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WEIGHTED UNIFORM CONSISTENCY OF
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Let fn denote a kernel density estimator of a continuous densityf

in d dimensions, bounded and positive. Let�(t) be a positive continuous
function such that‖�f β‖∞ < ∞ for some 0< β < 1/2. Under natural
smoothness conditions, necessary and sufficient conditions for the sequence√

nhd
n

2| loghd
n | ‖�(t)(fn(t) − Efn(t))‖∞ to be stochastically bounded and to

converge a.s. to a constant are obtained. Also, the case of larger values of
β is studied where a similar sequence with a different norming converges a.s.
either to 0 or to+∞, depending on convergence or divergence of a certain
integral involving the tail probabilities of�(X). The results apply as well to
some discontinuous not strictly positive densities.

1. Introduction. Over forty years ago, Parzen (1962) studied basic properties
of kernel density estimators following their introduction by Rosenblatt (1956).
Since then the kernel density estimator has become a classical object looked at
by both statisticians and probabilists. For statisticians, it has been a canonical
example of nonparametric curve estimators, which brought many important ideas
from approximation theory and harmonic analysis into nonparametric statistics.
Probabilists used the study of this estimator to test the strength of the methods
from weak and strong convergence, empirical processes and probability in Banach
spaces. In this paper, we consider a couple of problems about asymptotic behavior
of kernel density estimators uniformly over all ofRd that do not seem to have been
considered before, particularly in the 1980s, when the basic results on uniform a.s.
convergence were obtained.

The kernel density estimatorfn of f corresponding to a sample of sizen,
a kernelK and a bandwidthh > 0 is

fn(t) = 1

nhd

n∑
i=1

K

(
Xi − t

h

)
,(1.1)
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whereXi are i.i.d. with densityf . To ensure its consistency,h is chosen to be a
function hn of n such thathn → 0 andnhn → ∞ asn → ∞. This is a biased
estimator, but we will not deal with the bias; we will only be interested in the sup
norm of the deviation offn from its mean.

Our starting point is the following well-known result due to Stute (1984):

lim
n→∞

√
nhd

n

2| loghd
n|

∥∥∥∥fn − Efn√
f

∥∥∥∥
J

= ‖K‖2 a.s.,(1.2)

whereJ is a compact parallellepiped with sides parallel to the axes,‖ · ‖J means
“sup overJ ,” f is a uniformly continuous density which is bounded away from 0
on J , andK is continuous and satisfies some additional assumptions [see, e.g.,
condition (K)]. Much later it was shown that

lim
n→∞

√
nhd

n

2| loghd
n|

‖fn − Efn‖∞ = ‖K‖2‖f ‖1/2∞ a.s.,(1.3)

whereK satisfies condition (K) andf is uniformly continuous [Giné and Guillou
(2002) for anyd , and Deheuvels (2000) ford = 1; a weaker result of this type was
obtained much earlier by Silverman (1978)]. In both results the bandsequence{hn}
satisfies Stute’s (1982) conditions. In fact, these results can be slightly extended
as follows: if � is uniformly continuous and bounded on̄J , whereJ is either a
bounded parallellepiped ofRd with sides parallel to the axes, orJ = Rd , then

lim
n→∞

√
nhd

n

2| loghd
n|

∥∥�(t)
(
fn(t) − Efn(t)

)∥∥
J = ‖K‖2‖�f 1/2‖J a.s.,(1.4)

a result formulated in Deheuvels (2000) ford = 1 and which follows for anyd
from Einmahl and Mason (2000) and Giné and Guillou (2002) (with simple
modifications in their proofs). Note that (1.4) contains (1.2) and (1.3).

The first question on which we wish to shed some light is whether one can
interpolate between the two results (1.2) and (1.3) by replacingJ by Rd andf −1/2

by f −β for some 0< β ≤ 1/2 in (1.2). A more general formulation of the same
problem is whether unbounded functions� are allowed in (1.4) whenJ = Rd .

Notice that, in casef > 0 over all of Rd and lim inf|x|→∞ f (x) = 0, (1.4)
implies thatonly powers of β not exceeding 1/2 can lead to finite a.s. limits for the
sequence {√

nhd
n

2| loghd
n|

∥∥∥∥fn − Efn

f β

∥∥∥∥∞

}∞

n=1

.(1.5)

This is the case of classical norming, and in this case we find necessary and
sufficient conditions (on the densityf and on the bandsequencehn) for (1.5) to be
stochastically bounded (Theorem 2.1); in fact, Theorem 2.1 gives necessary and
sufficient conditions for{√

nhd
n

2| loghd
n|

∥∥�(t)
(
fn(t) − Efn(t)

)∥∥∞

}∞

n=1

(1.5′)
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to be stochastically bounded, assuming‖�f β‖∞ < ∞ for someβ ∈ (0,1/2). This
result further clarifies the role of the sequence of maximum terms
max1≤i≤n �(Xi)/

√
nhd

n| loghn| in the asymptotic behavior of (1.5′) in probability
or in law. We also obtain a necessary and sufficient condition for (1.5′) to converge
a.s. to the constant‖K‖2‖�f 1/2‖∞ and show that if this condition is violated,
then the sequence (1.5′) is a.s. unbounded (Theorem 2.6).

A second question is that of determining the right norming constants in the se-
quences (1.5) or (1.5′) for larger values ofβ in order to obtain convergence. In
this case, we also give necessary and sufficient conditions for stochastic bounded-
ness (Theorem 3.1) and for a.s. convergence of the sequences (Theorem 3.4). The
almost sure limit is shown to be either 0 or+∞, depending on convergence or
divergence of a certain integral describing the tail behavior of�(X). The situation
in this case is somewhat similar to what is well known about weighted empirical
processes; see Einmahl and Mason (1985a, b, 1988).

We consider a slightly more general situation wheref need not be strictly
positive, however, we still require that, ifBf = {f > 0}, thenf be bounded away
from zero onBf ∩ {|t| ≤ a} for all a > 0. Even this case requires unusual but
somewhat natural smoothness conditions onf . More general situations seem to
require a strengthening of the smoothness conditions, and we refrain here from
considering them (see, however, Example 2.12).

Assumptions and notation. We introduce here some notation and conditions
that are used throughout the paper.

For x = (x1, . . . , xd) ∈ Rd , we set|x| := max1≤i≤d |xi|. We assume that the
kernelK satisfies the following condition:

(K) K ≥ 0, K 
≡ 0, is a bounded measurable function with support contained
in [−1/2,1/2]d which belongs to the linear span (the set of finite linear
combinations) of functionsk ≥ 0 satisfying the following property: the
subgraph ofk, {(s, u) :k(s) ≥ u}, can be represented as a finite number of
Boolean operations among sets of the form

{(s, u) :p(s,u) ≥ ϕ(u)},
wherep is a polynomial onRd × R andϕ is an arbitrary real function.

Conditions of a similar type were used, for example, in Koltchinskii and
Sakhanenko (2000).

In particular, the above property is satisfied if the subgraph ofk is a
semialgebraic set inRd × R [see Dudley (1999), page 165]. IfK(x) = φ(p(x)), p

being a polynomial andφ a real function of bounded variation, thenK satisfies (K)
[see Nolan and Pollard (1987)].

Condition (K) is mainly imposed because ifK satisfies it, then the class of
functions

F =
{
K

( · − t

h

)
: t ∈ Rd, h > 0

}
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has covering numbers

N
(
F ,L2(P ),‖K‖L2(P )ε

) ≤
(

A

ε

)v

, 0< ε < 1,

for someA andv finite and positive and for all probability measuresP. Indeed,
for a fixed polynomialp, the family of sets{{

(s, u) :p
(
(s − t)/h,u

) ≥ ϕ(u)
}

: t ∈ Rd, h > 0
}

is contained in the family of positivity sets of a finite-dimensional space of
functions, and then the entropy bound follows by Theorems 4.2.1 and 4.2.4 in
Dudley (1999). The entropy bound will be crucial in the proofs below. Since the
map (x, t, h) �→ (x − t)/h is jointly measurable andK is measurable, the class
F is image admissible Suslin [Dudley (1999), page 186], and this implies that
the measurability of the empirical process indexed byF [or even by{�(t)K((· −
t)/h)} with � continuous] is as good as if the class were countable; that is, we can
ignore measurability of the sup of the empirical process overg ∈ F [cf. Dudley
(1999), Corollary 5.3.5 and Theorem 5.3.6, or Pollard (1984), pages 195–197]. We
setκ := ‖K‖∞ (which is strictly positive).

The following assumptions on the densityf will be used repeatedly:

(D.a) f is a bounded density onRd continuous on its positivity setBf := {t ∈
Rd :f (t) > 0}, which is assumed to be open, and lima→∞ sup|t|>a f (t) = 0.

(D.b) For allδ > 0, there existc ∈ (0,∞) andh0 > 0 such that, for all|y| ≤ h0
and allx ∈ Bf , x + y ∈ Bf ,

1

c
f δ(x) ≤ f (x + y)

f (x)
≤ cf −δ(x).

(D.c) For allr > 0,

lim
h→0

sup
x,y : f (x)≥hr

x+y∈Bf ,|y|≤h

∣∣∣∣f (x + y)

f (x)
− 1

∣∣∣∣ = 0.

