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CAN ONE ESTIMATE THE CONDITIONAL DISTRIBUTION OF
POST-MODEL-SELECTION ESTIMATORS?

BY HANNES LEEB1 AND BENEDIKT M. PÖTSCHER

Yale University and University of Vienna

We consider the problem of estimating the conditional distribution of
a post-model-selection estimator where the conditioning is on the selected
model. The notion of a post-model-selection estimator here refers to the com-
bined procedure resulting from first selecting a model (e.g., by a model se-
lection criterion such as AIC or by a hypothesis testing procedure) and then
estimating the parameters in the selected model (e.g., by least-squares or max-
imum likelihood), all based on the same data set. We show that it is impossible
to estimate this distribution with reasonable accuracy even asymptotically. In
particular, we show that no estimator for this distribution can be uniformly
consistent (not even locally). This follows as a corollary to (local) minimax
lower bounds on the performance of estimators for this distribution. Simi-
lar impossibility results are also obtained for the conditional distribution of
linear functions (e.g., predictors) of the post-model-selection estimator.

1. Introduction and overview. In many statistical applications a data-based
model selection step precedes parameter estimation and inference. For example,
the specification of the model (choice of functional form, choice of regressors,
number of lags, etc.) is often based on the data. In contrast, the traditional theory
of statistical inference is concerned with the properties of estimators and inference
procedures under the central assumption of an a priori given model. That is, it is
assumed that the model is known to the researcher prior to the statistical analy-
sis, except for the value of the true parameter vector. As a consequence, the actual
statistical properties of estimators or inference procedures following a data-driven
model selection step are not described by the traditional theory which assumes
an a priori given model; in fact, they may differ substantially from the properties
predicted by this theory; see, for example, [3, 4], [18], Section 3.3, or [21], Sec-
tion 12. Ignoring the additional uncertainty originating from the data-driven model
selection step and (inappropriately) applying traditional theory can hence result in
very misleading conclusions.
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Investigations into the distributional properties of post-model-selection estima-
tors, that is, of estimators constructed after a data-driven model selection step, are
relatively few and of recent vintage. Sen [23] obtained the unconditional large-
sample limit distribution of a post-model-selection estimator in an i.i.d. max-
imum likelihood framework, when selection is between two competing nested
models. In [18] the asymptotic properties of a class of post-model-selection es-
timators (based on a sequence of hypothesis tests) were studied in a rather gen-
eral setting covering nonlinear models, dependent processes and more than two
competing models. In that paper, the large-sample limit distribution of the post-
model-selection estimator was derived, both unconditional as well as conditional
on having chosen a correct model, not necessarily the minimal one. See also [20]
for further discussion and a simulation study. The finite-sample distribution of a
post-model-selection estimator, both unconditional and conditional on having cho-
sen a particular (possibly incorrect) model, was derived in [12] in a normal linear
regression framework; this paper also studied asymptotic approximations that are
in a certain sense superior to the asymptotic distribution derived in [18]. The distri-
butions of corresponding linear predictors constructed after model selection were
studied in [11, 10]. Related work can also be found in [1, 5, 7–9, 15, 19, 24].

It transpires from the papers mentioned above that the finite-sample distribu-
tions (as well as the large-sample limit distributions) of post-model-selection es-
timators typically depend on unknown model parameters, often in a complicated
fashion. For inference purposes, for example, for the construction of confidence
sets, estimators for these distributions would be desirable. Consistent estimators
for these distributions can typically be constructed quite easily, for example, by
suitably replacing unknown parameters in the large-sample limit distributions by
consistent estimators; see Section 2.2.1. However, the merits of such “plug-in” es-
timators in small samples are questionable: It is known that the convergence of the
finite-sample distributions to their large-sample limits is typically not uniform with
respect to the underlying parameters (see [12, 15] and Remark 4.11 in [14]), and
there is no reason to believe that this nonuniformity will disappear when unknown
parameters in the large-sample limit are replaced by estimators. This observation is
the main motivation for the present paper to investigate in general the performance
of estimators for the distribution of a post-model-selection estimator, where the
estimators for the distribution are not necessarily “plug-in” estimators based on
the limiting distribution. In particular, we ask whether estimators for the distribu-
tion function of post-model-selection estimators exist that do not suffer from the
nonuniformity phenomenon mentioned above. As we show in this paper, the an-
swer in general is “No.” We also show that these negative results extend to the
problem of estimating the distribution of linear functions (e.g., linear predictors)
of post-model-selection estimators.

To fix ideas, consider for the moment the linear regression model

Y = V χ + Wψ + u,(1)
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where V and W , respectively, represent n × k and n × l nonstochastic regressor
matrices (k ≥ 1, l ≥ 1), and the n × 1 disturbance vector u is normally distrib-
uted with mean zero and variance–covariance matrix σ 2In. We also assume for the
moment that (V :W)′(V :W)/n converges to a nonsingular matrix as the sample
size n goes to infinity and that limn→∞ V ′W/n �= 0 (for a discussion of the case
where this limit is zero, see Example 1 in Section 2.2.2). Now suppose that the vec-
tor χ represents the parameters of interest, while the parameter vector ψ and the
associated regressors in W have been entered into the model only to avoid possi-
ble misspecification. Suppose further that the necessity to include ψ or some of its
components is then checked on the basis of the data, that is, a model selection pro-
cedure is used to determine which components of ψ are to be retained in the model,
the inclusion of χ not being disputed. The selected model is then used to obtain the
final (post-model-selection) estimator χ̃ for χ . We are now interested in the con-
ditional finite-sample distribution of χ̃ (appropriately scaled and centered) given
the outcome of the model selection step. (The reasons why we concentrate on the
conditional rather than on the unconditional distribution are discussed below.) De-
note this k-dimensional cumulative distribution function (c.d.f.) by Gn,θ,σ (t |M̂),
where M̂ stands for the selected model, that is, for the set of selected regressors.
As indicated in the notation, this distribution function depends on the true parame-
ters θ = (χ ′,ψ ′)′ and σ . For the sake of definiteness of discussion, assume for the
moment that the model selection procedure used here is the particular “general-to-
specific” procedure described at the beginning of Section 2; we comment on other
model selection procedures, including Akaike’s AIC and thresholding procedures,
below.

As mentioned above, it is not difficult to construct a consistent estimator for
Gn,θ,σ (t |M̂) for any given t , that is, an estimator Ĝn(t |M̂) satisfying

Pn,θ,σ

(∣∣Ĝn(t |M̂) − Gn,θ,σ (t |M̂)
∣∣ > δ

) n→∞−→ 0(2)

for each δ > 0 and each θ , σ ; see Section 2.2.1. However, it follows from the
results in Section 2.2.2 that any estimator satisfying (2), that is, any consistent
estimator for Gn,θ,σ (t |M̂), necessarily also satisfies

lim inf
n→∞ sup

‖θ‖<R

Pn,θ,σ

(∣∣Ĝn(t |M̂) − Gn,θ,σ (t |M̂)
∣∣ > δ

) ≥ c > 0(3)

for suitable positive constants c, R and δ (not depending on the estimator), with
the lower bound c often being quite large. That is, while the probability in (2)
converges to zero for every given θ by consistency, relation (3) shows that it does
not do so uniformly in θ . It follows that Ĝn(t |M̂) can never be uniformly con-
sistent (not even when restricting consideration to uniform consistency over all
compact subsets of the parameter space). Hence, a large sample size does not
guarantee a small estimation error with high probability when estimating the con-
ditional distribution function of a post-model-selection estimator. In this sense, re-
liably assessing the precision of post-model-selection estimators is an intrinsically
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hard problem. Apart from (3), we also provide minimax lower bounds for arbi-
trary (not necessarily consistent) estimators of the conditional distribution function
Gn,θ,σ (t |M̂). For example, we provide results that imply that

lim inf
n→∞ inf

Ĝn(t |M̂)

sup
‖θ‖<R

Pn,θ,σ

(∣∣Ĝn(t |M̂) − Gn,θ,σ (t |M̂)
∣∣ > δ

)
> 0(4)

holds for suitable positive constants R and δ, where the infimum extends over all
estimators of Gn,θ,σ (t |M̂). The results in Section 2.2.2 in fact show that the balls
‖θ‖ < R in (3) and (4) can be replaced by suitable balls (not necessarily centered at
the origin) shrinking at the rate n−1/2. This shows that the nonuniformity phenom-
enon described in (3)–(4) is a local, rather than a global, phenomenon. Moreover,
relations (3)–(4) also hold with the unconditional probability Pn,θ,σ (·) in (3)–(4)
replaced by the conditional probability given model M is selected, that is, given the
event M̂ = M . In Section 2.2.2 we further show that the nonuniformity phenom-
enon expressed in (3) and (4) typically also arises when the parameter of interest
is not χ , but some other linear transformation of θ = (χ ′,ψ ′)′. As discussed in
Remark 4.8, the results also hold for randomized estimators of the conditional dis-
tribution function Gn,θ,σ (t |M̂). Hence, no resampling procedure whatsoever can
alleviate the problem. This explains the anecdotal evidence in the literature that
resampling methods are often unsuccessful in approximating distributional prop-
erties of post-model-selection estimators (e.g., [4] or [6]).

The results outlined above are presented in Section 2.2.2 for the particular
“general-to-specific” model selection procedure described at the beginning of Sec-
tion 2. Analogous results for a large class of model selection procedures, including
Akaike’s AIC and thresholding procedures, are then given in Section 3 based on the
results in Section 2.2.2. In fact, it transpires from the proofs that the nonuniformity
phenomenon expressed in (3)–(4) is not specific to the model selection procedures
discussed in Sections 2.2 and 3 of the present paper, but will occur for most (if not
all) model selection procedures, including consistent ones; see Section 5.

In the present paper we focus on the conditional distribution of the post-model-
selection estimator. Given that the outcome of the model selector has been ob-
served, it may be argued that the relevant sample space for assessing variability of
the parameter estimator is then not given by the entire original sample space, but
rather by the subset that gave rise to the observed outcome of the model selector;
see the literature on conditional inference ([22] and [17], page 421). If one does
not adhere to such a conditionality principle the unconditional distribution of the
post-model-selection estimator is of interest. For this case, similar results can be
obtained and are reported in [13].

The plan of the paper is as follows: Post-model-selection estimators based on a
“general-to-specific” model selection procedure are the subject of Section 2. After
introducing the basic framework and some notation, such as the family of mod-
els Mp from which the “general-to-specific” model selection procedure p̂ selects
as well as the post-model-selection estimator θ̃ , the conditional c.d.f. Gn,θ,σ (t |p)
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of (a linear function of ) the post-model-selection estimator θ̃ given that p̂ selects
model Mp is introduced and discussed in Section 2.1. Consistent estimation of
Gn,θ,σ (t |p) and of Gn,θ,σ (t |p̂) (i.e., of the c.d.f. conditional on the actual outcome
of the model selection procedure) is discussed in Section 2.2.1. The main results
of the paper are contained in Sections 2.2.2 and 3: In Section 2.2.2 we provide
a detailed analysis of the nonuniformity phenomenon encountered in (3)–(4). In
Section 3 the “impossibility” result from Section 2.2.2 is extended to a large class
of model selection procedures, including Akaike’s AIC, and to selection from a
nonnested collection of models. Further theoretical results on which the proofs are
based are given in Section 4 and conclusions are drawn in Section 5. All proofs,
as well as some auxiliary results, are collected into appendices. Finally, a word on
notation: The Euclidean norm is denoted by ‖ · ‖, and λmax(E) denotes the largest
eigenvalue of a symmetric matrix E. A prime denotes transposition of a matrix.
For vectors x and y, the relation x ≤ y (x < y, resp.) denotes xi ≤ yi (xi < yi ,
resp.) for all i. As usual, � denotes the standard normal distribution function.

