtyhas a zero iR,
then the asymptotic behavior of

fn - Efn
fﬁ By

depends on the local behavior gfat the zero point and is no longer controlled

only by condition (2.2). Note that in this case condition (D.b) fails. For simplicity,

assume that, =n=% (with « < 1) andK = I;_1/21/2)- Let f be a density

continuous on a neighborhood of 0 and such tfie®) = 0 and, moreover, for

somes > 0,

nhy,

|logh,|

f@) <t asr — 0.

In particular, we assume thdtis s times continuously differentiable at O (for an
even integer numbey) and f)(0) =0 for j <s, f®(0) > 0. It is easy to see
that

(2.35) P{|X| <t} =<'t  asr—0.
We will show that ifs > 2 — 1, then, for allC > 0,
n E n
(2.36) pr| [ || Jn— B
2|loghnll f5

The proof is almost the same as in the previous example, l-et0 be chosen in
such a way thaf (1,) = ¢™". Note thatr, = o(h,,). Then, using (2.35), we get

nhy  Efu(tn) nl-o Bn. « o
= EK X -t
2lloghs| 7 ~Vlogn® " KX =)

nlt+a n¢ n¢
= —ﬁ"PI’{t— <X<t }
logn * Ty SRSk

>C}i— 1
By

= %eﬁnn_(”b“ — 0.
On the other hand, also using (2.35)s it ;1[ —1, then
P{/n(t) #0} =P3i,1<i <n:Xi € (ty — hn/2,tn + hn/2)}
<nPHX €t —hn/2,ty + hy/2)}
= nhfﬁl =pleG+D o,
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This immediately implies (2.36). Now lef(z) = c|t|* for |t| <a and f(z) =0
otherwise. Then it is easy to check that condition (2.2) holds if and only if
B < 1_7"‘(1 + %). Thus, for large enough, this condition does not imply the
stochastic boundedness of (2.1).

3. Large normings. By Proposition 1.1, the central part of the process
() (fu(t) — Ef, (1)), thatis, its sup oveb,, for all a > 0, has an influence on the
asymptotic size in probability of the sequence (2.1) and completely determines its

a.s. limit. But if we normalize by a sequence larger tlv/am;ﬂ logh,|, this central

part of the sup vanishes for all> 0, and only the extremes of the rangersf
should have an influence on the limit. This is what we examine in this section. As
in the previous section, we will only consider regularly varying window sizes and
normings. As is to be expected, the only possible limit a.s. in this situation is zero,
and the sum is asymptotically equivalent, in probability, to the maximum term.
This is roughly the content of the following two theorems.

THEOREM 3.1. Assume the usual hypotheses, with condition (WD.a)s hold-
ing for some B < (0, 1], and, moreover, that either By = RY or K(0) = ||IK ||oo-
Let d; beadtrictly increasing regularly varying function such that d; /A; — oo and
d, > CtP for some C > 0. Then, the sequence

\Il,oo}

H i (K(Xi =)/ hn) — EK((X — 1)/ hy))

(3.1) y

is stochastically bounded if and only if
(3.2) limsupr PV (X) > d;} < oo.

[—00
Moreover, if condition (3.2) holds, then
H Y1 (K(X; = 1)/ hy) — EK((X — 1)/ hy)) H
dn W, 00
K|looW(X;
N [ CONN

1<i<n n

(3.3)
0 inpr.