In particular, if logf is uniformly continuous onRd, then conditions (D.a)–(D.c)
are satisfied (this is true, e.g., for the symmetric exponential density or for
uniformly continuous nonvanishing densities with power tails). The above con-
ditions are satisfied as well by normal and double exponential densities even
though their logarithms are not uniformly continuous. Note also that (D.b) implies
infx∈Bf ,|x|<a f (x) > 0 for all a < ∞ such thatBf ∩ {|x| < a} 
= ∅, in particular,
a continuous density with bounded support does not satisfy (D.b). Similarly, a den-
sity that has an isolated zero where it is continuous does not satisfy condition (D.b)
either. In fact, Example 2.12 shows that, for such a density, the stochastic bound-
edness of the sequence (1.5) depends on the local behavior of the density at its
zero points, and not only on the tails of the random variablef −β(X), as is the
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case under condition (D.b) (see Theorem 2.1). On the other hand, the exponential
density does satisfy (D.a)–(D.c).

Conditions (D.b) and (D.c) onf are not found in Stute’s result (1982, 1984) or
in Einmahl and Mason (2000) because they consider bounded intervals withf

bounded away from zero on them, and they are not found either in Giné and
Guillou (2002) since there isno division by a power off in their result. These
conditions seem natural for the results that will follow and we will indicate below
that conditions of this type are indeed needed; see Example 2.11.

We assume that the weight function� satisfies the following conditions that
resemble the above conditions on the density:

(W.a) � :Bf �→ R+ is a positive continuous function onBf .
(W.b) For allδ > 0, there existc ∈ (0,∞) andh0 > 0 such that, for all|y| ≤ h0

and allx ∈ Bf , x + y ∈ Bf ,

1

c
�−δ(x) ≤ �(x + y)

�(x)
≤ c�δ(x).

(W.c) For allr > 0,

lim
h→0

sup
x,y : �(x)≤h−r

x+y∈Bf ,|y|≤h

∣∣∣∣�(x + y)

�(x)
− 1

∣∣∣∣ = 0.

In particular, by (W.b),� is bounded on bounded subsets ofBf , but� may be
unbounded ifBf is unbounded.

We also need the following conditions that establish a relationship betweenf

and�:

(WD.a)β ‖f β‖�,∞ := supt∈Bf
|�(t)f β(t)| < ∞, whereβ is a positive number.

(WD.b) For allr > 0,

lim
h→0

sup
x,y : �(x)≤h−r

x,x+τ∈Bf ,|y|≤h

∣∣∣∣f (x + y)

f (x)
− 1

∣∣∣∣ = 0.

Note that (WD.a)β and (WD.b) imply (D.c): if‖�f β‖Bf
≤ c andf (t) ≥ hr ,

then�(t) ≤ ch−rβ .
Also, if � ≡ f −β (which is our main example), then (WD.a)β is satisfied and

the set of conditions (D.a)–(D.c) is equivalent to (W.a)–(W.c) and (WD.b).
Regarding the window sizes, the assumptions are:

(H1) ht , t ≥ 1, is monotonically decreasing to 0 andthd
t is a strictly increasing

function diverging to infinity ast → ∞, and
(H2) hd

t is regularly varying at infinity with exponent−α for someα ∈ (0,1); in
particular, there exist 0< η0 ≤ η1 < 1 such that

lim sup
t→∞

tη0hd
t = 0 and lim inf

t→∞ tη1hd
t = ∞.
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Condition (H2) is quite restrictive compared to the bandsequence assumptions
in Stute (1982): besides the extra regularity, we do not allowht to get too close to
the extremes 1/t or 1/ logt , and in particular,| loght | is comparable to logt, t > 1.

If we set

λt =
√

thd
t | loght |,

then, under (H1) and (H2), the functionλt is strictly increasing and is regularly
varying with exponent larger than 0. This property ofλt is used throughout
Section 2.

Our results rely on the by now classical theorem of Stute (1984) about the a.s.
behavior of the uniform deviation of the kernel density estimator over compact
intervals, suitably modified. The version of his theorem we need is a reformulation
along the lines of Deheuvels (2000) of Proposition 3.1 in Giné and Guillou (2002),
which in turn is adapted from Einmahl and Mason (2000).

PROPOSITION 1.1. Let f be a density on Rd , continuous on an open set
containing Da := {t : |t| ≤ a,f (t) ≥ a−1}, for some 0 < a < ∞. Let � be a
strictly positive function, continuous on an open set containing Da . Then

lim
n→∞

√
nhd

n

2| loghd
n|

‖�(t)(fn − Efn)(t)‖Da = ‖K‖2‖�f 1/2‖Da a.s.(1.6)

We omit the proof as it coincides with the proof of the abovementioned
proposition, except for obvious changes.

Proposition 1.1 applies tof satisfying (D.a) and (D.b) and� satisfying
(W.a) and (W.b).

Without further mentioning,all the results we state in this paper beyond
this point assume conditions (K), (H1), (H2), (D.a)–(D.c), (W.a)–(W.c), (WD.b)
and (WD.a)β for some β. The number β is to be specified at each instance. We
will refer to these assumptions as the “usual hypotheses.”

Finally, we introduce the following notation, which will be used throughout: for
any functiong defined onBf , we set

‖g‖�,∞ := sup
t∈Bf

|g(t)�(t)|.(1.7)

2. The classical norming case. The following theorem describes the stochas-
tic boundedness behavior of the sequence (2.1). It shows in particular that no
interpolation between (1.2) and (1.3) works for all strictly positive, bounded, con-
tinuous densities, and that when it works, it does not work for all the range of
possible bandsequences. In what follows,X is a random variable with densityf .
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THEOREM 2.1. Assume the usual hypotheses, with condition (WD.a)β hold-
ing for some β ∈ (0,1/2), and, moreover, that either Bf = Rd or K(0) = ‖K‖∞.
Then the sequence {√

nhd
n

| loghn|‖fn − Efn‖�,∞
}∞

n=1

(2.1)

is stochastically bounded if and only if

lim sup
t→∞

t Pr{�(X) > (thd
t | loght |)1/2} < ∞.(2.2)

Moreover, under condition (2.2), the sequence{√
nhd

n

2| loghd
n|‖fn − Efn‖�,∞

−
(

max
1≤i≤n

‖K‖∞�(Xi)√
2nhd

n| loghd
n|

)
∨ (‖K‖2‖f 1/2‖�,∞)

}∞

n=1

(2.3)

converges to zero in probability.

PROOF. We will use the notationλt = (thd
t | loght |)1/2. As mentioned above,

conditions (H1) and (H2) imply thatλt is regularly varying with strictly positive
exponent. Note that, by regular variation, condition (2.2) is equivalent to

lim sup
t→∞

t Pr{�(X) > cλt} < ∞(2.4)

for any 0< c < ∞. By Montgomery-Smith’s (1993) maximal inequality [see,
e.g., de la Peña and Giné (1999), page 6] the stochastic boundedness of the
sequence (2.1) implies that of the sequence{

max
1≤i≤n

‖K((Xi − t)/hn) − EK((X − t)/hn)‖�,∞
λn

}
.

Then, since, for allt , lettingu = (u1, . . . , ud),

EK
(
(X − t)/hn

) = hd
n

∫ 1/2

−1/2
· · ·

∫ 1/2

−1/2
K(u)f (hnu + t) du1 · · · dud

≤ hd
n‖K‖1‖f ‖∞ → 0,

taking t = X1 − τhn, . . . ,Xn − τhn for τ ∈ Rd satisfyingK(τ) > 0, we obtain
that the sequence {

max
1≤i≤n

�(Xi − τhn)I (Xi − τhn ∈ Bf )

λn

}
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is stochastically bounded. We takeτ = 0 if K(0) 
= 0. Now, if K(0) 
= 0, then
Xi − τhn = Xi ∈ Bf a.s., and ifBf = Rd , then obviouslyXi − τhn ∈ Bf , so that,
in either case, Pr{X − τhn ∈ Bf } = 1. Thus, the sequence{

max
1≤i≤n

�(Xi − τhn)

λn

}

is stochastically bounded. In particular, ifτ = 0,{
max

1≤i≤n

�(Xi)

λn

}

is stochastically bounded, proving condition (2.4) in this case (as, ifξi are
independent, Pr{max|ξi | > c} ≥ ∑

Pr{|ξi| > c}/(1+ ∑
Pr{|ξi| > c}). If τ 
= 0 but

Bf = Rd , givenε > 0, letM be such that

sup
n

Pr
{

max
1≤i≤n

�(Xi − τhn)

λn

> M

}
< ε.

If �(Xi − τhn) ≤ Mλn, then by regular variation there existsr > 0 such
that �(Xi − τhn) ≤ h−r

n (at least for alln large enough), and we can apply
condition (W.c) to conclude that there existsc > 1 such that, for alln large enough
(independent ofXi ), �(Xi) ≤ c�(Xi − τhn). Then, for these values ofn, we
obtain

Pr
{

max
1≤i≤n

�(Xi)

λn

> cM

}
< ε.

Therefore, in this case, the sequence{max1≤i≤n �(Xi)/λn} is also stochastically
bounded, proving (2.4).

For the converse we note first that Proposition 1.1 takes care of the sup overDa

for anya > 0.

Next, we observe that the centering in (2.1) can be ignored for a certain range
of t ’s. Let εn → 0 and 0< δ < 1− β. Chooser > 0 such that

h
r(1−β−δ)
n

(nhd
n)−1λn

→ 0.