2. Results for post-model-selection estimators based on a “general-to-
specific” model selection procedure. Consider the linear regression model

Y = Xθ + u,(5)

where X is a nonstochastic n × P matrix with rank(X) = P and u ∼ N(0, σ 2In),
σ 2 > 0. Here n denotes the sample size and we assume n > P ≥ 1. In addition,
we assume that Q = limn→∞ X′X/n exists and is nonsingular. In this section we
shall—similarly as in [18]—consider model selection from the collection of nested
models MO ⊆ MO+1 ⊆ · · · ⊆ MP , where O is specified by the user, and where, for
0 ≤ p ≤ P , the model Mp is given by

Mp = {(θ1, . . . , θP )′ ∈ RP : θp+1 = · · · = θP = 0}.
(In Section 3 below general nonnested families of models will also be consid-
ered.) Clearly, the model Mp corresponds to the situation where only the first p

regressors in (5) are included. For the most parsimonious model under considera-
tion, that is, for MO , we assume that O satisfies 0 ≤ O < P ; if O > 0, this model
contains as free parameters only those components of the parameter vector θ that
are not subject to model selection. [In the notation used in connection with (1)
we then have χ = (θ1, . . . , θO)′ and ψ = (θO+1, . . . , θP )′.] Furthermore, note that
M0 = {(0, . . . ,0)′} and that MP = RP . We call Mp the regression model of or-
der p.

The following notation will prove useful. For matrices B and C of the same
row-dimension, the column-wise concatenation of B and C is denoted by (B :C).
If D is an m × P matrix, let D[p] denote the m × p matrix consisting of the first
p columns of D. Similarly, let D[¬p] denote the m × (P − p) matrix consisting
of the last P − p columns of D. If x is a P × 1 vector, we write in abuse of
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notation x[p] and x[¬p] for (x′[p])′ and (x′[¬p])′, respectively. (We shall use the
above notation also in the “boundary” cases p = 0 and p = P . It will always be
clear from the context how expressions containing symbols such as D[0], D[¬P ],
x[0] or x[¬P ] are to be interpreted.) As usual, the ith component of a vector x is
denoted by xi , and the entry in the ith row and j th column of a matrix B is denoted
by Bi,j .

The restricted least-squares estimator of θ under the restriction θ [¬p] = 0, that
is, under θp+1 = · · · = θP = 0, will be denoted by θ̃ (p), 0 ≤ p ≤ P (in case p = P

the restriction is void). Note that θ̃ (p) is given by the P × 1 vector

θ̃ (p) =
(

(X[p]′X[p])−1X[p]′Y
(0, . . . ,0)′

)
,

where the expressions θ̃ (0) and θ̃ (P ), respectively, are to be interpreted as the
zero-vector in RP and as the unrestricted least-squares estimator of θ . Given a
parameter vector θ in RP , the order of θ (relative to the nested sequence of mod-
els Mp) is defined as

p0(θ) = min{p : 0 ≤ p ≤ P, θ ∈ Mp}.
Hence, if θ is the true parameter vector, a model Mp is a correct model if and only
if p ≥ p0(θ). We stress that p0(θ) is a property of a single parameter, and needs to
be distinguished from the notion of the order of the model Mp introduced earlier,
which is a property of the set of parameters Mp .

A model selection procedure is now nothing else than a data-driven (measur-
able) rule p̂ that selects a value from {O, . . . ,P } and thus selects a model from
the list of candidate models MO, . . . ,MP . In this section we shall consider as an
important leading case a “general-to-specific” model selection procedure based on
a sequence of hypothesis tests. (Results for a larger class of model selection proce-
dures, including Akaike’s AIC, are provided in Section 3.) This procedure is given
as follows: The sequence of hypotheses H

p
0 :p0(θ) < p is tested against the alter-

natives H
p
1 :p0(θ) = p in decreasing order starting at p = P . If, for some p > O,

H
p
0 is the first hypothesis in the process that is rejected, we set p̂ = p. If no rejec-

tion occurs until even HO+1
0 is not rejected, we set p̂ = O. Each hypothesis in this

sequence is tested by a kind of t-test where the error variance is always estimated
from the overall model (but see the discussion following Theorem 3.1 in Section 3
below for other choices of estimators of the error variance). More formally, we
have

p̂ = max{p : |Tp| ≥ cp,0 ≤ p ≤ P },(6)

with cO = 0 in order to ensure a well-defined p̂ in the range {O,O + 1, . . . ,P }.
For O < p ≤ P , the critical values cp satisfy 0 < cp < ∞ and are independent of
sample size (but see also Remark 4.7). The test-statistics are given by

Tp =
√

nθ̃p(p)

σ̂ ξn,p

(0 < p ≤ P),
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with the convention that T0 = 0. Furthermore,

ξn,p =
([(

X[p]′X[p]
n

)−1]
p,p

)1/2

(0 < p ≤ P)

denotes the nonnegative square root of the pth diagonal element of the matrix
indicated, and σ̂ 2 is given by

σ̂ 2 = (n − P)−1(
Y − Xθ̃(P )

)′(
Y − Xθ̃(P )

)
.

Note that, under the hypothesis H
p
0 , the statistic Tp is t-distributed with n − P

degrees of freedom for 0 < p ≤ P . It is also easy to see that the so-defined model
selection procedure p̂ is conservative: The probability of selecting an incorrect
model, that is, the probability of the event {p̂ < p0(θ)}, converges to zero as the
sample size increases. In contrast, the probability of selecting a correct (but possi-
bly overparameterized) model, that is, the probability of the event {p̂ = p} for p

satisfying max{p0(θ),O} ≤ p ≤ P , converges to a positive limit; see, for example,
Proposition 5.4 and equation (5.7) in [11].

The post-model-selection estimator θ̃ can now be defined as follows: On the
event p̂ = p, θ̃ is given by the restricted least-squares estimator θ̃ (p), that is,

θ̃ =
P∑

p=O

θ̃ (p)1(p̂ = p),(7)

where 1(·) denotes the indicator function of the event shown in the argument.

2.1. The conditional finite-sample distribution of the post-model-selection esti-
mator. We now introduce the distribution function of a linear transformation of θ̃ ,
conditional on the event p̂ = p, and summarize some of its properties that will be
needed in the subsequent development. To this end, let A be a nonstochastic k ×P

matrix of rank k, 1 ≤ k ≤ P . For O ≤ p ≤ P , we consider the conditional c.d.f.

Gn,θ,σ (t |p) = Pn,θ,σ

(√
nA(θ̃ − θ) ≤ t |p̂ = p

)
(t ∈ Rk).(8)

Here Pn,θ,σ (·) denotes the probability measure corresponding to a sample of size n

from (5), and Pn,θ,σ (·|p̂ = p) denotes the associated conditional probability mea-
sure (the conditioning event always having positive probability; cf. (3.8)–(3.9)
in [11] and the attending discussion). Note that, on the event p̂ = p, the expression
A(θ̃ − θ) equals A(θ̃(p) − θ) in view of (7).

Depending on the choice of the matrix A, several important scenarios are cov-
ered by (8): The conditional c.d.f. of

√
n(θ̃ − θ) is obtained by setting A equal

to the P × P identity matrix IP . The conditional c.d.f. of the components of√
n(θ̃ − θ) that are not restricted to zero in the selected model Mp , p > 0, is

obtained by setting A to the p × P matrix (Ip : 0). In case O > 0, the conditional
c.d.f. of those components of

√
n(θ̃ − θ) which correspond to the parameter of
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interest χ in (1) can be studied by setting A to the O × P matrix (IO : 0), as we
then have Aθ = (θ1, . . . , θO)′ = χ . Finally, if A �= 0 is a 1 × P vector, we obtain
the conditional distribution of a linear predictor based on the post-model-selection
estimator. See the examples at the ends of Section 2.2.2 and Section 4.1 for more
discussion.

The c.d.f. Gn,θ,σ (t |p) and its properties have been analyzed in detail in
[12] and [10]. To be able to access these results, we need some further notation.
The expected value of the restricted least-squares estimator θ̃ (p) will be denoted
by ηn(p) and is given by the P × 1 vector

ηn(p) =
(

θ [p] + (X[p]′X[p])−1X[p]′X[¬p]θ [¬p]
(0, . . . ,0)′

)
,(9)

with the conventions that ηn(0) = (0, . . . ,0)′ ∈ RP and that ηn(P ) = θ . Further-
more, let �n,p(·) denote the c.d.f. of

√
nA(θ̃(p)−ηn(p)), that is, the c.d.f. of

√
nA

times the restricted least-squares estimator based on model Mp centered at its
mean. Hence, �n,p(·) is the c.d.f. of a k-variate Gaussian random vector with
mean zero and variance–covariance matrix σ 2A[p](X[p]′X[p]/n)−1A[p]′ in case
p > 0, and it is the c.d.f. of point-mass at zero in Rk in case p = 0. If p > 0 and
if the matrix A[p] has full row rank k, then �n,p(·) has a density with respect
to Lebesgue measure, and we shall denote this density by φn,p(·). We note that
ηn(p) depends on θ and that �n,p(·) depends on σ (in case p > 0), although these
dependencies are not shown explicitly in the notation.

For p > 0, we introduce

bn,p = C(p)′
n

(
A[p](X[p]′X[p]/n)−1A[p]′)−(10)

and

ζ 2
n,p = ξ2

n,p − C(p)′
n

(
A[p](X[p]′X[p]/n)−1A[p]′)−C(p)

n ,(11)

with C
(p)
n = A[p](X[p]′X[p]/n)−1ep , where ep denotes the pth standard basis

vector in Rp , and B− denotes a generalized inverse of the matrix B . (Observe
that ζ 2

n,p is invariant under the choice of the generalized inverse. The same is
not necessarily true for bn,p , but is true for bn,pz for all z in the column-space
of A[p]. Also note that (13) below depends on bn,p only through bn,pz with z

in the column-space of A[p].) We observe that the vector of covariances between
Aθ̃(p) and θ̃p(p) is precisely given by σ 2n−1C

(p)
n (and hence does not depend

on θ ). Furthermore, observe that Aθ̃(p) and θ̃p(p) are uncorrelated if and only
if ζ 2

n,p = ξ2
n,p if and only if bn,pz = 0 for all z in the column-space of A[p]; see

Lemma A.2 in [10].
Finally, for a univariate Gaussian random variable N with zero mean and

variance s2, s ≥ 0, we write �s(a, b) for P(|N − a| < b), a ∈ R ∪ {−∞,∞},
b ∈ R. Note that �s(·, ·) is symmetric around zero in its first argument, and that
�s(−∞, b) = �s(∞, b) = 0 holds. In case s = 0, N is to be interpreted as being
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equal to zero, hence, a 
→ �0(a, b) reduces to the indicator function of the interval
(−b, b).

We are now in a position to present the explicit formulae for Gn,θ,σ (t |p) derived
in [10]. In case p = O we have

Gn,θ,σ (t |O) = �n,O
(
t − √

nA
(
ηn(O) − θ

))
,(12)

that is, the c.d.f. of (a linear function of ) the post-model-selection estimator θ̃ con-
ditional on p̂ = O coincides with the c.d.f. of (this linear function of ) the restricted
least-squares estimator θ̃ (O). However, in case p > O we have

Gn,θ,σ (t |p) =
∫
z≤t−√

nA(ηn(p)−θ)
mn,p,θ,σ (z)�n,p(dz).(13)

In the above display, �n,p(dz) denotes integration with respect to the measure
induced by the normal c.d.f. �n,p(·) on Rk and the integrand mn,p,θ,σ (z) is given
by

mn,p,θ,σ (z) =
[∫ ∞

0

(
1 − �σζn,p

(√
nηn,p(p) + bn,pz, scpσξn,p

))

×
P∏

q=p+1

�σξn,q

(√
nηn,q(q), scqσξn,q

)
h(s) ds

]
(14)

× [
Pn,θ,σ (p̂ = p)

]−1
,

where ζn,p is the nonnegative root of ζ 2
n,p and the model selection probability

Pn,θ,σ (p̂ = p) is given by

Pn,θ,σ (p̂ = p) =
[∫ ∞

0

(
1 − �σξn,p

(√
nηn,p(p), scpσξn,p

))
(15)

×
P∏

q=p+1

�σξn,q

(√
nηn,q(q), scqσξn,q

)
h(s) ds

]
.