PROOF The proof is similar to that of Theorem 2.1. First we consi@ler 1.
Necessity of condition (3.2) follows exactly in the same way. Here we indicate the
few changes that should be made to the proof of Theorem 2.1 in order to prove
that (3.2) implies (3.1) and (3.3). First, and this is by far the main difference with
Theorem 2.1, the sup of

() 3 (K((Xi =)/ hn) = EK((X — 1)/ hp))

(3.4) v
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over D,, tends to zero a.s. for alt < oo by Proposition 1.1. Regarding the
centering, consider the bound

nWOEK(X —1)/hy)

dn fP(1)
cknhd . cknhd 1—s -
< — VYOS OI(f ) > hy) + V(@) fTOI(f ) < hy),

wherer € B;, 1— g > & and r is such thatehl 779 /4, — 0, which is
obtained as in the proof of Theorem 2.1. If the exponent of regular variatimhﬁof

is strictly smaller than that of,,, then, since¥ f7 is bounded for all; > 3, the

sup overr € By of this bound tends to zero and therefore we can simply ignore
the centerings in (3.1) and (3.3). Otherwise, the second summand tends to zero
uniformly int € By and the first tends to zero uniformly on ak B, such that

dn

FOW() < si—ﬂnhg,

for anye, — 0. So we can ignore the centerings for these values A before,
we takeg, = 1/logn.
Continuing in analogy with the proof of Theorem 2.1, we now define

Ap={teBp:W(t)>cld,)

with ¢, = (dulogn/dn)Y? — oo, and we get, as in (2.8) but now using the
properties ofd,, that

im SupZ,-zl‘lf(t)K((Xi —0/hn) _

= tea, dy

0 in pr.

(forO< B <1).
Next we set

d
B, = {t € By f(HV(r) <el P ;d LW(1) < cffdn}
n n

in analogy with (2.9). Then, proceeding as in the proof of (2.10) with the only

formal change of replacing, by d, andvnhl/|logh,| by nh¢/d,, we arrive at
analogous conclusions, namely that the sequence

Sup‘lf(t) Y K((Xi —1)/hy)
teBy, dn

is stochastically bounded and that in fact it can be represented as
W (X;
max kW (X;)

1<i<n n

+o0,(D).
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(This requires using the propertiesdf andh,, but, given that proof, the details
are straightforward.)
Finally, we consider

Co=Bs\ (A UBy) ={t€Bs: f(OV() > ey Pd,/(nhd)).

Using as before tha¥f > L implies, by (WD.a), thatw < L=#/=) we can
take

pd \ B/(A—=P)
Un =K8n_/3<n n) .

dn
We will consider two cases.

If the exponent of regular variation ef:¢ is strictly smaller than that af,,, then
ei_ﬁd,,/(nhﬁ) — oo and therefore, since, by (WDA)|l f ¥ loc < ||f||i§’3 < 00,
C, is eventually the empty set.

Assume now that the exponent of regular variatior/,ptloes not exceed that
of nh?. Thener " d,/(nh?) is eventually dominated by for anys > 0, so that
we eventually havef (1) > k), andW(r) < h,” for somer > 0 and allr € C,,. So,
we can apply (D.c) and (W.c), which, together with (WDQ.a)nmediately imply
that we can take,, as follows:

1-2 .
o_ | cengiris”, if p<1/2,
Ckhiey, P~ nnd 1a,)2-D/0=) it g>1/2.

SinceU, is either slowly varying or tends to infinity ang, tends to zero as a
negative power of for g8 < 1/2, we get, in this case, that, eventually,

U,
O<o,<U,/2 and log—= =< logn.
On

The same conclusion holds fgr> 1/2 sinceh?/? decreases as a negative power
of n and the exponent ofk¢/d, in the expression for, is smaller than its
exponent in the expression féf,. It is also easy to see, using/d, — 0 in the
caseB < 1/2 andd, > Cnf wheng =1/2 or 8 > 1/2, that, eventually,

Vno, > U,~log(U,/o,) < U,~/logn.
Then inequality (2.16) gives that

V(@) i1 (K((Xi =)/ hp) — EK((X — 1)/ hn)) D _ Cy/nlogn o,
dy - d

for someC < oo independent of, as long a% is large enough. Fg8 < 1/2, this
bound is, up to a multiplicative constant, of the order of
An