Then there existc < +∞ andn0 < ∞ such that, by (D.b) and (D.c), for anyt ∈ Bf

andn ≥ n0,

n�(t)EK((X − t)/hn)

λn

≤ cκnhd
n

λn

�(t) sup
|u|≤1/2

t+hnu∈Bf

f (t + hnu)

≤ cκnhd
n

λn

�(t)f (t)I
(
f (t) > hr

n

) + cκnhd
n

λn

�(t)f 1−δ(t)I
(
f (t) ≤ hr

n

)
.
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Since, by condition (WD.a)β , �(t) ≤ cf −β(t), the last summand tends to 0
uniformly in t (asβ < 1 − δ). The sup of the first summand over allt such that
�(t)f (t) ≤ ε

1−β
n ((nhd

n)−1| loghn|)1/2 tends to 0 as well. Thus, we can ignore the
centeringEfn(t) for all t ∈ Bf such that

�(t)f (t) ≤ ε1−β
n

( | loghn|
nhd

n

)1/2

(2.5)

for any sequenceεn → 0. We takeεn = 1/ logn.
In the rest of the proof, we consider the sup of|�(t)(fn −Efn)(t)| over several

regions.
First, we consider the regions

An := {t ∈ Bf :�(t) > cβ
nλn}(2.6)

for the sequencecn = (λn logn/λn)
1/β which tends to infinity becauseλt is

regularly varying with positive exponent. Actually, ifη > 0 is the exponent of
regular variation ofλt , the representation formula for regularly varying functions
[e.g., Feller (1971), page 282] gives that, for every 0< ε < η and c > 1, there
existsn0 < ∞ such that

1

c
(logn)η−ε ≤ λn logn

λn

≤ c(logn)η+ε(2.7)

for all n ≥ n0. Then, sinceβ < 1/2 < 1 − β, for a suitableδ > 0 and alln large
enough, we have

cnλ
1/β
n ≥ nη/β−δ ≥ nη/(1−β)+δ

≥ 1

εn

(
λn

| loghn|
)1/(1−β)

= 1

εn

(
nhd

n

| loghn|
)1/(2(1−β))

.

This yields, for allt ∈ An,

�(t) ≥ 1

ε
β
n

(
nhd

n

| loghn|
)β/(2(1−β))

and, using condition (WD.a)β (which without loss of generality can be written as
‖f β‖�,∞ ≤ 1), we get

f (t) ≤ εn

( | loghn|
nhd

n

)1/2(1−β)

.

This implies (2.5) for allt ∈ An, since�(t)f (t) ≤ ‖f β‖�,∞f 1−β(t) ≤ f 1−β(t)

[again due to (WD.a)β ]. Therefore,

sup
t∈An

n�(t)EK((X − t)/hn)

λn

→ 0,
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showing that we can ignore the centeringEfn on the regionAn. For any point
a = (a1, . . . , ad) ∈ Rd and positive numberρ, we set

J (a;ρ) := [a1 − ρ/2, a1 + ρ/2] × · · · × [ad − ρ/2, ad + ρ/2] ∩ Bf .

Then, discarding the centering,

sup
t∈An

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≤ sup
t∈An

κ

λn

�(t)

n∑
i=1

I
(
Xi ∈ J (t;hn)

)
.

Now we divideAn into two parts:

An,1 := {t ∈ Bf :�(t) > h−r
n } and An,2 := {t ∈ Bf : cβ

nλn < �(t) ≤ h−r
n },

wherer is such thath−r(1−δ)
n ≥ c

β
nλn for someδ > 0 and alln. It follows from

condition (W.b) thatt ∈ An,1 ands ∈ J (t;hn) imply that there arec andn0 such
that

�(s)

�(t)
≥ c�−δ(t)

for all n ≥ n0, so that�(s) ≥ c�1−δ(t) > ch
−r(1−δ)
n . Hence, for the same values

of n and someC < ∞, we have

Pr
{

sup
t∈An,1

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

> ε

}
≤ nPr

{
�(X) ≥ h−r(1−δ)

n

}

≤ C

logn
→ 0.

It follows from condition (W.c) thatt ∈ An,2 ands ∈ J (t;hn)∩Bf imply that there

arec andn0 such that�(s) ≥ c
β
nλn/c, for all n ≥ n0. Hence, for these values ofn

we have

Pr
{

sup
t∈An,2

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

> ε

}
≤ nPr

{
�(X) ≥ c

β
nλn

c

}
≤ C

logn
→ 0

for someC < ∞ by (2.4). The last two limits imply that

lim
n→∞ sup

t∈An

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

= 0 in pr.(2.8)

Now we consider the regions

Bn :=
{
t ∈ Bf :f (t)�(t) ≤ ε1−β

n

( | loghn|
nhd

n

)1/2

,

�(t) ≤ cβ
n (nhd

n| loghn|)1/2
}(2.9)
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and notice that in these regions we can also ignore the centering [by (2.5)]. Our
goal is to show that {

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

}∞

n=1

is stochastically bounded under condition (2.2) and that, moreover, if eitherBf =
Rd or K(0) = κ , then also

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

= κ max
1≤i≤n

�(Xi)

λn

+ op(1).(2.10)

As above,

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≤ sup
t∈Bn

κ�(t)

λn

n∑
i=1

I
(
Xi ∈ J (t;hn)

)
,

and we set

Zn := sup
t∈Bn

�(t)

λn

n∑
i=1

I
(
Xi ∈ J (t;hn)

)
.

For j = 1, . . . , n, set

Bn,j := Bn ∩ J (Xj ;hn).

If t /∈ ⋃n
j=1Bn,j , thenZn = 0. Hence, we have

Zn = max
1≤j≤n

sup
t∈Bn,j

�(t)

λn

n∑
i=1

I
(
Xi ∈ J (t;hn)

)
.

By conditions (W.c) and (WD.b),t ∈ Bn,j implies that

�(t) ≤ c�(Xj )

and also

�(Xj ) ≤ ccβ
nλn, f (Xj )�(Xj ) ≤ cε1−β

n

( | loghn|
nhd

n

)1/2

for anyc > 1, provided thatn is large enough.
Set

Ij = In,j := I

(
�(Xj ) ≤ ccβ

nλn, f (Xj )�(Xj ) ≤ cε1−β
n

( | loghn|
nhd

n

)1/2)
.

Then

Zn ≤ max
1≤j≤n

c�(Xj )Ij

∑n
i=1 I (|Xi − Xj | ≤ hn)

λn

≤ max
1≤j≤n

c�(Xj )

λn

+ max
1≤j≤n

c�(Xj )Ij

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

.

(2.11)
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By condition (2.2), the first term in the above bound is the general term of a
stochastically bounded sequence. We now show that the second term tends to zero
in probability. To handle this term, letPj denote conditional expectation givenXj

and set

pj := Pj {|X − Xj | ≤ hn}.
It follows from condition (D.a) that

2dc−1hd
nf (Xj ) ≤ pj ≤ 2dchd

nf (Xj )

(provided thatIj = 1). A standard bound on binomial probabilities [e.g., Giné and
Zinn (1984), page 958] shows that

Pj

{
Ij�(Xj )

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

≥ ε

}

≤
(

(n − 1)epj�(Xj )

λnε

)(ελn/�(Xj ))∨1

.

Using the bound onpj , this probability can be further bounded by

(
2decnhd

nf (Xj )�(Xj )

λnε

)(ελn/�(Xj ))∨1

.

We can and do assume thatIj = 1 (otherwise the conditional probability in
question is 0). Then

f (Xj )�(Xj ) ≤ cε1−β
n

( | loghn|
nhd

n

)1/2

,

and we have

2decnhd
nf (Xj )�(Xj )

λnε
≤ C1nhd

nε
1−β
n (| loghn|/nhd

n)1/2

(nhd
n| loghn|)1/2ε

= C1ε
1−β
n

ε

for someC1 < ∞ (and alln large enough). Note also that

2decnhd
nf (Xj )�(Xj )

λnε
= C

ε

(
nhd

n

| loghn|
)1/2

f (Xj )�(Xj ),

whereC is a finite positive cosntant. For largen,
C1ε

1−β
n

ε
≤ e−1/ε, which yields

Pj

{
Ij�(Xj )

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

≥ ε

}

≤
(

exp
{
− λn

�(Xj )

})
∧

(
C

ε

(
nhd

n

| loghn|
)1/2

f (Xj )�(Xj )

)
.
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Let

I1
j := I

(
�(Xj ) ≤ λn

(3 logn)
, f (Xj )�(Xj ) ≤ cε1−β

n

( | loghn|
nhd

n

)1/2)

and letI2
j := Ij − I1

j . Then we have

Pr
{

max
1≤j≤n

Ij�(Xj )
∑

1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

≥ ε

}

≤
n∑

j=1

EIjPj

{
Ij�(Xj )

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

≥ ε

}

≤
n∑

j=1

EI1
j exp

{
− λn

�(Xj )

}
+

n∑
j=1

EI2
j

C

ε

(
nhd

n

| loghn|
)1/2

f (Xj )�(Xj )

=: (I ) + (II).

Then, using the definition ofI1
j andI2

j , we get

(I ) ≤ nexp
{
−3 logn

λn

λn

}
= n−2

and

(II) ≤ n
C

ε

(
nhd

n

| loghn|
)1/2 (3 logn)(1−β)/β

(nhd
n| loghn|)(1−β)/(2β)

Pr
{
�(X) ≥

(
λn

3 logn

)}
.

Now, sinceλt is regularly varying with a strictly positive exponent, the representa-
tion theorem for regularly varying functions gives thatλn/(3 logn) ≥ cλn/(logn)γ

for someγ > 0, c > 0 and alln large enough [see (2.7)]. Hence, by (2.4), there
existsC > 0 such that, for these values ofn,

(II) ≤ C

ε

(logn)(1−β)/β+γ

| loghn|1/2+(1−β)/(2β)

1

(nhd
n)

(1−β)/(2β)−1/2
.