In the two displays above, h denotes the density of σ̂ /σ , that is, h is the density
of (n − P)−1/2 times the square-root of a chi-square distributed random variable
with n − P degrees of freedom. The conditional finite-sample distribution of the
post-model-selection estimator given in (13) is not normal; for example, it can be
bimodal; see Figure 2 in [11]. An exception where (13) is normal is the case where
C

(p)
n = 0, that is, when Aθ̃(p) and θ̃p(p) are uncorrelated; see [10], Section 3.3,

for more discussion. On the other extreme, namely, if Aθ̃(p) and θ̃p(p) are per-
fectly correlated in the sense that ζn,p = 0 holds, the function �σζn,p appearing
in (14) reduces to an indicator function. This is, for example, the case if A = IP or
if A = (Ip : 0).
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2.2. Estimators of the conditional finite-sample distribution. For the purpose
of inference after model selection, the conditional finite-sample distribution of the
post-model-selection-estimator is an object of particular interest. As we have seen,
it depends on unknown parameters in a complicated manner, and, hence, one will
have to be satisfied with estimators of this c.d.f. The object we would primarily
like to estimate is

Gn,θ,σ (t |p̂) =
P∑

p=O

Gn,θ,σ (t |p)1(p̂ = p),

that is, the conditional c.d.f. after the model selection procedure has returned the
model order p̂. As we shall see in Section 2.2.1, it is not difficult to construct con-
sistent estimators for Gn,θ,σ (t |p̂). We note that in considering consistency of an
estimator of Gn,θ,σ (t |p̂) one is evaluating the performance of such an estimator
in an unconditional manner, namely, over the entire sample space. One can also
take a conditional view in such an evaluation and ask if the given estimator of
Gn,θ,σ (t |p̂) is “consistent conditionally on the outcome p̂ = p,” at least for those
parameter values θ that lead to a positive limit of Pn,θ,σ (p̂ = p), which are pre-
cisely all θ ∈ Mp as shown in Proposition A.2 in Appendix A. Of course, this re-
duces then to the question of (conditional) consistency of estimators of Gn,θ,σ (t |p)

also discussed in Section 2.2.1 below.
Despite the consistency results in Section 2.2.1, we shall find in Section 2.2.2

that any estimator of Gn,θ,σ (t |p̂) typically performs unsatisfactorily, in that the
estimation error cannot become small uniformly over (subsets of ) the parameter
space even as sample size goes to infinity. In particular, no uniformly consistent
estimators exist, not even locally. These results rest on parallel results for the esti-
mation of Gn,θ,σ (t |p) with fixed p which are collected in Section 4.1 below.

2.2.1. Consistent estimators. We construct consistent estimators for Gn,θ,σ (t |
p̂) and Gn,θ,σ (t |p) (consistent over Mp in the latter case) by commencing from
the asymptotic distribution. The large-sample limit of Gn,θ,σ (t |p) for θ ∈ Mp is
given by G∞,θ,σ (t |p) = �∞,p(t) in case p = max{p0(θ),O}, and by

G∞,θ,σ (t |p) =
∫
z∈Rk

z≤t

1 − �σζ∞,p (b∞,pz, cpσξ∞,p)

1 − �σξ∞,p (0, cpσξ∞,p)
�∞,p(dz)(16)

in case p > max{p0(θ),O}. This follows from Proposition A.1 in Appendix A
with γ = 0 and σ (n) = σ . Here �∞,p is the c.d.f. of a k-variate Gaussian random
vector with mean zero and variance–covariance matrix σ 2A[p]Q[p :p]−1A[p]′,
0 < p ≤ P , where Q[p :p] represents the leading diagonal p × p submatrix
of Q. Also, let �∞,0(·) denote the c.d.f. of point-mass at zero in Rk . Note that
G∞,θ,σ (t |p), for p > O, depends on θ as it follows two different formulas de-
pending on whether θ ∈ Mp\Mp−1 or θ ∈ Mp−1. Let �̂n,p(·) denote the c.d.f. of
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a k-variate Gaussian random vector with mean zero and variance–covariance ma-
trix σ̂ 2A[p](X[p]′X[p]/n)−1A[p]′, 0 < p ≤ P ; we also adopt the convention that
�̂n,0(·) denotes the c.d.f. of point-mass at zero in Rk . [We use the same conven-
tion for �̂n,p(·) in case σ̂ = 0, which is a probability zero event.] For given p,
O ≤ p ≤ P, an estimator Ǧn(t |p) for Gn,θ,σ (t |p) is now defined as follows:
For p = O, we set Ǧn(t |O) = �̂n,O(t). For p > O, we first employ an auxil-
iary procedure that consistently decides between p0(θ) = p and p0(θ) < p, that
is, between θ ∈ Mp\Mp−1 and θ ∈ Mp−1, for every θ ∈ Mp . [E.g., the procedure
that decides for p0(θ) = p whenever |Tp| > sn,p and for p0(θ) < p otherwise,
with sn,p satisfying sn,p → ∞, sn,p = o(n1/2) for n → ∞ can be used. Alterna-
tively, a consistent model selection procedure such as BIC could be employed to
select between Mp−1 and Mp\Mp−1.] If the procedure decides for p0(θ) = p, we
set Ǧn(t |p) = �̂n,p(t); otherwise we set Ǧn(t |p) equal to the expression in (16)
with σ̂ , bn,p , ζn,p , ξn,p and �̂n,p(·) replacing σ , b∞,p , ζ∞,p , ξ∞,p and �∞,p(·),
respectively. A little reflection shows that Ǧn(t |p) is again a c.d.f. (This is trivial
if σ̂ = 0, and follows for σ̂ > 0 from the observation that then Ǧn(t |p) is either
a normal c.d.f. or coincides with the conditional c.d.f. G∗

n,θ,σ (t |p) given in (13)

of [10] with σ replaced by σ̂ .) This gives an estimator Ǧn(t |p) of Gn,θ,σ (t |p); as
an estimator of Gn,θ,σ (t |p̂), we shall use Ǧn(t |p̂) = ∑P

p=O Ǧn(t |p)1(p̂ = p). We
have the following consistency results.

PROPOSITION 2.1. Let p satisfy O ≤ p ≤ P . Then the estimator Ǧn(t |p) is
consistent (in the total variation distance) for Gn,θ,σ (t |p) and G∞,θ,σ (t |p) over
the subset Mp (and over 0 < σ < ∞). That is, for every δ > 0,

Pn,θ,σ

(‖Ǧn(·|p) − Gn,θ,σ (·|p)‖TV > δ
) n→∞−→ 0,(17)

Pn,θ,σ

(‖Ǧn(·|p) − G∞,θ,σ (·|p)‖TV > δ
) n→∞−→ 0(18)

for all θ ∈ Mp and all σ > 0. The results (17) and (18) also hold with
Pn,θ,σ (·|p̂ = p) replacing Pn,θ,σ (·).

COROLLARY 2.2. The estimator Ǧn(t |p̂) is consistent (in the total variation
distance) for Gn,θ,σ (t |p̂) over the entire parameter space, that is, for every δ > 0,

Pn,θ,σ

(‖Ǧn(·|p̂) − Gn,θ,σ (·|p̂)‖TV > δ
) n→∞−→ 0

for all θ ∈ RP and σ > 0.

While the estimators constructed above are consistent, they can be expected
to perform poorly in finite samples when the true θ belongs to Mp\Mp−1 but
is “close” to Mp−1, since the auxiliary decision procedure (although being con-
sistent) will then have difficulties making the correct decision in finite sam-
ples, and since Gn,θ,σ (·|p) typically does not converge uniformly with respect
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to θ ∈ Mp\Mp−1 “close” to Mp−1 (cf. [12, 15] and Remark 4.11 in [14]). In the
next section we show that this poor performance is not particular to the estima-
tors constructed above, but is a genuine feature of the estimation problem under
consideration.

2.2.2. Performance limits and an impossibility result. We now provide lower
bounds for the performance of estimators of the conditional c.d.f. Gn,θ,σ (t |p̂) of
the post-model-selection estimator Aθ̃ ; that is, we give lower bounds on the worst-
case probability that the estimation error exceeds a certain threshold. These lower
bounds are often quite large; furthermore, they remain lower bounds even if one
restricts attention only to certain subsets of the parameter space that shrink at the
rate n−1/2. In this sense the “impossibility” results are of a local nature. In partic-
ular, the lower bounds imply that no uniformly consistent estimator of the condi-
tional c.d.f. Gn,θ,σ (t |p̂) exists, not even locally. Similar results under a conditional
evaluation of the estimation error are given in Section 4.1 and form the theoretical
backbone for the results in the present section. We note already here that the lower
bounds obtained in Section 4.1 are as large as 1 or 1/2, depending on the particular
situation considered.

In the following, the asymptotic “correlation” between Aθ̃(p) and θ̃p(p) as

measured by C
(p)∞ = limn→∞ C

(p)
n will play an important rôle. Note that C

(p)∞
equals A[p]Q[p :p]−1ep , and hence, does not depend on the unknown parame-
ters θ or σ . In the important special case discussed in the Introduction [cf. (1)],
the matrix A equals the O × P matrix (IO : 0), and the condition C

(p)∞ �= 0 reduces
to the condition that the regressor corresponding to the pth column of (V :W) is
asymptotically correlated with at least one of the regressors corresponding to the
columns of V . See Example 1 below for more discussion.

In the result to follow we shall consider performance limits for estimators of
Gn,θ,σ (t |p̂) at a fixed value of the argument t . An estimator of Gn,θ,σ (t |p̂) is now
nothing else than a real-valued random variable �n = �n(Y,X). For mnemonic
reasons, we shall, however, use the symbol Ĝn(t |p̂) instead of �n to denote an
arbitrary estimator of Gn,θ,σ (t |p̂). This notation should not be taken as implying
that the estimator is obtained by evaluating an estimated c.d.f. at the argument t ,
or that it is a priori constrained to lie between zero and one. We shall use this
notational convention mutatis mutandis also in subsequent sections. Regarding the
nonuniformity phenomenon, we then have a dichotomy which is described in the
following two results.

THEOREM 2.3. Suppose that Aθ̃(q) and θ̃q(q) are asymptotically correlated,

that is, C
(q)∞ �= 0, for some q satisfying O < q ≤ P , and let q∗ denote the largest q

with this property. Then the following holds for each θ ∈ Mq∗−1, 0 < σ < ∞, and
each t ∈ Rk : There exist δ0 > 0 and 0 < ρ0 < ∞ such that any estimator Ĝn(t |p̂)
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of Gn,θ,σ (t |p̂) satisfying

Pn,θ,σ

(∣∣Ĝn(t |p̂) − Gn,θ,σ (t |p̂)
∣∣ > δ

) n→∞−→ 0(19)

for each δ > 0 (in particular, every estimator that is consistent) also satisfies

lim inf
n→∞ sup

ϑ∈Mq∗
‖ϑ−θ‖<ρ0/

√
n

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ > δ0

)
(20)

≥ 2
(
1 − �(cq∗)

) P∏
q=q∗+1

(
2�(cq) − 1

)
> 0.