— =0,
dp

E(sup

teCy, n
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and forg > 1/2, itis of the order of
- @B=D12 flogn(nf /d,) Y QLB pdb/A-P) _, 0,

sinced, > Cn® for someC > 0, andh, — 0O at least as a negative poweraf
This completes the proof of the theorem ok 1.
For B =1, sinced, > Cn and ||V f ||y, <1, we can ignore the centering for

all z. Then we decomposgy into A, defined as above am), :={r € By : W (1) <

cffa’,,}. The proof of (2.8) and (2.10) with, replaced byi, follows as in the proof
of Theorem 2.1, even with some simplification®sis how a simpler set. [

We have assumed, > Cn? andg < 1 in the above theorem. Next we show
that these two assumptions are optimal.

REMARK 3.2. TakeW = f—#. For the sequence (3.1) to be stochastically
bounded, it is necessary, by the first part of Theorem 2.1, that the sequence
{maxi<; <, (dy fP(X;))~1} be stochastically bounded, hence, by regular variation
of d;, that

1

supn Pr{— > d,}/ﬂ} < o0.
F(X)

Butif By = R4, then condition (D.c) implies, as in the proof of Corollary 2.2, that

nPr{—1 >d1/ﬁ}>c—n
fX) =" )T gt

for all n and some > 0 independent of. Hence, if¥ (1) is of the order off ~#(r),
then we must havé, > Crn”? in Theorem 3.1.

REMARK 3.3. Suppose we také> 1 in Theorem 3.1, and, again, let us take
¥ = f~F_ Then, we still have that (3.2) is necessary for stochastic boundedness of
the sequence (3.1). But then (3.2) implies that

" K((Xi—1t)/h
n>00 A, dn fB(1)
as before. On the other hand,Bf; = R4, then the se#,, contains:’s with f@
arbitrarily small, and therefore, by (D.b), for some@ < g — 1,
nEK(X —1t)/hy) nhy,
su > SUPp———F———— = 00
o AP e da [P0

Hence, the sequence (3.1) is not stochastically bounded, which is a contradiction.
So, Theorem 3.1 is not true f@r> 1.

0 in pr.

The next theorem describes the almost sure behaviditfpt- Ef,|lw o for
large normings.
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THEOREM 3.4. Assume the usual hypotheses, with condition (WD.a)s hold-
ing for some g € (0,1], and, moreover, that either By = RY or K@) =
IIK |loo- Let d; be a strictly increasing regularly varying function satisfying that
lim;— o0 d; /2; = 00 and d; > Ct? for some C > 0. Then, either

(35) lim ‘ Yica(K((Xi =)/ hn) — EK((X = 1)/ hn)) 0  as
n—o00 dn W00

or

36 ”msup” S (K (X — r)/h,;) — EK((X —D)/hy)) H .
n— 00 n W, 00

according to whether

(3.7) /loo Pr{w(X) > d;}dt <oo or /100 Pr{w(X) > d,}dt = oo.

PrROOFE Necessity and the part of sufficiency dealing with the ggtand B,
follow by a straightforward combination of the proofs of Theorems 2.7 and 3.1.
The only difference with previous proofs is in the estimation of the supremum of
the processes over the sets

Co={teBs: f(OV() > el Pd,/(nh?)).

Here, as in the corresponding part of the proof of Theorem 2.6, we use Talagrand’s
inequality. Howeverd, is large and it may fall out of the “Gaussian range” of the
inequality. With the notation put forward above, and with the assumptions

[ U
O<o, <U,/2 and /no,> U, [log——
On

shown to hold for alk large enough in the previous proof, Talagrand’s inequality
in the version from Giné and Guillou [(2001), Proposition 2.2] gives
Pr{ sup

" X;—t X —t
vo Y (x(55) - 25 (7))
teCy, ; hn hn
< Lexp[—led" lo (1+ ed"U")] =)
B LU, Lno2 )| 7

for someL that depends only oA andv [from (2.15)], and for alk large enough,
as long as

> Edn}
(3.8)

ed,
>C
\/ﬁo'n«/ logU, /oy
for a certain constanf < oo. This last condition is eventually satisfied by all