By (H1) and (H2), this is at most of the order of logarithmic factors times
n(1−η1)[1/2−(1−β)/(2β)], a negative power ofn because 0< β < 1/2. Thus,(II) also
tends to zero. Since both(I ) and(II) tend to 0, we have

Pr
{

max
1≤j≤n

Ij�(Xj )
∑

1≤i≤n,i 
=j I (|Xi − Xj | ≤ hn)

λn

≥ ε

}
→ 0 asn → ∞.

This implies [see bound (2.11)] that

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≤ κZn ≤ cκ max
1≤i≤n

�(Xi)

λn

+ op(1),(2.12)
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for anyc > 1. The stochastic boundedness of{
sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

}

follows immediately from this inequality and condition (2.2).
To bound the supremum from below, chooseτ such thatK(τ) > κ − δ (for a

small δ) with the understanding that ifK(0) = κ , then we chooseτ = 0, so that
eitherτ = 0 orBf = Rd . Then

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≥ (κ − δ) max
1≤i≤n

�(Xi − τhn)IBn(Xi − τhn)

λn

.

Hence, in view of this and the two-sided bound forκZn immediately above, to
establish (2.10), it is enough to show that

max
1≤i≤n

�(Xi − τhn)IBn(Xi − τhn)

λn

= max
1≤i≤n

�(Xi)

λn

+ op(1).(2.13)

Since condition (W.c) implies that, for anyc > 1 and for large enoughn,

c−1 <
�(Xi − τhn)

�(Xi)
< c

(assuming thatXi − τhn ∈ Bn), taking c arbitrarily close to 1 reduces the proof
of (2.13) to showing that

max
1≤i≤n

�(Xi)IBn(Xi − τhn)

λn

= max
1≤i≤n

�(Xi)

λn

+ op(1),

or, put in another way, (2.13) will be proved if we show that

max
1≤i≤n

�(Xi)IBc
n
(Xi − τhn)

λn

→ 0 in pr.(2.13′)

Bc
n naturally decomposes into the union of three regions and we look separately at

each of them. IfBf = Rd , thenIBc
f
(Xi −τhn) = 0, and ifτ = 0, then this indicator

is 0 a.s., so that, in either case,

max
1≤i≤n

�(Xi)IBc
f
(Xi − τhn)

λn

→ 0 a.s.

Next, we consider

Pr
{

max
1≤i≤n

�(Xi)I (�(Xi − τhn) ≥ c
β
nλn)

λn

> ε

}

≤ nPr{�(X − τhn) ≥ cβ
nλn}

≤ nPr{cβ
nλn ≤ �(X − τhn) ≤ h−r

n } + nPr{�(X − τhn) ≥ h−r
n }.
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Using condition (W.c), we get (for anyc > 1)

nPr{cβ
nλn ≤ �(X − τhn) ≤ h−r

n } ≤ nPr{�(X) ≥ c−1cβ
nλn} → 0.

Similarly, using condition (W.b) (recall thatX − τhn ∈ B� with probability 1),

nPr{�(X − τhn) ≥ h−r
n } ≤ nPr

{
�(X) ≥ c−1h−r/(1+δ)

n

}
for somec > 0 andδ > 0. Assuming thatr is large enough (so thath−r/(1+δ)

n ≥
c
β
nλn), we then conclude that

nPr{�(X − τhn) ≥ h−r
n } → 0

and, hence,

Pr
{

max
1≤i≤n

�(Xi)I (�(Xi − τhn) ≥ c
β
nλn)

λn

> ε

}
→ 0.

Before considering the last piece ofBc
n, we note that, sincef β(t)�(t) ≤ 1 for

all t , if moreoverf (u)�(u) > L, thenf 1−β(u) > L and consequently�(u) ≤
f −β(u) < L−β/(1−β), an observation that we will use several times below. This
observation and condition (W.c) give

max
1≤i≤n

�(Xi)I (f (Xi − τhn)�(Xi − τhn) > ε
1−β
n (| loghn|/(nhd

n))1/2)

λn

≤ max
1≤i≤n

�(Xi)I (�(Xi − τhn) < cε
−β
n (nhd

n/| loghn|)β/(2(1−β)))

λn

≤ cε−β
n

(
nhd

n

| loghn|
)β/(2(1−β)) 1

(nhd
n| loghn|)1/2

= c

ε
β
n | loghn|1/2+β/(2(1−β))(nhd

n)
1/2−β/(2(1−β))

.

Now, sinceβ < 1/2 < 1 − β andnhd
n ≥ n1−η1 [by (H2)], whereasεn = 1/ logn

and| loghn| is comparable to logn, it follows that the above bound is dominated by
a negative power ofn so that, in particular, it tends to zero. This and the previous
two limits conclude the proof of (2.13′) and hence of (2.10).

Finally, we consider the sup over the remaining set oft ’s. Fora large, fixed, just
as above, set

Cn = Cn,a := {t ∈ Dc
a ∩ Bf :f (t)�(t) ≥ ε1−β

n (| loghn|/nhd
n)1/2},(2.14)

whereεn is as defined in the previous paragraph. In this range the centering cannot
be ignored. We will apply an estimate for the expected supremum of the empirical
process over bounded Vapnik–Červonenkis type classes of functions [Giné and
Guillou (2001), inequality (2.1) and Talagrand (1994), for classes of sets; see also
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Einmahl and Mason (2000) for a similar inequality]: if a class of functionsF is
measurable (in particular, if it is image admissible Suslin) and satisfies

N
(
F ,L2(Q), ε‖F‖∞

) ≤
(

A

ε

)v

, 0 < ε < 1,(2.15)

for somev ≥ 1, A ≥ 3
√

e finite and all finite probability measuresQ, whereF is
a measurable envelope for the classF , then

E‖n(Pn − P )‖F ≤ C

(√
v
√

nσ

√
log

AU

σ
+ vU log

AU

σ

)
,(2.16)

whereσ andU are any numbers satisfying 0< σ < U and

σ 2 ≥ sup
g∈F

VarP (g), U ≥ sup
g∈F

‖g‖∞,(2.17)

andC is a universal constant. [In Giné and Guillou (2001), condition (2.15) has
‖F‖L2(Q) instead of‖F‖∞, but it can be easily checked that their proof works as
well under condition (2.15).] As mentioned immediately below the statement of
condition (K), there existA andv finite such that

N
({

K
(
(· − t)/hn

)
: t ∈ R

}
,L2(Q), ε

) ≤
(

Aκ

ε

)v

, 0< ε < 1,

for all hn > 0 and all probability measuresQ on R. Now, the class of functions

Fn := {
�(t)K

(
(· − t)/hn

)
: t ∈ Cn

}
is contained in

Gn := {
uK

(
(· − t)/hn

)
: t ∈ R,0 < u ≤ Un

}
,

where

Un := κ

ε
β
n

(
nhd

n

| loghn|
)β/(2(1−β))

(2.18)

[recall that, as observed above, under condition (WD.a)β , f� ≥ α implies
� ≤ α−β/(1−β)]. Therefore, since theL2(Q) distance betweenuK((· − t)/hn)

and vK((· − s)/hn) is dominated byκ|u − v| + Un‖K((· − t)/hn) − K((· −
s)/hn)‖L2(Q), it follows by taking optimal coverings of[0,Un] with respect to
the Euclidean distance, and ofFn with respect to theL2(Q) distance, that the
entropy bound

N
(
Fn,L2(Q), εUn

) ≤
(

2Aκ

ε

)v+1

, 0 < ε < 1,(2.19)

holds for all probability measuresQ and alln large enough. The classFn is also
image admissible Suslin since the map(x, t) �→ �(t)K((x− t)/hn) is measurable.
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So, inequality (2.16) applies to it. We can takeU = Un as defined in (2.18). Next
we estimateσ 2

n . It follows from a previous observation and from regular variation
that, onCn, we have bothf ≥ hr

n and� ≤ hr
n for somer and alln large enough.

Then, (D.c) and (W.c) give that there existc,C,n0 < ∞ independent ofa such
that, for alln ≥ n0 and allt ∈ Cn = Cn,a ,

�2(t)EK2((X − t)/hn

) ≤ cE
(
K2((X − t)/hn

)
�2(X)

)
= chd

n

∫
|u|≤1/2

t+hnu∈Bf

K2(u)�2(t + hnu)f (t + hnu)du

≤ chd
n‖K‖2

2‖f �2‖Dc
a∩Bf

≤ Chd
n

(‖f �2‖Dc
a∩Bf

∨ n−1).
So, we can take

σ 2
n = Chd

n

(‖f �2‖Dc
a∩Bf

∨ n−1).
The constantA = An must be taken to be(2Aκ)∨ (3

√
e ), whereA is the constant

in (2.15) for the class consisting of translations and dilations ofK . In particular,
since by (H2)| loghn| is comparable to logn, we have

log
AnUn

σn

≤ c| loghn|
for some constantc < ∞ independent ofn. So, inequality (2.16) applied toFn

gives

E sup
t∈Cn

∣∣∣∣�(t)
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

λn

∣∣∣∣
≤ C

λn

[
λn

(‖f 1/2�‖Dc
a∩Bf

∨ n−1/2) + 1

ε
β
n

(
nhd

n

| loghn|
)β/(2(1−β))

| loghn|
]

for a constantC independent ofn, for all sufficiently largen. We should note that
the numerical constants in the above inequalities are not only independent ofn,
but they are independent ofa as well. Sinceβ < 1/2 and thereforeβ/(1−β) < 1,
and since, by (D.a) and (WD.a)β ,

‖f 1/2�‖Dc
a∩Bf

≤ ‖f 1/2−β‖Dc
a∩Bf

= ‖f ‖1/2−β
Dc

a∩Bf
→ 0 asa → ∞,

we obtain

lim
a→∞ lim sup

n→∞
E sup

t∈Cn,a

∣∣∣∣�(t)
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

λn

∣∣∣∣
≤ lim

a→∞C‖f 1/2�‖Dc
a∩Bf

= 0.