The constants δ0 and ρ0 may be chosen in such a way that they depend only
on t,Q,A,σ and the critical value cq∗ . Moreover,

lim inf
n→∞ inf

Ĝn(t |p̂)

sup
ϑ∈Mq∗

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ > δ0

)
> 0(21)

and

sup
δ>0

lim inf
n→∞ inf

Ĝn(t |p̂)

sup
ϑ∈Mq∗

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ > δ

)
(22)

≥ (
1 − �(cq∗)

) P∏
q=q∗+1

(
2�(cq) − 1

)
> 0

hold, where the infima in (21) and (22) extend over all estimators Ĝn(t |p̂)

of Gn,θ,σ (t |p̂). [The lower bound in (20) is nothing else than limn→∞ Pn,θ,σ (p̂ =
q∗).]

PROPOSITION 2.4. Suppose that Aθ̃(q) and θ̃q(q) are asymptotically uncor-

related, that is, C
(q)∞ = 0, for all q satisfying O < q ≤ P . Then

sup
θ∈RP

sup
σ∈R

σ∗≤σ≤σ ∗

Pn,θ,σ

(‖�̂n,P (·) − Gn,θ,σ (·|p̂)‖TV > δ
) n→∞−→ 0(23)

holds for each δ > 0, and for any constants σ∗ and σ ∗ satisfying 0 < σ∗ ≤ σ ∗ < ∞.

Inspection of the proof of Proposition 2.4 shows that (23) continues to hold if
the estimator �̂n,P (·) is replaced by any of the estimators �̂n,p(·) for O ≤ p ≤ P .
We also note that in case O = 0 the assumption of Proposition 2.4 is never satisfied
(cf. Proposition 4.4 below), and hence, Theorem 2.3 always applies in that case.
Furthermore, the case to which Proposition 2.4 applies is quite exceptional. In
fact, under the assumptions of this proposition, the restricted estimators Aθ̃(q) for
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q ≥ O perform asymptotically as well as the unrestricted estimator Aθ̃(P ). This is
again a consequence of Proposition 4.4.

We conclude this section by illustrating the above results with some important
examples.

EXAMPLE 1 (The conditional distribution of χ̃ ). Consider the model given
in (1) with χ representing the parameter of interest. Using the general notation
of Section 2, this corresponds to the case Aθ = (θ1, . . . , θO)′ = χ with A repre-
senting the O × P matrix (IO : 0). Here k = O > 0. The c.d.f. Gn,θ,σ (·|p) then
represents the c.d.f. of

√
n(χ̃ − χ), conditional on the event p̂ = p. Assume first

that limn→∞ V ′W/n �= 0. Then C
(r)∞ �= 0 holds for some r > O. Consequently,

the “impossibility” results for the estimation of Gn,θ,σ (t |p̂) given in Theorem 2.3
always apply. Next assume that limn→∞ V ′W/n = 0. Then C

(r)∞ = 0 for every
r > O. In this case Proposition 2.4 applies and a uniformly consistent estima-
tor of Gn,θ,σ (t |p̂) indeed exists. Summarizing, we note that any estimator of
Gn,θ,σ (t |p̂) suffers from the nonuniformity phenomenon, except in the special
case where the columns of V and W are asymptotically orthogonal in the sense
that limn→∞ V ′W/n = 0. But this is precisely the situation where inclusion or ex-
clusion of the regressors in W has no effect on the (conditional) distribution of the
estimator χ̃ asymptotically; hence, it is not surprising that also the model selection
procedure does not have an effect on the estimation of the c.d.f. of the post-model-
selection estimator χ̃ . This observation may tempt one to enforce orthogonality
between the columns of V and W by either replacing the columns of V by their
residuals from the projection on the column space of W or vice versa. However,
this is not helpful for the following reasons: In the first case one then in fact avoids
model selection as all the restricted least-squares estimators for χ under considera-
tion (and hence, also the post-model selection estimator χ̃ ) in the reparameterized
model coincide with the unrestricted least-squares estimator. In the second case
the coefficients of the columns of V in the reparameterized model no longer co-
incide with the parameter of interest χ (and again are estimated by one and the
same estimator regardless of inclusion/exclusion of columns of the transformed
W -matrix).

EXAMPLE 2 (The conditional distribution of θ̃ ). For A equal to IP , the c.d.f.
Gn,θ,σ (t |p) is the conditional c.d.f. of

√
n(θ̃ − θ) given p̂ = p. Here, Aθ̃(q) re-

duces to θ̃ (q), and hence, Aθ̃(q) and θ̃q(q) are perfectly correlated for every
q > O. Consequently, the “impossibility” result for estimation of Gn,θ,σ (t |p̂)

given in Theorem 2.3 applies. We therefore see that estimation of the conditional
distribution of the post-model-selection estimator of the entire parameter vector is
always plagued by the nonuniformity phenomenon.

EXAMPLE 3 (The conditional distribution of a linear predictor). Suppose
A �= 0 is a 1 × P vector and one is interested in estimating the conditional c.d.f.
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Gn,θ,σ (t |p̂) of the linear predictor Aθ̃ . Then Theorem 2.3 and the discussion fol-
lowing Proposition 2.4 show that the nonuniformity phenomenon always arises in
this estimation problem in case O = 0. In case O > 0, the nonuniformity problem
is generically also present, except in the degenerate case where C

(q)∞ = 0, for all q

satisfying O < q ≤ P (in which case Proposition 4.4 shows that the least-squares
predictors from all models Mp , O ≤ p ≤ P , perform asymptotically equally well).

3. Extensions to other model selection procedures including AIC. In this
section we show that the “impossibility” result obtained in the previous section for
a “general-to-specific” model selection procedure carries over to a large class of
model selection procedures, including Akaike’s widely used AIC. Again, consider
the linear regression model (5) with the same assumptions on the regressors and the
errors as in Section 2. Let {0,1}P denote the set of all 0–1 sequences of length P .
For each r ∈{0,1}P , let Mr denote the set {θ ∈ RP : θi(1 − ri ) = 0 for 1 ≤ i ≤ P },
where ri represents the ith component of r. That is, Mr describes a linear submodel
with those parameters θi for which ri = 0 restricted to zero. Now let R be a user-
supplied subset of {0,1}P . We consider model selection procedures that select
from the set R, or, equivalently, from the set of models {Mr : r ∈ R}. Note that there
is now no assumption that the candidate models are nested (e.g., if R = {0,1}P , all
possible submodels are candidates for selection). Also, cases where the inclusion
of a subset of regressors is undisputed on a priori grounds are obviously covered
by this framework upon suitable choice of R.

We shall assume throughout this section that R contains rfull = (1, . . . ,1) and
also at least one element r∗ satisfying |r∗| = P − 1, where |r∗| represents the num-
ber of nonzero coordinates of r∗. Let r̂ be an arbitrary model selection procedure,
that is, r̂ = r̂(Y,X) is a random variable taking its values in R. We furthermore
assume throughout this section that the model selection procedure r̂ satisfies the
following mild condition: For every r∗ ∈ R with |r∗| = P − 1, there exists a posi-
tive finite constant c (possibly depending on r∗) such that, for every θ ∈ Mr∗ which
has exactly P − 1 nonzero coordinates,

lim
n→∞Pn,θ,σ

({r̂ = rfull}�{∣∣Tr∗
∣∣ ≥ c

})
(24)

= lim
n→∞Pn,θ,σ

({r̂ = r∗}�{∣∣Tr∗
∣∣ < c

}) = 0

holds for every 0 < σ < ∞. Here � denotes the symmetric difference operator
and Tr∗ represents the usual t-statistic for testing the hypothesis θi(r∗) = 0 in the
full model, where i(r∗) denotes the index of the unique coordinate of r∗ that equals
zero.

The above condition is quite natural for the following reason: For θ ∈ Mr∗ with
exactly P − 1 nonzero coordinates, every reasonable model selection procedure
will—with probability approaching unity—decide only between Mr∗ and Mrfull ; it
is then quite natural that this decision will be based (at least asymptotically) on
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the likelihood ratio between these two models, which in turn boils down to the
t-statistic. As will be shown below, condition (24) holds in particular for AIC-like
procedures.

Let A be a nonstochastic k × P matrix of full row rank k, 1 ≤ k ≤ P , as in
Section 2.1. For every r ∈ R, we then consider the conditional c.d.f.

Kn,θ,σ (t |r) = Pn,θ,σ

(√
nA(θ̄ − θ) ≤ t |r̂ = r

)
(t ∈ Rk)(25)

of a linear transformation of the post-model-selection estimator θ̄ obtained from
the model selection procedure r̂, that is,

θ̄ = ∑
r∈R

θ̃ (r)1(r̂ = r),

where the P × 1 vector θ̃ (r) represents the restricted least-squares estimator ob-
tained from model Mr, with the convention that θ̃ (r) = 0 ∈ RP in case r =
(0, . . . ,0). [In case Pn,θ,σ (r̂ = r) = 0, we define Kn,θ,σ (t |p) equal to, say, the
c.d.f. of point-mass at zero in Rk . This is done just for the sake of definiteness and
has no effect on the results given below. For most model selection procedures, the
probability Pn,θ,σ (r̂ = r) will be positive for any r ∈ R anyway.] We also introduce

Kn,θ,σ (t |r̂) = ∑
r∈R

Kn,θ,σ (t |r)1(r̂ = r) (t ∈ Rk).(26)

We then obtain the following result for estimation of Kn,θ,σ (t |r̂) at a fixed value
of the argument t which parallels the corresponding “impossibility” result in Sec-
tion 2.2.2.

THEOREM 3.1. Let r∗ ∈ R satisfy |r∗| = P − 1, and let i(r∗) denote the index
of the unique coordinate of r∗ that equals zero; furthermore, let c be the constant
in (24) corresponding to r∗. Suppose that Aθ̃(rfull) and θ̃i(r∗)(rfull) are asymptoti-
cally correlated, that is, AQ−1e

i(r∗)
�= 0, where e

i(r∗)
denotes the i(r∗)th standard

basis vector in RP . Then for every θ ∈ Mr∗ which has exactly P − 1 nonzero coor-
dinates, for each 0 < σ < ∞ and for each t ∈ Rk , the following holds: There exist
δ0 > 0 and 0 < ρ0 < ∞ such that any estimator K̂n(t |r̂) of Kn,θ,σ (t |r̂) satisfying

Pn,θ,σ

(∣∣K̂n(t |r̂) − Kn,θ,σ (t |r̂)∣∣ > δ
) n→∞−→ 0(27)

for each δ > 0 (in particular, every estimator that is consistent) also satisfies

lim inf
n→∞ sup

ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r̂) − Kn,ϑ,σ (t |r̂)∣∣ > δ0
)

(28)
≥ 2

(
1 − �(c)

)
> 0.
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The constants δ0 and ρ0 may be chosen in such a way that they depend only
on t,Q,A,σ and c. Moreover,

lim inf
n→∞ inf

K̂n(t |r̂)
sup

ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r̂) − Kn,ϑ,σ (t |r̂)∣∣ > δ0
)
> 0(29)

and

sup
δ>0

lim inf
n→∞ inf

K̂n(t |r̂)
sup

ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r̂) − Kn,ϑ,σ (t |r̂)∣∣ > δ
)

(30)
≥ 1 − �(c) > 0

hold, where the infima in (29) and (30) extend over all estimators K̂n(t |r̂)
of Kn,θ,σ (t |r̂). [The lower bound in (28) is nothing other than limn→∞ Pn,θ,σ (r̂ =
rfull).]