¢ > 0 since logU, /o,,) < logn andd, /(v/nlogno,) — 0o, as can be easily seen
directly from the definitions and properties of these quantities.
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Now, by the hypotheses @, andd,,, and since;,, = 1/ logn, there exist$ > 0
such that

1/(1-p)
(3.9 gUﬁ =¢- 85 <d—g> h;dﬁ/(l_ﬁ) >Ce- efh;dﬂ/(l_ﬂ) >n’.
n n

If1/2<p <1,then

edy,
Iog(1+ UZ) = Iog(1+ Lﬁ) 2 loglogn.
nan Le

n

d,U a4, \(1-26)/1—p)
Iog<1+ Edn ;’) Iog<1+ —(—d) )
Lnof Lgn nh

If B <1/2,

which is of the order of log if the exponent of regular variation @f, is strictly
larger than that o;fzhd and satisfies

d, \1-28)/(1=p)
I|m n Iog(1+ ﬁ< hd) ):oo
n

for all § > O if the exponents of,, andnhjf coincide. (This can be readily seen
using the properties of regular variation and that(log t) ~ t for T small.)
Combining the last three estimates with the bound (3.9), we get that, for the cases
considered,

(3.10) (I) < exp(—n®)

for someé > 0. Finally, if 8 < 1/2 and the exponent of variation gf is smaller
than the exponent ofh¢, then

ed,,U,,) N ed, Uy,
Lno2)~ Lno2’

n
and we have, for constanisindependent of: (as long as: is large enough) and
that vary on each occurrence,

1 £242 1 82d2
(I)<Lexp< ”):Lexp( )
L no L nhd

1 ,/d,
:Lexp(—ze </\ ) |logh, |> < Lexp(—M logn),

where M can be made as large as we wish, as long as weridegge enough.
(Here we have used, /1, — oo and|logh,| < logn.) This covers all the cases,
and we obtain, combining (3.8), (3.10) and (3.11), that

ZPr{supW)Z< ( » )_EK<Xh;t>>

teCy

Iog(l +

(3.11)

>edn}<oo
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for all ¢ > 0, proving that

W(t)é([((xih_ t) - EK(Xh_ t))‘ —0 as.

m sup

li
n—»ootecn

n n

This completes the proof of the theoreni]

The results in this section obviously apply to the densities in Examples 2.8—-2.11.
For instance, letf be the symmetric exponential density & considered in
Examples 2.8 and 2.10, and lef =n~%, 0 < @ < 1. Then, Theorem 3.1 shows
that

fn - Efn

P
whereZ is the random variable defined in Example 2.10, if and only if
l-«o

d
S 1K e ZP,

nl—a—ﬁ’
00

<B<1
and Theorem 3.4 shows that, for) strictly increasing and regularly varying,

nl-e Jn—Efu
Pyl fP

/Oo%<oo

A similar statement holds true for normal densities.

—0 a.s.

o0

if and only if

REMARK 3.5. Suppose thai is a uniformly bounded class of kernels
supported by a fixed bounded set and such that the class

=t
}‘::{K(T):teRd, h>0, KGJC}
is measurable and has covering numbers

A v
N(F., Lo(P), K | Lyr€) < (;) . O<e<l,

for some A and v finite and positive and for all probability measur@s [In
particular, X may be a subset of the linear span of a finite set of functioas
defined in condition (K)]. Suppose we wish to consider

Jn = Efn

Cn

’

W, 00

sup
KeX

wherec, isd, or 1, as defined above. Then uniform boundedness and uniformity
of the support allow us to deal with the sup owey and B,,, and the entropy
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bound, with the sup ovef,, just as in the previous theorems. The sup over the
central partD, is handled in Mason (2004). So, it is straightforward to prove a
uniform in K € X version of our results. It is also possible to prove a functional
law of the logarithm in our setting by following Mason (2004).
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