(2.20)
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Now, the theorem follows from (1.6), (2.8), (2.10) and (2.20).�

Now we make two comments on the assumptions.

REMARK 2.2. The assumption “Bf = Rd or K(0) = ‖K‖∞” has been
imposed because in general we may not haveX − τhn ∈ Bf with small enough
probability, asnPr{X − τhn /∈ Bf } could well be of the order ofnhn → ∞.
Now, this condition has been used in full only in the proof of (2.3). Proving
that tightness of the sequence (2.1) implies condition (2.2) has only required
Bf = Rd or K(0) > 0, whereas proving that condition (2.2) implies tightness of
the sequence (2.1) does not require any hypothesis of this type.

The above proof justifies, a posteriori, having takenβ < 1/2:

COROLLARY 2.3. Assume (K), (H1), (H2), (D.a)–(D.c)and Bf = Rd . Then
the sequence {√

nhd
n

2| loghd
n|

∥∥∥∥fn − Efn√
f

∥∥∥∥∞

}∞

n=1

[which coincides with (2.1) for � = f −1/2] is not stochastically bounded.

PROOF. By the first part of the previous proof, if (2.1) with� = f −1/2 is
tight, then there isC > 0 such that

nPr
{

1

f (X)
> λ2

n

}
≤ C.

Sincef takes all the values between 0 and‖f ‖∞, for n large enough there isxn

in Rd such thatf (xn) = 1/(2λ2
n). Then, by condition (D.c), there is a subsetDn

containingxn and of Lebesgue measure larger thanλ
−2/r
n , where 1/f (x) ≥ λ2

n and
f (x) ≥ 1/(4λ2

n), and therefore, if we taker ≥ η1/d with η1 as in condition (H2),

nPr
{

1

f (X)
> λ2

n

}
≥ nPr{X ∈ Dn} ≥ n

4λ
2(1+d/r)
n

→ ∞,

contradiction. �

Theorem 2.1 has the following obvious corollary regarding convergence in
distribution:

COROLLARY 2.4. Under the assumptions in Theorem 2.1,the sequence (2.1)
converges in distribution if and only if the sequence of maxima,{

max
1≤i≤n

�(Xi)

λn

}
,
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converges in distribution. Then, if Z is a random variable with distribution the
limit of this last sequence, we have√

nhd
n

2 logh−d
n

‖fn − Efn‖�,∞
d→ (‖K‖∞Z) ∨ (‖K‖2‖f 1/2‖�,∞).

Next we consider the a.s. counterpart to Theorem 2.1. The following proposition
will help. It is perhaps relevant to recall first a well-known fact, whose proof we
omit as it is similar to a classical result of Feller [e.g., Lemma 3.2.4, Corollary 3.2.3
and Theorem 3.2.5 in Stout (1974)].

LEMMA 2.5. Let Vi be i.i.d. real random variables and let {c(n)} be a
nondecreasing sequence, regularly varying with strictly positive exponent. Then,

either lim sup
n→∞

max
1≤i≤n

|Vi |
c(n)

= ∞ a.s. or lim
n→∞ max

1≤i≤n

|Vi|
c(n)

= 0 a.s.

And this happens according to whether∑
n

Pr{|Vn| > Cc(n)} = ∞ or
∑
n

Pr{|Vn| > Cc(n)} < ∞

for some (or, equivalently, all ) C > 0.

PROPOSITION2.6. Assume that conditions (D.a), (W.a)–(W.c)and (WD.a)β ,
(WD.b) hold for some β > 0 and that, moreover, either Bf = Rd or K(0) > 0. Let
c(n) ↗ ∞ be a regularly varying function of n. Assume

lim sup
n

∥∥∥∥
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

c(n)

∥∥∥∥
�,∞

< ∞ a.s.(2.21)

Then,
∑
n

Pr
{

�(X)

c(n)
> C

}
< ∞(2.22)

for all 0< C < ∞ or, what turns out to be the same by Lemma 2.5,

lim
n→∞ max

1≤i≤n

�(Xi)

c(n)
= 0 a.s.(2.22′)

PROOF. The proof is standard, but we give it here for completeness. First
we note that if (2.21) holds andc(n) ↗ ∞ is regularly varying, thenc(n) has
necessarily positive exponent, which by Lemma 2.5 gives the equivalence between
(2.22) and (2.22′). This follows because, by (2.21), there ist with �(t) 
= 0 and
f (t) 
= 0 such that the sequence

∑n
i=1 �(t)(K(Xi−t

hn
) − EK(X−t

hn
))/c(n), n ∈ N,

is tight, which, by boundedness and finite support ofK , implies that the sequence
of its second moments is uniformly bounded, thus, that the sequencenhd

n/c2(n)
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is bounded; hence, since by (H2)nhd
n is regularly varying with strictly positive

exponent andc(n) is regularly varying, it follows that the exponent ofc(n) is
strictly positive as well.

Let {X′
i} be an independent copy of{Xi}. We can symmetrize in (2.21) and still

have the lim sup finite. By continuity of� onBf , there isn(ω) < ∞ a.s. such that,
for all n ≥ n(ω),∥∥∥∥K((X(ω) − t)/hn) − K((X′(ω) − t)/hn)

c(n)

∥∥∥∥
�,∞

≤ κ(�(X) + �(X′) + 1)

c(n)
.

This tends to zero and therefore the lim sup in (2.21) is a.s. constant by the zero–
one law. Hence, we have

Pr
{

sup
n≥k

∥∥∥∥
∑n

i=1 �(t)(K((Xi − t)/hn) − K((X′
i − t)/hn))

c(n)

∥∥∥∥
Bf

> c

}
→ 0

ask → ∞
for somec < ∞. Set

Hn(X,X′) := �(t)(K((X − t)/hn) − K((X′ − t)/hn))

c(n)
,

and, fork ∈ N,

Zi,k = (
Hk(Xi,X

′
i ),Hk+1(Xi,X

′
i ), . . . ,Hk+r (Xi,X

′
i ), . . .

)
if i ≤ k, and

Zi,k = (
0, r). . . ,0,Hk+r(Xk+r ,X

′
k+r ),Hk+r+1(Xk+r ,X

′
k+r ) . . .

)
for i = k + r , r = 1, . . . . Then, the above sup overn ≥ k is simply∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∞∑
i=1

Zi,k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣,

where |||(x1(t), . . . , xn(t), . . .)||| = supn ‖xn(t)‖Bf
. The random vectorsZi,k are

independent and symmetric, and we can apply Lévy’s inequality to get that

Pr
{

sup
i∈N

|||Zi,k ||| > 2c

}
→ 0

ask → ∞. By independence, this implies that
∞∑
i=1

Pr{|||Zi,k ||| > 2c} → 0

ask → ∞. Let τ = 0 if K(0) > 0 and otherwise let|τ | < 1 be such thatK(τ) > 0.
Then,

‖Hm(X,X′)‖Bf
≥ c̃�(X − hmτ)

c(n)
I (|X − X′| > hn)
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for somec̃ > 0, and we get that

|||Zi,k ||| = sup
m≥i∨k

Hm(Xi,X
′
i ) ≥ c̃�(Xi)

c(i ∨ k)
I (|Xi − X′

i | > hi∨k)

whenτ = 0 and

|||Zi,k ||| = sup
m≥i∨k

Hm(Xi,X
′
i ) ≥ c̃ inf|h|≤|hi∨k | �(Xi − h)

c(i ∨ k)
I (|Xi − X′

i | > hi∨k)

whenBf = Rd . The caseτ = 0 is easier to handle, so we will complete the proof
only for the second case. In this case, since Pr′{|X −X′| > hi} ≥ 1−‖f ‖∞hd

i , the
previous inequality yields

∞∑
i=1

Pr{|||Zi,k ||| > 2c} ≥ ∑
i≥k

(1− ‖f ‖∞hd
i )Pr

{
c̃ inf|h|≤|hi | �(X − h)

c(i)
> 2c

}
.

Then by (W.b) there are 0< δ < 1 andĉ > 0 such that

∞∑
n=1

Pr
{
�(X) > ĉc1/(1+δ)(n)

}
< ∞.

But by regular variation, there existsr > 0 such thath−r
n > ĉc1/(1+δ)(n), and

therefore

∞∑
n=1

Pr{�(X) > h−r
n } < ∞.

Now by (W.c), forn large enough, there existsC < ∞ such that

Pr{�(X) > Cc(n)} ≤ Pr
{

c̃ inf|h|≤|hn| �(X − h)

c(n)
> 2c

}
+ Pr{�(X) > h−r

n }.