The basic condition (24) on the model selection procedure employed in the
above results will certainly hold for any hypothesis testing procedure that (i) as-
ymptotically selects only correct models, (ii) employs a likelihood ratio test (or an
asymptotically equivalent test) for testing Mrfull versus smaller models [at least
versus the models Mr∗ with r∗ as in condition (24)], and (iii) uses a critical value
for the likelihood ratio test that converges to a finite positive constant. In partic-
ular, this applies to usual thresholding procedures, as well as to a variant of the
“general-to-specific” procedure discussed in Section 2 where the error variance in
the construction of the test statistic for hypothesis H

p
0 is estimated from the fit-

ted model Mp rather than from the overall model. We next verify condition (24)
for AIC-like procedures. Let RSS(r) denote the residual sum of squares from the
regression employing model Mr and set

IC(r) = log(RSS(r)) + |r|ϒn/n,(31)

where ϒn ≥ 0 denotes a sequence of real numbers satisfying limn→∞ ϒn = ϒ

and ϒ is a positive real number. Of course, IC(r) = AIC(r) if ϒn = 2. The model
selection procedure r̂IC is then defined as a minimizer (more precisely, as a mea-
surable selection from the set of minimizers) of IC(r) over R. It is well known
that the probability that r̂IC selects an incorrect model converges to zero. Hence,
elementary calculations show that condition (24) is satisfied for c = ϒ1/2.

4. Further theoretical results.

4.1. “General-to-specific” model selection procedure. In this section we pro-
vide “impossibility” results for estimation of Gn,θ,σ (t |p) for given p which are
parallel to the “impossibility” result for estimation of Gn,θ,σ (t |p̂) given in Sec-
tion 2.2.2. The results presented below can be viewed as conditional counterparts
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to the results in that earlier section. Apart from being of interest on their own, the
results given below also form the essential building blocks for the “impossibility”
result in Section 2.2.2. In the next two theorems we shall consider estimation of
Gn,θ,σ (t |p) at a fixed value of the argument t .

THEOREM 4.1. Let p satisfy O < p ≤ P . Suppose that Aθ̃(p) and θ̃p(p)

are asymptotically correlated, that is, C
(p)∞ �= 0. Then the following holds for each

θ ∈ Mp−1, 0 < σ < ∞, and for each t ∈ Rk with the property that the set {z ∈
Rp :A[p]z ≤ t} has positive Lebesgue measure in Rp:

(a) There exist δ0 > 0 and 0 < ρ0 < ∞ such that any estimator Ĝn(t |p) for
Gn,θ,σ (t |p) satisfying

Pn,θ,σ

(∣∣Ĝn(t |p) − Gn,θ,σ (t |p)
∣∣ > δ

) n→∞−→ 0(32)

for each δ > 0 (in particular, every estimator that is consistent over Mp) also
satisfies

sup
ϑ∈Mp

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ0

) n→∞−→ 1.(33)

The constants δ0 and ρ0 may be chosen in such a way that they depend only
on t,Q,A,σ and the critical value cp . Moreover,

lim inf
n→∞ inf

Ĝn(t |p)

sup
ϑ∈Mp

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ0

)
> 0(34)

and

sup
δ>0

lim inf
n→∞ inf

Ĝn(t |p)

sup
ϑ∈Mp

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ

) ≥ 1
2(35)

hold, where the infima in (34) and (35) extend over all estimators Ĝn(t |p)

of Gn,θ,σ (t |p).
(b) The above continues to hold with Pn,·,σ (·|p̂ = p) replacing Pn,·,σ (·).

The condition on the set {z ∈ Rp :A[p]z ≤ t} in the above theorem is easily
seen to be equivalent to the condition that A[p]z < t holds for some z ∈ Rp . It is
trivially always satisfied whenever t > 0. The condition on {z ∈ Rp :A[p]z ≤ t}
is certainly satisfied for every t ∈ Rk if the matrix A[p] has full row rank k. We
shall repeatedly use the observation that the latter rank condition is always met if
p > 0 is the maximal order for which C

(p)∞ �= 0 holds. [This follows from Proposi-
tion 4.4(a), (c).]
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As a point of interest, we note that the nonuniformity phenomenon described
in Theorem 4.1 occurs within the model Mp , which contains only parameters for
which the selected model is correct; that is, in (33)–(35) the suprema with respect
to ϑ extend only over subsets of Mp . That is, it is typically even impossible to
construct an estimator of Gn,θ,σ (t |p) which performs satisfactorily for those local
perturbations ϑ of the true parameter θ ∈ Mp−1 for which the selected model is
correct.

Consider next the case where Theorem 4.1 does not apply, that is, the model
order p under consideration is such that either p = O, or p > O but C

(p)∞ = 0, or
p > O and C

(p)∞ �= 0 but the set {z ∈ Rp :A[p]z ≤ t} has Lebesgue measure zero.
In that case, it is indeed possible to construct an estimator of Gn,θ,σ (t |p) that is
uniformly consistent over θ ∈ Mp . However, this result provides little consolation,
because the uniform consistency over θ ∈ Mp typically breaks down already in
1/

√
n-“neighborhoods” of Mp , and results analogous to (33)–(35) can be estab-

lished over such neighborhoods, even if Theorem 4.1 does not apply. This is of
relevance as true parameter values in such 1/

√
n-“neighborhoods” result in a pos-

itive probability of selecting the model Mp; see Proposition A.2 in Appendix A.

THEOREM 4.2. Let p satisfy O ≤ p < P . Suppose that Aθ̃(q) and θ̃q(q) are

asymptotically correlated, that is, C
(q)∞ �= 0, for some q satisfying p < q ≤ P , and

let q∗ denote the largest q with this property. Then the following holds for each
θ ∈ Mp , 0 < σ < ∞, and for each t ∈ Rk :

(a) There exist δ0 > 0 and 0 < ρ0 < ∞ such that any estimator Ĝn(t |p) for
Gn,θ,σ (t |p) satisfying

Pn,θ,σ

(∣∣Ĝn(t |p) − Gn,θ,σ (t |p)
∣∣ > δ

) n→∞−→ 0(36)

for each δ > 0 (in particular, every estimator that is consistent over Mp) also
satisfies

sup
ϑ∈Mq∗

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ0

) n→∞−→ 1.(37)

The constants δ0 and ρ0 may be chosen in such a way that they depend only
on t,Q,A,σ and the critical value cp . Moreover,

lim inf
n→∞ inf

Ĝn(t |p)

sup
ϑ∈Mq∗

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ0

)
> 0(38)

and

sup
δ>0

lim inf
n→∞ inf

Ĝn(t |p)

sup
ϑ∈Mq∗

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣Ĝn(t |p) − Gn,ϑ,σ (t |p)
∣∣ > δ

) ≥ 1
2(39)
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hold, where the infima in (38) and (39) extend over all estimators Ĝn(t |p)

of Gn,θ,σ (t |p).
(b) The above continues to hold with Pn,·,σ (·|p̂ = p) replacing Pn,·,σ (·).

We stress here once more that the probability of selecting the model order p

is bounded away from zero uniformly over the ϑ-sets appearing in the suprema
in (37)–(39); see Proposition A.2 in Appendix A. Hence, the nonuniformity phe-
nomenon we observe is not an artifact resulting from conditioning on an unlikely
event. It is also worth noting that the lower bounds in the above results are as large
as 1 and 1/2, respectively.

Summarizing so far, we see that it is impossible to construct an estimator
of Gn,θ,σ (t |p) which performs reasonably well in a neighborhood of the true pa-
rameter θ (θ ∈ Mp), whenever the model order p considered has the property that
Aθ̃(q) and θ̃q(q) are asymptotically correlated for some q with max{p,O + 1} ≤
q ≤ P , as then either Theorem 4.1 or Theorem 4.2 applies. In particular, no
uniformly consistent estimator exists, not even locally. In the remaining case,
that is, when Aθ̃(q) and θ̃q(q) are asymptotically uncorrelated for each q in the
range max{p,O + 1} ≤ q ≤ P , it is indeed possible to construct an estimator of
Gn,θ,σ (t |p) which is uniformly consistent (even in the total variation distance)
over 1/

√
n-“neighborhoods” of Mp , as shown next.

PROPOSITION 4.3. Let p satisfy O ≤ p ≤ P . Suppose that Aθ̃(q) and
θ̃q(q) are asymptotically uncorrelated, that is, C

(q)∞ = 0 for each q = max{p,

O + 1}, . . . ,P . Then

sup
θ∈RP

‖θ [¬p]‖<ρ/
√

n

sup
σ∈R

σ∗≤σ≤σ ∗

Pn,θ,σ

(‖�̂n,p(·) − Gn,θ,σ (·|p)‖TV > δ
) n→∞−→ 0(40)

holds for each δ > 0, for each 0 < ρ < ∞, and for any constants σ∗ and σ ∗ sat-
isfying 0 < σ∗ ≤ σ ∗ < ∞. The result (40) also holds with Pn,θ,σ (·|p̂ = p) replac-
ing Pn,θ,σ (·). [In case p = P , the first supremum in (40) is to be interpreted as
extending over all θ ∈ RP . Furthermore, the case p = 0 is impossible in view of
Proposition 4.4 below.]

If the uncorrelatedness assumptions in the proposition even hold for all fi-
nite n, then the c.d.f. Gn,θ,σ (·|p) can be seen to reduce to the normal c.d.f.
�n,p(·) and, hence, can be estimated uniformly consistently over the larger space
MP × [σ∗, σ ∗].

Clearly, the case to which Proposition 4.3 applies is quite exceptional. In fact,
under the assumptions of this proposition, the restricted estimators Aθ̃(q) for
q ≥ max{p − 1,O} perform asymptotically as well as the unrestricted estima-
tor Aθ̃(P ). This is a consequence of the following result.



2574 H. LEEB AND B. M. PÖTSCHER

PROPOSITION 4.4. Let p satisfy 0 < p < P . Then the following statements
are equivalent:

(a) Aθ̃(q) and θ̃q(q) are asymptotically uncorrelated, that is, C
(q)∞ = (0, . . . ,

0)′ for each q = p + 1, . . . ,P .
(b) Aθ̃(p) is an asymptotically unbiased estimator of Aθ (θ ∈ RP ).
(c) The asymptotic variance–covariance matrices of

√
nAθ̃(p) and

√
nAθ̃(P )

are identical.

In case p = P , the above statements are always trivially satisfied. In case p = 0,
these statements are never satisfied.

It is easy to see that any of the above statements is equivalent to asymptotic
unbiasedness of Aθ̃(q) for all q = p, . . . ,P , and further, also is equivalent to all
the asymptotic variance–covariance matrices of

√
nAθ̃(q) for q = p, . . . ,P being

identical. Furthermore, a finite sample version of Proposition 4.4 can also easily
be derived from the discussion following (19) in [10]. In fact, it is shown in that
reference for any given sample size that uncorrelatedness of Aθ̃(q) and θ̃q(q) for
q = p+1, . . . ,P is equivalent to the estimators Aθ̃(p) and Aθ̃(P ) being identical,
which, in turn, is equivalent to all the estimators Aθ̃(q) being identical for q =
p, . . . ,P .

We conclude this section by illustrating the above results with some important
examples.

EXAMPLE 1 CONTINUED (The conditional distribution of χ̃ ). Assume first
that limn→∞ V ′W/n �= 0 is satisfied. Then, as already noted, C

(r)∞ �= 0 holds for
some r > O. Consequently, for any such r , the “impossibility” results in Theo-
rem 4.1 apply with p = r (observe that rank(A[p]) = O = k always holds for
p = r > O and, hence, the condition on t in that theorem is always satisfied).
Furthermore, the “impossibility” results in Theorem 4.2 apply for any p satis-
fying O ≤ p < r for some r as above. Next assume that limn→∞ V ′W/n = 0.
Then C

(r)∞ = 0 for every r > O. In this case Proposition 4.3 applies for every
O ≤ p ≤ P , and an estimator of Gn,θ,σ (t |p) that is uniformly consistent over
1/

√
n-“neighborhoods” of Mp indeed exists.