Therefore,

∞∑
n=1

Pr{�(X) > Cc(n)} < ∞.
�

We are now prepared to give an integral test for a.s. convergence of the
sequence (2.1). Notice the difference with the tightness criterion, which is due
to the fact that, by Lemma 2.5, we have

either lim
n→∞ max

1≤i≤n

�(Xi)

λn

= 0 a.s. or lim sup
n→∞

max
1≤i≤n

�(Xi)

λn

= ∞.(2.23)
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THEOREM 2.7. Assume the usual hypotheses, with condition (WD.a)β hold-
ing for some β ∈ (0,1/2), and, moreover, that either Bf = Rd or K(0) = ‖K‖∞.

Set λ(t) =
√

thd
t | loght |, as before. Then, either

lim
n→∞

√
nhd

n

2| loghd
n|‖fn − Efn‖�,∞ = ‖K‖2‖f 1/2‖�,∞ a.s.(2.24)

or

lim sup
n→∞

√
nhd

n

2| loghd
n|‖fn − Efn‖�,∞ = ∞ a.s.,(2.25)

according to whether∫ ∞
1

Pr{�(X) > λt}dt < ∞ or
∫ ∞

1
Pr{�(X) > λt}dt = ∞.(2.26)

PROOF. By Proposition 2.6, sinceλn is regularly varying, if the integral
in (2.26) is infinite, then (2.25) holds. So, we must prove that∫ ∞

1
Pr{�(X) > cλt}dt < ∞(2.27)

for all c > 0 implies (2.24). We proceed as in the proof of Theorem 2.1, with the
addition of the usual blocking and replacing, in the estimation of the sup overCn,
the moment bound by an exponential inequality. By (2.4), we only have to consider
the sup of our statistics overAn, Bn andCn, the three sets defined as in the proof
of Theorem 2.1, but withcn = 1 (andεn = 1/ logn as before), and we can ignore
the centerings onAn andBn. By monotonicity ofhn andλn, we have

max
2k≤n≤2k+1

sup
t∈An

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≤ κ sup
t∈A2k

�(t)
∑2k+1

i=1 I (Xi ∈ J (t;h2k ))

λ2k

.

Hence, we have, as before,

Pr
{

max
2k≤n≤2k+1

sup
t∈An

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

> ε

}

≤ ε−12k+1 Pr
{
�(X) ≥ λ

1/β

2k

c

}

for all k large enough and somec > 0. But, by (2.27), this is the general term of a
convergent series, thus proving that

lim
n→∞ sup

t∈An

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

= 0 a.s.(2.28)
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RegardingBn (with cn = 1 andεn ↘ 0), we first note that, by regular variation,

2k+1⋃
n=2k

Bn ⊆ B̃2k :=
{
t :f (t)�(t) ≤ c′ε1−β

2k

( | logh2k |
2khd

2k

)1/2

,

�(t) ≤ c′cβ

2k (2
khd

2k | logh2k |)1/2
}

for somec′ > 1. Then, as in (2.11),

max
2k≤n≤2k+1

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

≤ sup
t∈B̃2k

�(t)
∑2k+1

i=1 I (Xi ∈ J (t;h2k ))

λ2k

≤ max
1≤j≤2k+1

c�(Xj )

λ2k

+ max
1≤j≤2k+1

c�(Xj )Ij

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ h2k )

λ2k

,

whereIj is defined as before but withn = 2k+1, and c may be different from
the constant in (2.11). Now, the maximum term tends to zero a.s. by (2.7) and
Lemma 2.5, and the remainder term satisfies

Pr
{

max
1≤j≤2k+1

c�(Xj )Ij

∑
1≤i≤n,i 
=j I (|Xi − Xj | ≤ h2k )

λ2k

> ε

}
≤ C

ε2αk

for someα > 0 and allk large enough, as in the proof of Theorem 2.1. Therefore,

lim
n→∞ sup

t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

λn

= 0 a.s.(2.29)

In order to control the sup of our statistics overCn = Cn,a [as defined
in (2.14)], we will use Talagrand’s exponential inequality [Talagrand (1994, 1996)]
in conjunction with the bound on the expected value of the sup of an empirical
process given in (2.16). In a ready to use form for the problem at hand, it is
as follows [Giné and Guillou (2001), equation (2.12)]: under assumption (2.15)
above, and with the notation of (2.17) above, assuming further that

0 < σ < U/2 and
√

nσ ≥ U

√
log

U

σ
,

there exist constantsC andL such that, for alls > C,

Pr

{∥∥∥∥∥
n∑

i=1

(
f (ξi) − Ef (ξ1)

)∥∥∥∥∥
F

> sσ
√

n

√
log

U

σ

}
≤ Lexp

{
−D(s)

L
log

U

σ

}
,(2.30)

where

D(s) := s log(1+ s/4L) → ∞ ass → ∞.
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We apply this inequality to the classFn defined on the last part of the
proof of Theorem 2.1, withU = Un and σ = σn as defined there, so that
log Un

σn
� logn. Since, fora fixed andn large enough,σn → 0, Un → ∞ and√

nσn/(Un

√
log Un

σn
) → ∞, the above applies to give that there existsC < ∞ such

that, for alla > 0 and for alln large enough (depending ona),

Pr
{

sup
t∈Cn,a

∣∣∣∣�(t)
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

λn

∣∣∣∣
> C‖f 1/2�‖Dc

a∩Bf

}

≤ Lexp{−2 logn}.

(2.31)

Hence,

lim sup
n→∞

sup
t∈Cn,a

∣∣∣∣�(t)
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

λn

∣∣∣∣
≤ C‖f 1/2�‖Dc

a∩Bf
a.s.

(2.32)

Combining (1.6), (2.28), (2.29) and (2.32), and lettinga → ∞, we obtain the
limit (2.24). �

We conclude this section with a few examples. We take�(t) = f −β(t). Other
choices of� are of course possible.

EXAMPLE 2.8. Supposef : R �→ (0,M] is continuous and

f (x) = c1e
−c2|x|r

for all |x| large enough, for somer > 0 and for some constantsc1 andc2. Then,
f satisfies (D.a)–(D.c). Take

hn = n−α, 0 < α < 1.

For simplicity assumec1 = c2 = 1. It is easy to see that

Pr{|X| > u} � u1−re−ur

.

Hence,

Pr
{

1

f (X)
> t(1−α)/(2β)(logt)1/(2β)

}
� 1

t(1−α)/(2β)(logt)1/(2β)−(1−r)/r
.

Then the above theorems imply the following. Forr ≥ 1, which includes the
symmetric exponential and the normal densities, the conclusion is that the
sequence (2.1) with�(t) = f −β(t) is tight (stochastically bounded) if and only
if

2β ≤ 1− α
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and that, if this is the case, then√
n1−α

2α logn

∥∥∥∥fn − Efn

f β

∥∥∥∥∞
→ ‖K‖2‖f ‖1/2−β∞ a.s.(2.33)

The same is true for exponential densities if we replace in (2.33) the sup overR
by the sup overR+. For 0< r < 1, if 2β < 1 − α, then the limit (2.33) holds.
If 2β = 1 − α, different behaviors arise; namely, if(1 − r)/r > 1/(2β), then the
sequence (2.1) is not stochastically bounded; if(1− r)/r = 1/(2β), the sequence
converges in distribution to the limit in distribution of the random variables(

max
1≤i≤n

‖K‖∞√
2αn2β lognf β(Xi)

)
∨ (‖K‖2‖f ‖1/2−β∞ ),

which is unbounded and can be easily computed (see the next example); if(1 −
r)/r − 1/(2β) < 0, we have convergence in probability in (2.33), but convergence
a.s. holds only if(1− r)/r − 1/(2β) < −1.

EXAMPLE 2.9. Suppose now the real densityf is strictly positive, continuous
and

f (x) = c

|x|r
for all |x| large enough, for somer > 1 and for some constantc. These densities
also satisfy (D.a)–(D.c). Takehn = n−α, α ∈ (0,1) as above. Then, (2.1) [again,
with �(t) = f −β(t)] is tight if and only if

β ≤ r − 1

r

1− α

2
,

and, if this is the case, then (2.33) holds true.

EXAMPLE 2.10. Let now f (x) = 1
2e−|x| be the symmetric exponential

density onR. Then,

Pr
{

max
1≤i≤n

1

f (Xi)
> u

}
=


1−

(
1− 2

u

)n

, if u ≥ 2,

1, otherwise,

so that

max
1≤i≤n

1

nβf β(Xi)

d→ Zβ,

whereZ has distribution

Pr{Z ≤ t} =
{

e−2/t , if t > 0,

0, otherwise.
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Hence, if we takeβ ∈ (0,1/2) and

hn = 1

n1−2β logn
,

Theorem 2.1 gives that√
nhn

2| loghn|
∥∥∥∥fn − Efn

f β

∥∥∥∥∞
d→ max

( ‖K‖∞√
2(1− 2β)

Zβ,
‖K‖2

21/2−β

)
.

The next two examples show that the above results are not true in general
without conditions of the type of (D.b), (D.c) [and (W.b), (W.c)]. The first
addresses smoothness and the second the existence of zeros off on the closure
of Bf .

EXAMPLE 2.11. It is easy to see that the double exponential density still
satisfies conditions (D.a)–(D.c) and, hence, Theorems 2.1 and 2.7, but the density

f (t) := ce−eet

, t ≥ 0,

does not. Specifically, condition (D.b) fails for this density and we show below
that, for allβ ∈ (0,1) and forhn = n−α,√

nhn

2| loghn| sup
t≥0

∣∣∣∣fn(t) − Efn(t)

f β(t)

∣∣∣∣ → ∞ a.s.(2.34)

Indeed, ifK is continuous and strictly positive at the pointt = −1/4, then

Efn(t)

f β(t)
= c exp

{
βeet } 1

hn

EK

(
X − t

hn

)

= c exp
{
βeet }∫ 1/2

−1/2
K(u)f (hnu + t) du

≥ c1 exp
{
βeet − eet−4−1n−α }

= c1 exp
{
eet [

β − eet (e−4−1n−α −1)
]}

.

Let tn := logn. Then, for largen,√
nhn

2| loghn|
Efn(tn)

f β(tn)
≥ c1 exp

{
en

[
β − en(e−4−1n−α −1)

]} ≥ c1 exp
{
β

en

2

}
.

On the other hand,

Pr{fn(tn) 
= 0} ≤ Pr
{

max
1≤i≤n

Xi ≥ tn − n−α

2

}
≤ Cnexp

{−e
√

n
}
,
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which implies that √
nhn

2| loghn|
fn(tn)

f β(tn)
→ 0 a.s.,

and therefore (2.34) holds.

EXAMPLE 2.12. This example shows that if the densityf has a zero inR,

then the asymptotic behavior of√
nhn

| loghn|
∥∥∥∥fn − Efn

f β

∥∥∥∥
Bf

depends on the local behavior off at the zero point and is no longer controlled
only by condition (2.2). Note that in this case condition (D.b) fails. For simplicity,
assume thathn = n−α (with α < 1) andK = I[−1/2,1/2]. Let f be a density
continuous on a neighborhood of 0 and such thatf (0) = 0 and, moreover, for
somes > 0,

f (t) � |t|s ast → 0.

In particular, we assume thatf is s times continuously differentiable at 0 (for an
even integer numbers) andf (j)(0) = 0 for j < s, f (s)(0) > 0. It is easy to see
that

Pr{|X| ≤ t} � ts+1 ast → 0.(2.35)

We will show that ifs > 1
α

− 1, then, for allC > 0,

Pr

{√
nhn

2| loghn|
∥∥∥∥fn − Efn

f β

∥∥∥∥
Bf

> C

}
→ 1.(2.36)

The proof is almost the same as in the previous example. Lettn → 0 be chosen in
such a way thatf (tn) = e−n. Note thattn = o(hn). Then, using (2.35), we get√

nhn

2| loghn|
Efn(tn)

f β(tn)
�

√
n1−α

logn
eβnnαEK

(
nα(X − tn)

)

�
√

n1+α

logn
eβn Pr

{
tn − n−α

2
≤ X ≤ tn + n−α

2

}

�
√

n1+α

logn
eβnn−(s+1)α → ∞.

On the other hand, also using (2.35), ifs > 1
α

− 1, then

Pr{fn(tn) 
= 0} ≤ Pr{∃ i,1 ≤ i ≤ n :Xi ∈ (tn − hn/2, tn + hn/2)}
≤ nPr{X ∈ (tn − hn/2, tn + hn/2)}
� nhs+1

n = n1−α(s+1) → 0.
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This immediately implies (2.36). Now letf (t) = c|t|s for |t| ≤ a andf (t) = 0
otherwise. Then it is easy to check that condition (2.2) holds if and only if
β ≤ 1−α

2 (1 + 1
s
). Thus, for large enoughs, this condition does not imply the

stochastic boundedness of (2.1).

3. Large normings. By Proposition 1.1, the central part of the process
�(t)(fn(t)−Efn(t)), that is, its sup overDa , for all a > 0, has an influence on the
asymptotic size in probability of the sequence (2.1) and completely determines its

a.s. limit. But if we normalize by a sequence larger than
√

nhd
n| loghn|, this central

part of the sup vanishes for alla > 0, and only the extremes of the range oft ’s
should have an influence on the limit. This is what we examine in this section. As
in the previous section, we will only consider regularly varying window sizes and
normings. As is to be expected, the only possible limit a.s. in this situation is zero,
and the sum is asymptotically equivalent, in probability, to the maximum term.
This is roughly the content of the following two theorems.

THEOREM 3.1. Assume the usual hypotheses, with condition (WD.a)β hold-
ing for some β ∈ (0,1], and, moreover, that either Bf = Rd or K(0) = ‖K‖∞.
Let dt be a strictly increasing regularly varying function such that dt/λt → ∞ and
dt ≥ Ctβ for some C > 0. Then, the sequence{∥∥∥∥

∑n
i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∥∥∥∥
�,∞

}
(3.1)

is stochastically bounded if and only if

lim sup
t→∞

t Pr{�(X) > dt} < ∞.(3.2)

Moreover, if condition (3.2)holds, then∥∥∥∥
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∥∥∥∥
�,∞

− max
1≤i≤n

‖K‖∞�(Xi)

dn

→ 0 in pr.

(3.3)

PROOF. The proof is similar to that of Theorem 2.1. First we considerβ < 1.

Necessity of condition (3.2) follows exactly in the same way. Here we indicate the
few changes that should be made to the proof of Theorem 2.1 in order to prove
that (3.2) implies (3.1) and (3.3). First, and this is by far the main difference with
Theorem 2.1, the sup of∣∣∣∣�(t)

∑n
i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∣∣∣∣(3.4)
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over Da , tends to zero a.s. for alla < ∞ by Proposition 1.1. Regarding the
centering, consider the bound

n�(t)EK((X − t)/hn)

dnf
β(t)

≤ cκnhd
n

dn

�(t)f (t)I
(
f (t) > hr

n

) + cκnhd
n

dn

�(t)f 1−δ(t)I
(
f (t) ≤ hr

n

)
,

where t ∈ Bf , 1 − β > δ and r is such thatnh
d+r(1−β−δ)
n /dn → 0, which is

obtained as in the proof of Theorem 2.1. If the exponent of regular variation ofnhd
n

is strictly smaller than that ofdn, then, since�f η is bounded for allη ≥ β, the
sup overt ∈ Bf of this bound tends to zero and therefore we can simply ignore
the centerings in (3.1) and (3.3). Otherwise, the second summand tends to zero
uniformly in t ∈ Bf and the first tends to zero uniformly on allt ∈ Bf such that

f (t)�(t) ≤ ε1−β
n

dn

nhd
n

,

for anyεn → 0. So we can ignore the centerings for these values oft . As before,
we takeεn = 1/ logn.

Continuing in analogy with the proof of Theorem 2.1, we now define

An = {t ∈ Bf :�(t) > cβ
ndn}

with cn = (dn logn/dn)
1/β → ∞, and we get, as in (2.8) but now using the

properties ofdn, that

lim
n→∞ sup

t∈An

∑n
i=1 �(t)K((Xi − t)/hn)

dn

= 0 in pr.

(for 0< β < 1).
Next we set

Bn :=
{
t ∈ Bf :f (t)�(t) ≤ ε1−β

n

dn

nhd
n

,�(t) ≤ cβ
ndn

}

in analogy with (2.9). Then, proceeding as in the proof of (2.10) with the only
formal change of replacingλn by dn and

√
nhd

n/| loghn| by nhd
n/dn, we arrive at

analogous conclusions, namely that the sequence

sup
t∈Bn

�(t)
∑n

i=1 K((Xi − t)/hn)

dn

is stochastically bounded and that in fact it can be represented as

max
1≤i≤n

κ�(Xi)

dn

+ op(1).
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(This requires using the properties ofdn andhn but, given that proof, the details
are straightforward.)

Finally, we consider

Cn = Bf \ (An ∪ Bn) = {t ∈ Bf :f (t)�(t) ≥ ε1−β
n dn/(nhd

n)}.
Using as before that�f ≥ L implies, by (WD.a)β , that� ≤ L−β/(1−β), we can
take

Un = κε−β
n

(
nhd

n

dn

)β/(1−β)

.

We will consider two cases.
If the exponent of regular variation ofnhd

n is strictly smaller than that ofdn, then

ε
1−β
n dn/(nhd

n) → ∞ and therefore, since, by (WD.a)β , ‖f �‖∞ ≤ ‖f ‖1−β∞ < ∞,
Cn is eventually the empty set.

Assume now that the exponent of regular variation ofdn does not exceed that
of nhd

n. Thenε
1−β
n dn/(nhd

n) is eventually dominated byn−δ for anyδ > 0, so that
we eventually havef (t) ≥ hr

n and�(t) ≤ h−r
n for somer > 0 and allt ∈ Cn. So,

we can apply (D.c) and (W.c), which, together with (WD.a)β , immediately imply
that we can takeσn as follows:

σ 2
n =


Cκhd

n‖f ‖1−2β∞ , if β ≤ 1/2,

Cκhd
nε

−(2β−1)
n (nhd

n/dn)
(2β−1)/(1−β), if β > 1/2.

SinceUn is either slowly varying or tends to infinity andσn tends to zero as a
negative power ofn for β ≤ 1/2, we get, in this case, that, eventually,

0< σn < Un/2 and log
Un

σn

� logn.

The same conclusion holds forβ > 1/2 sinceh
d/2
n decreases as a negative power

of n and the exponent ofnhd
n/dn in the expression forσn is smaller than its

exponent in the expression forUn. It is also easy to see, usingλn/dn → 0 in the
caseβ < 1/2 anddn > Cnβ whenβ = 1/2 orβ > 1/2, that, eventually,

√
nσn ≥ Un

√
log(Un/σn) � Un

√
logn.