EXAMPLE 2 CONTINUED (The conditional distribution of θ̃ ). As already
noted, we have here A = IP and Aθ̃(q) and θ̃q(q) are perfectly correlated for every
q > O. Therefore, Theorem 4.1 applies for all t ∈ Rk if p = P , and Theorem 4.2
applies in case p < P . (In the latter case, Theorem 4.1 still applies for certain
t ∈ Rk .) Consequently, estimation of the conditional distribution Gn,θ,σ (t |p) of
the entire parameter vector is always plagued by the nonuniformity phenomenon.
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EXAMPLE 4 (The conditional distribution of the unrestricted components of θ̃ ).
Let r > 0 be a given model order. Conditional on the event p̂ = r , the last P − r

components of θ̃ are restricted to zero. If A is the r × P matrix (Ir : 0), then
the c.d.f. Gn,θ,σ (t |r) is the conditional c.d.f. of the first r (unrestricted) compo-
nents of

√
n(θ̃ − θ) given the event p̂ = r . In this case Aθ̃(r) and θ̃r (r) are per-

fectly correlated. If r > O, Theorem 4.1 immediately applies with p = r , because
rank(A[r]) = r entails that the condition on t in that theorem is always satisfied.
In case O ≤ r < P and limn→∞ X[r]′X[¬r]/n �= 0, Theorem 4.2 applies with
p = r , since, under the latter condition on the regressors, C

(q)∞ �= 0 holds for some
q > r . As a consequence, the nonuniformity phenomenon is always present when
estimating this conditional c.d.f., except in the very special case where r = O > 0
and limn→∞ X[r]′X[¬r]/n = 0 simultaneously hold; in this case Proposition 4.3
applies.

4.2. Other model selection procedures including AIC. We use the notation and
assumptions of Section 3 here. In particular, the model selection procedure r̂ is as-
sumed to satisfy condition (24). The proof of Theorem 3.1 relies on the subsequent
result, which is of interest also in itself. Similarly as in the preceding sections, es-
timation of Kn,θ,σ (t |r) at a fixed value of the argument t is considered.

THEOREM 4.5. Let r∗ ∈ R satisfy |r∗| = P − 1, and let i(r∗) denote the index
of the unique coordinate of r∗ that equals zero; furthermore, let c be the constant
in (24) corresponding to r∗. Suppose that Aθ̃(rfull) and θ̃i(r∗)(rfull) are asymptoti-
cally correlated, that is, AQ−1e

i(r∗)
�= 0, where e

i(r∗)
denotes the i(r∗)th standard

basis vector in RP . Then for every θ ∈ Mr∗ which has exactly P − 1 nonzero coor-
dinates, for each 0 < σ < ∞, and for each t ∈ Rk , the following holds with r = r∗
as well as with r = rfull:

(a) There exist δ0 > 0 and 0 < ρ0 < ∞ such that any estimator K̂n(t |r) for
Kn,θ,σ (t |r) satisfying

Pn,θ,σ

(∣∣K̂n(t |r) − Kn,θ,σ (t |r)∣∣ > δ
) n→∞−→ 0(41)

for each δ > 0 (in particular, every estimator that is consistent over Mr) also sat-
isfies

sup
ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r) − Kn,ϑ,σ (t |r)∣∣ > δ0
) n→∞−→ 1.(42)

The constants δ0 and ρ0 may be chosen in such a way that they depend only
on t,Q,A,σ and also on c in case r = rfull. Moreover,

lim inf
n→∞ inf

K̂n(t |r)
sup

ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r) − Kn,ϑ,σ (t |r)∣∣ > δ0
)
> 0(43)
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and

sup
δ>0

lim inf
n→∞ inf

K̂n(t |r)
sup

ϑ∈RP

‖ϑ−θ‖<ρ0/
√

n

Pn,ϑ,σ

(∣∣K̂n(t |r) − Kn,ϑ,σ (t |r)∣∣ > δ
) ≥ 1

2(44)

hold, where the infima in (43) and (44) extend over all estimators K̂n(t |r)
of Kn,θ,σ (t |r).

(b) The above continues to hold with Pn,·,σ (·|r̂ = r) replacing Pn,·,σ (·).

We note that the conditional probability in Theorem 4.5(b) is eventually well
defined; see (61)–(62) in Appendix E.

4.3. Remarks and extensions.

REMARK 4.6. Although not emphasized in the notation, all results in the pa-
per also hold if the elements of the design matrix X depend on sample size. Fur-
thermore, all results are expressed solely in terms of the distributions Pn,θ,σ (·)
of Y , and hence, they also apply if the elements of Y depend on sample size, in-
cluding the case where the random vectors Y are defined on different probability
spaces for different sample sizes.

REMARK 4.7. The model selection procedure introduced in Section 2 is based
on a sequence of tests which use critical values cp that do not depend on sample
size and satisfy 0 < cp < ∞ for O < p ≤ P . If these critical values are allowed
to depend on sample size such that they now satisfy cn,p → c∞,p as n → ∞ with
0 < c∞,p < ∞ for O < p ≤ P , the results in [12], as well as in [11, 10], continue
to hold; see Remark 6.2(i) in [12] and Remark 6.1(ii) in [10]. As a consequence,
the results in the present paper can also be extended to this case quite easily.

REMARK 4.8. The “impossibility” results given in Theorems 2.3, 3.1, 4.1, 4.2
and 4.5 (as well as the variants thereof discussed in the subsequent Remark 4.9)
also hold for the class of all randomized estimators (with P ∗

n,θ,σ replacing Pn,θ,σ

in those results, where P ∗
n,θ,σ denotes the distribution of the randomized sample).

This follows immediately from Lemma 3.6 and the attending discussion in [16].

REMARK 4.9. Results similar to the ones in Sections 2.2.2 and 4.1 can also be
obtained for estimation of the asymptotic c.d.f. G∞,θ,σ (t |p). Since these results
are of limited interest, we omit them. In particular, note that an “impossibility”
result for estimation of G∞,θ,σ (t |p) per se does not imply a corresponding “im-
possibility” result for estimation of Gn,θ,σ (t |p), since Gn,θ,σ (t |p) does in general
not converge uniformly to G∞,θ,σ (t |p) over the relevant subsets in the parame-
ter space; see Remark 4.11 in [14]. (Appropriate analogues apply to the model
selection procedures considered in Sections 3 and 4.2.)
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5. Conclusion. Despite the fact that we have shown that consistent estima-
tors for the conditional distribution of a post-model-selection estimator can be
constructed with relative ease, we have also demonstrated that no estimator of
this conditional distribution can have satisfactory performance (locally) uniformly
in the parameter space, even asymptotically. In particular, no (locally) uniformly
consistent estimator of the conditional distribution exists. Hence, the answer to the
question posed in the title has to be negative. The results in the present paper also
cover the case of linear functions (e.g., predictors) of the post-model-selection esti-
mator. Corresponding results for the unconditional distribution of the post-model-
selection estimator are presented in a companion paper [13].

The “impossibility” results are derived in the framework of a normal linear re-
gression model (and a fortiori these results continue to hold in any model which
includes the normal linear regression model as a special case). Furthermore, there
is no reason to believe that the situation will get any better in more complex sta-
tistical models that allow, for example, for nonlinearity or dependent data. In fact,
similar results can be obtained in general statistical models, for example, as long
as standard regularity conditions for maximum likelihood theory are satisfied.

The results in the present paper are derived for a large class of conservative
model selection procedures (i.e., procedures that select overparameterized mod-
els with positive probability asymptotically), including Akaike’s AIC and typical
“general-to-specific” hypothesis testing procedures. For consistent model selection
procedures—such as BIC or testing procedures with suitably diverging critical val-
ues cp (cf. [2])—the (pointwise) asymptotic distribution is always normal. (This
is elementary; cf. Lemma 1 in [18].) However, as discussed at length in [15], this
asymptotic normality result paints a misleading picture of the finite sample distri-
bution, which can be far from normal, the convergence of the finite-sample dis-
tribution to the asymptotic normal distribution not being uniform. “Impossibility”
results similar to the ones presented here can also be obtained for post-model-
selection estimators based on consistent model selection procedures. These will be
discussed in detail elsewhere. For a simple special case, such an “impossibility”
result is given in Section 2.3 of [16].

The “impossibility” of estimating the distribution of the post-model-selection
estimator does not per se preclude the possibility of conducting valid inference
after model selection, a topic that deserves further study. However, it certainly
makes this a more challenging task.

APPENDIX A: THE LARGE-SAMPLE LIMIT OF Gn,θ,σ (t |p)

For p satisfying 0 < p ≤ P , partition the matrix Q = limn→∞ X′X/n as

Q =
(

Q[p :p] Q[p :¬p]
Q[¬p :p] Q[¬p :¬p]

)
,
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where Q[p :p] is a p × p matrix. For p = 1, . . . ,P , define

ξ2∞,p = (Q[p :p]−1)p,p,

ζ 2∞,p = ξ2∞,p − C(p)′∞ (A[p]Q[p :p]−1A[p]′)−C(p)∞ ,(45)

b∞,p = C(p)′∞ (A[p]Q[p :p]−1A[p]′)−,

where C
(p)∞ = A[p]Q[p :p]−1ep , with ep denoting the pth standard basis vec-

tor in Rp; furthermore, take ζ∞,p and ξ∞,p as the nonnegative square roots of
ζ 2∞,p and ξ2∞,p , respectively. As the notation suggests, �∞,p(t) is the large-sample

limit of �n,p(t), both defined in Section 2. Moreover, C
(p)∞ , ξ2∞,p and ζ 2∞,p are the

limits of C
(p)
n , ξ2

n,p and ζ 2
n,p , respectively, and bn,pz converges to b∞,pz for each z

in the column-space of A[p]. See Lemma A.2 in [10].
The next result is taken from Corollary 5.4 in [10] and describes the large-

sample limit of the conditional c.d.f. under local alternatives to θ , under the
assumption that the selected model Mp is a correct model for θ . Recall that
the total variation distance between two c.d.f.s G and G∗ on Rk is defined as
‖G−G∗‖TV = supE |G(E)−G∗(E)|, where the supremum is taken over all Borel
sets E. Clearly, the relation |G(t) − G∗(t)| ≤ ‖G − G∗‖TV holds for all t ∈ Rk .
Thus, if G and G∗ are close with respect to the total variation distance, then G(t)

is close to G∗(t), uniformly in t .