Then inequality (2.16) gives that

E

(
sup
t∈Cn

∣∣∣∣�(t)
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∣∣∣∣
)

≤ C
√

n logn σn

dn

for someC < ∞ independent ofn, as long asn is large enough. Forβ ≤ 1/2, this
bound is, up to a multiplicative constant, of the order of

λn

dn

→ 0,
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and forβ > 1/2, it is of the order of

ε−(2β−1)/2
n

√
logn(nβ/dn)

1/(2(1−β))hdβ/(2(1−β))
n → 0,

sincedn ≥ Cnβ for someC > 0, andhn → 0 at least as a negative power ofn.
This completes the proof of the theorem forβ < 1.

For β = 1, sincedn ≥ Cn and‖�f ‖�,∞ ≤ 1, we can ignore the centering for
all t. Then we decomposeBf into An defined as above andBn := {t ∈ Bf :�(t) ≤
c
β
ndn}. The proof of (2.8) and (2.10) withλn replaced bydn follows as in the proof

of Theorem 2.1, even with some simplification asBn is now a simpler set. �

We have assumeddn ≥ Cnβ andβ ≤ 1 in the above theorem. Next we show
that these two assumptions are optimal.

REMARK 3.2. Take� = f −β . For the sequence (3.1) to be stochastically
bounded, it is necessary, by the first part of Theorem 2.1, that the sequence
{max1≤i≤n(dnf

β(Xi))
−1} be stochastically bounded, hence, by regular variation

of dt , that

supnPr
{

1

f (X)
≥ d1/β

n

}
< ∞.

But if Bf = Rd , then condition (D.c) implies, as in the proof of Corollary 2.2, that

nPr
{

1

f (X)
≥ d1/β

n

}
≥ c

n

d
1/β
n

for all n and somec > 0 independent ofn. Hence, if�(t) is of the order off −β(t),
then we must havedn ≥ Cnβ in Theorem 3.1.

REMARK 3.3. Suppose we takeβ > 1 in Theorem 3.1, and, again, let us take
� = f −β . Then, we still have that (3.2) is necessary for stochastic boundedness of
the sequence (3.1). But then (3.2) implies that

lim
n→∞ sup

t∈An

∑n
i=1 K((Xi − t)/hn)

dnf
β(t)

= 0 in pr.

as before. On the other hand, ifBf = Rd , then the setAn containst ’s with f (t)

arbitrarily small, and therefore, by (D.b), for some 0< δ < β − 1,

sup
t∈An

nEK((X − t)/hn)

dnf
β(t)

� sup
t∈An

nhn

dnf
β−1−δ(t)

= ∞.

Hence, the sequence (3.1) is not stochastically bounded, which is a contradiction.
So, Theorem 3.1 is not true forβ > 1.

The next theorem describes the almost sure behavior of‖fn − Efn‖�,∞ for
large normings.
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THEOREM 3.4. Assume the usual hypotheses, with condition (WD.a)β hold-
ing for some β ∈ (0,1], and, moreover, that either Bf = Rd or K(0) =
‖K‖∞. Let dt be a strictly increasing regularly varying function satisfying that
lim t→∞ dt/λt = ∞ and dt ≥ Ctβ for some C > 0. Then, either

lim
n→∞

∥∥∥∥
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∥∥∥∥
�,∞

= 0 a.s.(3.5)

or

lim sup
n→∞

∥∥∥∥
∑n

i=1(K((Xi − t)/hn) − EK((X − t)/hn))

dn

∥∥∥∥
�,∞

= ∞,(3.6)

according to whether∫ ∞
1

Pr{�(X) > dt}dt < ∞ or
∫ ∞

1
Pr

{
�(X) > dt

}
dt = ∞.(3.7)

PROOF. Necessity and the part of sufficiency dealing with the setsAn andBn

follow by a straightforward combination of the proofs of Theorems 2.7 and 3.1.
The only difference with previous proofs is in the estimation of the supremum of
the processes over the sets

Cn = {t ∈ Bf :f (t)�(t) ≥ ε1−β
n dn/(nhd

n)}.
Here, as in the corresponding part of the proof of Theorem 2.6, we use Talagrand’s
inequality. However,dn is large and it may fall out of the “Gaussian range” of the
inequality. With the notation put forward above, and with the assumptions

0 < σn < Un/2 and
√

nσn > Un

√
log

Un

σn

shown to hold for alln large enough in the previous proof, Talagrand’s inequality
in the version from Giné and Guillou [(2001), Proposition 2.2] gives

Pr

{
sup
t∈Cn

∣∣∣∣∣�(t)

n∑
i=1

(
K

(
Xi − t

hn

)
− EK

(
X − t

hn

))∣∣∣∣∣ > εdn

}

≤ Lexp
[
− 1

L

εdn

Un

log
(

1+ εdnUn

Lnσ 2
n

)]
:= (I ),

(3.8)

for someL that depends only onA andv [from (2.15)], and for alln large enough,
as long as

εdn√
nσn

√
logUn/σn

> C

for a certain constantC < ∞. This last condition is eventually satisfied by all
ε > 0 since log(Un/σn) � logn anddn/(

√
n lognσn) → ∞, as can be easily seen

directly from the definitions and properties of these quantities.
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Now, by the hypotheses onhn anddn, and sinceεn = 1/ logn, there existsδ > 0
such that

εdn

Un

= ε · εβ
n

(
dn

nβ

)1/(1−β)

h−dβ/(1−β)
n ≥ Cε · εβ

nh−dβ/(1−β)
n ≥ nδ.(3.9)

If 1/2≤ β ≤ 1, then

log
(

1+ εdnUn

Lnσ 2
n

)
� log

(
1+ ε

Lε
β
n

)
� log logn.

If β < 1/2,

log
(

1+ εdnUn

Lnσ 2
n

)
� log

(
1+ ε

Lε
β
n

(
dn

nhd
n

)(1−2β)/(1−β))
,

which is of the order of logn if the exponent of regular variation ofdn is strictly
larger than that ofnhd

n, and satisfies

lim
n→∞nδ log

(
1+ ε

Lε
β
n

(
dn

nhd
n

)(1−2β)/(1−β))
= ∞

for all δ > 0 if the exponents ofdn andnhd
n coincide. (This can be readily seen

using the properties of regular variation and that log(1 + τ ) � τ for τ small.)
Combining the last three estimates with the bound (3.9), we get that, for the cases
considered,

(I ) ≤ exp(−nδ)(3.10)

for someδ > 0. Finally, if β < 1/2 and the exponent of variation ofdn is smaller
than the exponent ofnhd

n, then

log
(

1+ εdnUn

Lnσ 2
n

)
� εdnUn

Lnσ 2
n

,

and we have, for constantsL independent ofn (as long asn is large enough) and
that vary on each occurrence,

(I ) ≤ Lexp
(
− 1

L

ε2d2
n

nσ 2
n

)
= Lexp

(
− 1

L

ε2d2
n

nhd
n

)

= Lexp
(
− 1

L
ε2

(
dn

λn

)2

| loghn|
)

≤ Lexp(−M logn),

(3.11)

whereM can be made as large as we wish, as long as we taken large enough.
(Here we have useddn/λn → ∞ and| loghn| � logn.) This covers all the cases,
and we obtain, combining (3.8), (3.10) and (3.11), that

∑
n

Pr

{
sup
t∈Cn

∣∣∣∣∣�(t)

n∑
i=1

(
K

(
Xi − t

hn

)
− EK

(
X − t

hn

))∣∣∣∣∣ > εdn

}
< ∞
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for all ε > 0, proving that

lim
n→∞ sup

t∈Cn

∣∣∣∣∣�(t)

n∑
i=1

(
K

(
Xi − t

hn

)
− EK

(
X − t

hn

))∣∣∣∣∣ = 0 a.s.

This completes the proof of the theorem.�

The results in this section obviously apply to the densities in Examples 2.8–2.11.
For instance, letf be the symmetric exponential density onR considered in
Examples 2.8 and 2.10, and lethn = n−α, 0 < α < 1. Then, Theorem 3.1 shows
that

n1−α−β

∥∥∥∥fn − Efn

f β

∥∥∥∥∞
d→ ‖K‖∞Zβ,

whereZ is the random variable defined in Example 2.10, if and only if

1− α

2
< β < 1;

and Theorem 3.4 shows that, forc(t) strictly increasing and regularly varying,

n1−α

cβ(n)

∥∥∥∥fn − Efn

f β

∥∥∥∥∞
→ 0 a.s.

if and only if ∫ ∞ dt

c(t)
< ∞.

A similar statement holds true for normal densities.

REMARK 3.5. Suppose thatK is a uniformly bounded class of kernels
supported by a fixed bounded set and such that the class

F :=
{
K

( · − t

h

)
: t ∈ Rd, h > 0, K ∈ K

}

is measurable and has covering numbers

N
(
F ,L2(P ),‖K‖L2(P )ε

) ≤
(

A

ε

)v

, 0< ε < 1,

for someA and v finite and positive and for all probability measuresP . [In
particular,K may be a subset of the linear span of a finite set of functionsk as
defined in condition (K)]. Suppose we wish to consider

sup
K∈K

∥∥∥∥fn − Efn

cn

∥∥∥∥
�,∞

,

wherecn is dn or λn, as defined above. Then uniform boundedness and uniformity
of the support allow us to deal with the sup overAn and Bn, and the entropy
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bound, with the sup overCn, just as in the previous theorems. The sup over the
central partDa is handled in Mason (2004). So, it is straightforward to prove a
uniform in K ∈ K version of our results. It is also possible to prove a functional
law of the logarithm in our setting by following Mason (2004).
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