PROPOSITION A.1. Let p satisfy O ≤ p ≤ P . Suppose θ ∈ RP satisfies
θ ∈ Mp , that is, p0(θ) ≤ p holds. Moreover, let γ ∈ RP and let σ (n) be a sequence
of positive real numbers which converges to a ( finite) limit σ > 0 as n → ∞. Then
the conditional c.d.f. Gn,θ+γ /

√
n,σ (n)(t |p) converges to a limit G∞,θ,σ,γ (t |p) in

total variation, that is,

‖Gn,θ+γ /
√

n,σ (n)(·|p) − G∞,θ,σ,γ (·|p)‖TV
n→∞−→ 0.(46)

The large-sample limit c.d.f. G∞,θ,σ,γ (t |p) is given as follows: In case p =
max{p0(θ),O},

G∞,θ,σ,γ (t |p) = �∞,p

(
t − β(p)).(47)

Here,

β(p) = A

(
Q[p :p]−1Q[p :¬p]γ [¬p]

−γ [¬p]
)

(0 ≤ p ≤ P),

with the convention that β(p) = −Aγ if p = 0 and that β(p) = 0 ∈ R
k if p = P . In

case p > max{p0(θ),O},

G∞,θ,σ,γ (t |p) =
∫
z≤t−β(p)

1 − �σζ∞,p (νp + b∞,pz, cpσξ∞,p)

1 − �σξ∞,p (νp, cpσξ∞,p)
�∞,p(dz),(48)
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where νp = γp +(Q[p :p]−1Q[p : ¬p]γ [¬p])p . [Note that β(p) = limn→∞
√

n×
A(ηn(p)−θ −γ /

√
n ) because θ ∈ Mp , and that νp = limn→∞

√
nηn,p(p) in case

θ ∈ Mp−1, that is, p > p0(θ). Here ηn(p) is defined as in (9), but with θ + γ /
√

n

replacing θ .]
If p > 0 and if the matrix A[p] has full row rank k, then the Lebesgue density

φ∞,p(·) of �∞,p(·) exists; the density of (47) is then given by φ∞,p(t − β(p)),
while the density of (48) is given by the integrand in (48) times φ∞,p(z), evaluated
at z = t − β(p).

While the limiting c.d.f. in (47) is Gaussian, the limiting c.d.f. in (48) typically
is not, an exception being the case where C

(p)∞ = 0, that is, when Aθ̃(p) and θ̃p(p)

are asymptotically uncorrelated. In that case, the expressions in (47) and (48) co-
incide. Also note that the c.d.f. G∞,θ,σ,γ (t |p) has been defined above only for
θ ∈ Mp (and O ≤ p ≤ P ). If γ = 0, we write G∞,θ,σ (t |p) as shorthand for
G∞,θ,σ,0(t |p) in the following.

Proposition A.1 is restricted to sequences of parameters θ + γ /
√

n with
p0(θ) ≤ p. The case where the selected model Mp is an incorrect model for θ ,
that is, where we have p0(θ) > p, is analyzed in [10], Proposition 5.1; see also the
discussion following Corollary 5.4 in that reference. For the results in the present
paper, however, we shall only need to rely on the situation covered by Proposi-
tion A.1. The reason essentially is that only over 1/

√
n-“neighborhoods” of Mp

is the probability of actually selecting the model Mp bounded away from zero.
In contrast, for every fixed θ /∈ Mp , the probability of selecting the model Mp

converges to zero as n → ∞.

PROPOSITION A.2. Let p satisfy O ≤ p ≤ P , and let rn be a sequence of
positive real numbers.

(a) If rn = O(1/
√

n ) as n → ∞, then

lim inf
n→∞ inf

ϑ∈RP

‖ϑ[¬p]‖<rn

Pn,ϑ,σ (p̂ = p) > 0(49)

holds for every σ , 0 < σ < ∞. (The infimum in the above display is to be inter-
preted as extending over ‖ϑ‖ < rn if p = 0 and over all of RP if p = P .) In par-
ticular, it follows that lim infn→∞ infϑ∈RP ,‖ϑ−θ‖<rn

Pn,ϑ,σ (p̂ = p) > 0 for each
θ ∈ Mp and 0 < σ < ∞.

(b) Suppose p < P holds. If
√

nrn → ∞ as n → ∞, then

lim
n→∞ inf

ϑ∈RP

‖ϑ−θ‖<rn

Pn,ϑ,σ (p̂ = p) = 0(50)

for each θ ∈ Mp and 0 < σ < ∞.
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(c) If an infimum (resp. supremum) over σ ∈ [σ∗, σ ∗], 0 < σ∗ ≤ σ ∗ < ∞, is
inserted in (49) [resp. (50)] immediately after the lim inf (resp. lim) operator, the
result continues to hold.

PROOF. Let ϑ(n) be an arbitrary sequence of parameters in RP . Proposi-
tion 5.4 in Leeb [11] together with Remark 5.5 in that reference show that any
accumulation point of Pn,ϑ(n),σ (p̂ = p) is of the form

(
1 − �σξ∞,p (υp, cpσξ∞,p)

) P∏
q=p+1

�σξ∞,q (υq, cqσξ∞,q)(51)

in case p > O, and of the form

P∏
q=p+1

�σξ∞,q (υq, cqσξ∞,q)(52)

in case p = O. The quantities υq , q = p, . . . ,P , in these displays are accumu-

lation points of υ
(n)
q = √

nϑ
(n)
q + √

n((X[q]′X[q])−1X[q]′X[¬q]ϑ(n)[¬q])q in

R ∪ {−∞,∞}. (In case q = P this expression is to be interpreted as
√

nϑ
(n)
P by

our conventions.) Observe that the expression in (51) is positive if and only if
|υq | < ∞ holds for each q = p + 1, . . . ,P . The same is true for (52). [In case
p = P , the expression in (51) is always positive.]

To prove part (a), it suffices to show that any accumulation point of Pn,ϑ(n),σ(p̂ =
p) is positive whenever ϑ(n) is a sequence satisfying ‖ϑ(n)[¬p]‖ < rn. In case
p = P it is easy to see that (51) reduces to 1 − �σξ∞,P

(υP , cP σξ∞,P ), which is
bounded from below by the positive constant 1 − �σξ∞,P

(0, cP σξ∞,P ). In case

p < P note that
√

nϑ(n)[¬p] is a bounded sequence and, hence, υ
(n)
q is bounded

for each q = p + 1, . . . ,P . It follows that |υq | < ∞ holds for q = p + 1, . . . ,P .
This completes the proof of part (a).

To prove part (b), let ϑ(n) be given by ϑ(n)[P − 1] = θ [P − 1] and ϑ
(n)
P = rn/2.

Clearly, then ‖ϑ(n) − θ‖ < rn is satisfied. Moreover,
√

nϑ
(n)
P = √

nrn/2 converges
to υP = ∞. It follows that limn→∞ Pn,ϑ(n),σ (p̂ = p) = 0 whenever p < P .

Part (c) is proved analogously. �

APPENDIX B: PROOFS FOR SECTION 2.2.1

In the proofs below it will be convenient to show the dependence of �n,p(t)

and �∞,p(t) on σ in the notation. Thus, in the following we shall write
�n,p,σ (t) and �∞,p,σ (t) for the c.d.f. of a mean zero k-variate Gaussian
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random vector with variance–covariance matrix σ 2A[p](X[p]′X[p]/n)−1A[p]′
and σ 2A[p]Q[p :p]−1A[p]′, respectively. For convenience, let �n,0,σ (t) and
�∞,0,σ (t) denote c.d.f.s of a point-mass at zero in Rk . The following lemma is
elementary to prove, if we observe that in case rank(A[p]) = k the convergence
bn,p → b∞,p holds, since the generalized inverses in the definitions of these quan-
tities then reduce to the usual inverse.

LEMMA B.1. Suppose p > O and that rank(A[p]) = k. Define Sn,p(z, σ ) =
1−�σζn,p (bn,pz,cpσξn,p)

1−�σξn,p (0,cpσξn,p)
and S∞,p(z, σ ) = 1−�σζ∞,p (b∞,pz,cpσξ∞,p)

1−�σξ∞,p (0,cpσξ∞,p)
for z ∈ Rk , 0 <

σ < ∞. Let σ (n) converge to σ , 0 < σ < ∞. Then Sn,p(z, σ (n)) converges to
S∞,p(z, σ ) for every z ∈ Rk if ζ∞,p �= 0, and for every z ∈ Rk except possibly
for z satisfying |b∞,pz| = cpσξ∞,p if ζ∞,p = 0. (The exceptional set has Lebesgue
measure zero since cpσξ∞,p > 0.)

LEMMA B.2. Let (�,A) and (�,B) be measurable spaces and let � :� → �

be a measurable function. Suppose µn and µ are probability measures on (�,A)

satisfying ‖µn − µ‖TV → 0. Let ρn be the probability measure induced by µn and
� , that is, ρn(B) = µn(�

−1(B)) for B ∈ B. Then ρn converges to a probability
measure ρ with respect to the total variation distance and ρ is the measure induced
by µ and � .

Lemma B.2 follows immediately from ‖ρn −ρ‖TV ≤ ‖µn −µ‖TV. The follow-
ing observation is useful in the proof of Proposition 2.1 below: Since the proposi-
tion depends on Y only through its distribution (cf. Remark 4.6), we may assume
without loss of generality that the errors in (5) are given by ut = σεt , t ∈ N, with
i.i.d. εt that are standard normal. In particular, all random variables involved are
then defined on the same probability space.

PROOF OF PROPOSITION 2.1. We consider first the case p > O and assume
for the moment that the matrix A[p] has full row rank k. Then �n,p,σ (·) and
�∞,p,σ (·) possess densities φn,p,σ (·) and φ∞,p,σ (·), respectively, with respect to
Lebesgue measure on Rk . Since σ̂ → σ in Pn,θ,σ -probability, each subsequence
contains a further subsequence along which σ̂ → σ almost surely (with respect to
the probability measure on the common probability space supporting all random
variables involved), and we restrict ourselves to this further subsequence for the
moment. In particular, we write {σ̂ → σ } for the event that σ̂ converges to σ along
the subsequence under consideration; clearly, the event {σ̂ → σ } has probability
one. Also note that we can assume without loss of generality that σ̂ > 0 holds
on this event (at least from some data-dependent n onward), since σ > 0 holds.
Lemma B.1 now shows that on the event {σ̂ → σ } the function Sn,p(z, σ̂ )φn,p,σ̂ (z)

converges to S∞,p(z, σ )φ∞,p,σ (z) for every z except for a set of Lebesgue mea-
sure zero. Observe that both functions are probability densities with respect to
Lebesgue measure on Rk ; see the discussion prior to Proposition 2.1. In view of
Scheffé’s lemma, they hence converge in absolute mean. By the same argument,
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φn,p,σ̂ (·) also converges to φ∞,p,σ (·) in absolute mean. Note that the absolute
mean convergence of the densities translates into convergence in total variation for
the corresponding c.d.f.s. Now Ǧn(t |p) = �n,p,σ̂ (t) in case the auxiliary proce-

dure decides for p0(θ) = p, and Ǧn(t |p) = ∫
z∈Rk,z≤t Sn,p(z, σ̂ )φn,p,σ̂ (z) dz oth-

erwise. Since the auxiliary procedure decides consistently between p0(θ) = p and
p0(θ) < p for every θ ∈ Mp , it follows that (18) holds along the subsequence un-
der consideration in case p > O and if A[p] has rank k. Of course, this already
proves (18) in case p > O and A[p] has rank k.

In case p > O but where the matrix A[p] does not have full row rank k,
let GI

n,θ,σ (t |p), ǦI
n(t |p) and GI∞,θ,σ (t |p) be defined in exactly the same way

as Gn,θ,σ (t |p), Ǧn(t |p) and G∞,θ,σ (t |p), respectively, except that the p × P

matrix (Ip : 0) replaces A. Note that then Ip replaces A[p] (and that the value
of k changes to p). Since the matrix Ip has full row rank p, the preceding para-
graph shows that (18) holds with ǦI

n(t |p) and GI∞,θ,σ (t |p) replacing Ǧn(t |p)

and G∞,θ,σ (t |p), respectively. But Ǧn(t |p) and G∞,θ,σ (t |p), respectively, are the
c.d.f.s of the image measures of ǦI

n(t |p) and GI∞,θ,σ (t |p) induced by the linear

mapping x 
→ A[p]x, x ∈ Rp . [This is obvious for Ǧn(t |p) because of its inter-
pretation as the conditional c.d.f. G∗

n,θ,σ̂
(t |p) in (13) of [10] if σ̂ > 0; it is trivial

if σ̂ = 0. Observe further that Gn,θ,σ (t |p) is clearly the c.d.f. of the induced mea-
sure obtained from the c.d.f. GI

n,θ,σ (t |p). Since GI
n,θ,σ (t |p) → GI∞,θ,σ (t |p) and

Gn,θ,σ (t |p) → G∞,θ,σ (t |p) with respect to total variation distance for θ ∈ Mp by
Proposition A.1, an application of Lemma B.2 shows that G∞,θ,σ (t |p) is indeed
the c.d.f. of the induced measure obtained from the c.d.f. GI∞,θ,σ (t |p).] Therefore,

the total variation distance of Ǧn(t |p) and G∞,θ,σ (t |p) is bounded from above by
that of ǦI

n(t |p) and GI∞,θ,σ (t |p). This proves (18) also in this case.
In the case p = O > 0, note that G∞,θ,σ (t |p) is given by (47) for θ ∈ Mp . The

result in (18) then follows in a similar way, observing that in case A[p] has full
row rank k (again after passing to appropriate subsequences), φn,p,σ̂ (·) converges
to φ∞,p,σ (·) in absolute mean on the event {σ̂ → σ } as defined above. The case
where p = O = 0 is trivial, because both c.d.f.s in (18) coincide and are equal to
the c.d.f. of point-mass at zero in Rk . This completes the proof of (18).

The validity of (17) now follows for θ ∈ Mp since G∞,θ,σ (t |p) is then the limit
of Gn,θ,σ (t |p) with respect to the total variation distance; see Proposition A.1.
Finally, the claim regarding “conditional consistency” follows from (17) and (18)
in view of Proposition A.2(a). �

PROOF OF COROLLARY 2.2. Observe that

Pn,θ,σ

(‖Ǧn(·|p̂) − Gn,θ,σ (·|p̂)‖TV > δ
)

=
P∑

p=O

Pn,θ,σ

(‖Ǧn(·|p) − Gn,θ,σ (·|p)‖TV > δ, p̂ = p
)
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≤ ∑
O≤p<p0(θ)

Pn,θ,σ (p̂ = p)

+ ∑
p≥p0(θ)

Pn,θ,σ

(‖Ǧn(·|p) − Gn,θ,σ (·|p)‖TV > δ
)
.

Each term in the first sum on the far right-hand side of the above display now
obviously converges to zero (cf. [11], Corollary 5.6 and (5.7)), whereas every term
in the second sum converges to zero by Proposition 2.1. �

APPENDIX C: PROOFS FOR SECTIONS 2.2.2 AND 4.1

Since the results in Section 2.2.2 rely on those in Section 4.1, the latter ones
are proved first. Some of the proofs rely on auxiliary results collected in Appen-
dix D. We start with some preparatory remarks. The total variation distance be-
tween Pn,θ,σ and Pn,ϑ,σ satisfies ‖Pn,θ,σ − Pn,ϑ,σ‖TV ≤ 2�(‖θ − ϑ‖λ1/2

max(X
′X)/

2σ) − 1; furthermore, if θ(n) and ϑ(n) satisfy ‖θ(n) − ϑ(n)‖ = O(n−1/2), the se-
quence Pn,ϑ(n),σ is contiguous with respect to the sequence Pn,θ(n),σ . This follows
exactly in the same way as Lemma A.1 in [16]. We also need the following lemma.

LEMMA C.1. Let p satisfy O < p ≤ P . Suppose θ ∈ Mp−1, 0 < σ < ∞ and
0 < ρ < ∞. Then

lim inf
n→∞ inf

ϑ∈Mp

‖ϑ−θ‖<ρ/
√

n

Pn,ϑ,σ (p̂ = p)

= (
1 − �σξ∞,p (0, cpσξ∞,p)

) P∏
q=p+1

�σξ∞,q (0, cqσξ∞,q)

(53)

= 2
(
1 − �(cp)

) P∏
q=p+1

(
2�(cq) − 1

)
= lim

n→∞Pn,θ,σ (p̂ = p) > 0.

PROOF. We proceed similarly as in the proof of Proposition A.2, observing
that now the quantities υq , q > p, are all equal to zero since ϑ(n) ∈ Mp . Since
(1 − �σξ∞,p (υp, cpσξ∞,p)) is minimal for υp = 0, we see that the right-hand
side of (53), which obviously is positive, is a lower bound for the left-hand side.
Using (5.7) in [11] and observing that θ ∈ Mp−1 completes the proof. �

PROOF OF THEOREM 4.1. We first prove (33) and (34). For this purpose, we
make use of Lemma 3.1 in [16] with α = θ ∈ Mp−1, B = Mp , Bn = {ϑ ∈ Mp :
‖ϑ − θ‖ < ρ0n

−1/2}, β = ϑ, ϕn(β) = Gn,ϑ,σ (t |p) and ϕ̂n = Ĝn(t |p), where ρ0,
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0 < ρ0 < ∞, will be chosen shortly (and σ is held fixed). The contiguity assump-
tion of this lemma is satisfied in view of the preparatory remark above. It hence
only remains to show that there exists a value of ρ0, 0 < ρ0 < ∞, such that δ∗ in
Lemma 3.1 of [16] [which represents the limit inferior of the oscillation of ϕn(·)
over Bn] is positive. Applying Lemma 3.5(a) of [16] with ζn = ρ0n

−1/2 and the
set G0 equal to the set G, it remains, in light of Proposition A.1, to show that
there exists a ρ0, 0 < ρ0 < ∞, such that G∞,θ,σ,γ (t |p) as a function of γ is non-
constant on the set {γ ∈ Mp :‖γ ‖ < ρ0}. In view of Lemma 3.1 of [16], the cor-
responding δ0 can then be chosen as any positive number less than one-half of
the oscillation of G∞,θ,σ,γ (t |p) over this set. That such a ρ0 indeed exists follows
from Lemma D.1 in Appendix D. Furthermore, observe that G∞,θ,σ,·(t |p) is given
by (48) for θ ∈ Mp−1 and, hence, does not depend on θ , but only on t,Q,A,σ

and cp . As a consequence, ρ0 and δ0 can be chosen such that they also depend
only on these quantities. This completes the proof of (33) and (34).

To prove (35), we use Corollary 3.4 in [16] with the same identification of no-
tation as above, with ζn = ρ0n

−1/2, and with V = Mp (viewed as a vector space
isomorphic to Rp). The asymptotic uniform equicontinuity condition in that corol-
lary is then satisfied in view of ‖Pn,θ,σ − Pn,ϑ,σ‖TV ≤ 2�(‖θ − ϑ‖λ1/2

max(X
′X)/

2σ) − 1. Applying Corollary 3.4 in [16] then establishes (35). This completes the
proof of part (a).

Part (b) is proved exactly as part (a), making additional use of Corollary C.2
and Remark C.1 in [16]. The events En appearing in this corollary are given here
by {p̂ = p}. Clearly, Pn,ϑ,σ (p̂ = p) is always positive. The constant M in Corol-
lary C.2 of [16] is now given by the right-hand side of (53) above. �

PROOF OF THEOREM 4.2. We again use results from [16], this time with
the identification α = θ ∈ Mp , B = Mq∗ , Bn = {ϑ ∈ Mq∗ :‖ϑ − θ‖ < ρ0n

−1/2},
β = ϑ , ϕn(β) = Gn,ϑ,σ (t |p), ϕ̂n = Ĝn(t |p), V = Mq∗ and ζn = ρ0n

−1/2 (again
σ is held fixed). The proof of part (a) is then similar to the proof of part (a) of
Theorem 4.1, except for using Lemma D.2 instead of Lemma D.1 and except for
the fact that the argument that ρ0 and δ0 only depend on t,Q,A,σ and cp is now
slightly more complex, since G∞,θ,σ,·(t |p) for θ ∈ Mp depends on θ . However,
observe that G∞,θ,σ,·(t |p) as a function of θ ∈ Mp can follow only two different
formulae which themselves do not depend on θ ; see (47) and (48).

Part (b) is proved exactly as the corresponding part of Theorem 4.1, except
that positivity of the constant M = lim infn→∞ infϑ∈Mq∗ ,‖ϑ−θ‖<ρ/

√
n Pn,ϑ,σ (p̂ =

p) follows now since M is bounded from below by the expression in part (a) of
Proposition A.2. �

PROOF OF PROPOSITION 4.3. See [14]. �

PROOF OF PROPOSITION 4.4. That part (a) implies part (b) follows from (20)
in [10], observing that C

(q)
n → C

(q)∞ and that ηn,q(q) converges to a finite limit. The
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reverse implication follows by passing to the limit in (20) of [10] and observing
that, by suitable choice of θ ∈ RP , the limit of (ηn,p+1(p + 1), . . . , ηn,P (P ))′ can
take on the value of every standard basis vector in RP−p . To prove the equiva-
lence of parts (a) and (c), we use Proposition 3.1 in [10] and equation (19) in that
paper to obtain

∑q
r=1 σ 2ξ−2∞,rC

(r)∞ C
(r)′∞ as the formula for the asymptotic variance–

covariance matrix of
√

nAθ̃(q). Since the terms in this sum are nonnegative def-
inite, the equivalence follows. The final claims regarding the cases p = P and
p = 0 are either obvious or follow immediately from the representation of the as-
ymptotic variance–covariance matrix of

√
nAθ̃(q) just given. �

PROOF OF THEOREM 2.3. In view of the definition of Gn,ϑ,σ (t |p̂), we have

∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ =

P∑
p=O

∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p)
∣∣1(p̂ = p)

≥ ∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |q∗)
∣∣1(p̂ = q∗).

Hence, for every ϑ ∈ RP and every δ > 0,

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ > δ

)
≥ Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |q∗)
∣∣ > δ|p̂ = q∗)

Pn,ϑ,σ (p̂ = q∗),

observing that the conditional probabilities are well defined since Pn,ϑ,σ (p̂ = q∗)
is always positive (cf. [11], Section 3.2). This implies

lim inf
n→∞ sup

ϑ∈Mq∗
‖ϑ−θ‖<ρ0/

√
n

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |p̂)
∣∣ > δ

)

≥
[
lim inf
n→∞ sup

ϑ∈Mq∗
‖ϑ−θ‖<ρ0/

√
n

Pn,ϑ,σ

(∣∣Ĝn(t |p̂) − Gn,ϑ,σ (t |q∗)
∣∣ > δ|p̂ = q∗)

(54)

× lim inf
n→∞ inf

ϑ∈Mq∗
‖ϑ−θ‖<ρ0/

√
n

Pn,ϑ,σ (p̂ = q∗)
]
.

Lemma C.1 above shows that

lim inf
n→∞ inf

ϑ∈Mq∗
‖ϑ−θ‖<ρ0/

√
n

Pn,ϑ,σ (p̂ = q∗)

= 2
(
1 − �(cq∗)

) P∏
q=q∗+1

(
2�(cq) − 1

) = lim
n→∞Pn,θ,σ (p̂ = q∗),
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which obviously is positive. Suppose now that Ĝn(t |p̂) satisfies (19). Then it also
satisfies Pn,θ,σ (|Ĝn(t |p̂) − Gn,θ,σ (t |q∗)| > δ|p̂ = q∗) n→∞−→ 0, since the proba-
bility Pn,θ,σ (p̂ = q∗) of the conditioning event is bounded away from zero as
just shown. Since q∗ > O is the maximal model order q with the property that
C

(q)∞ �= 0, the condition on t in Theorem 4.1 is satisfied for every t ∈ Rk . Hence,
we may apply Theorem 4.1(b) with p = q∗ to the first term in the product on
the right-hand side of (54) since Ĝn(t |p̂) can certainly also be viewed as an esti-
mator of Gn,θ,σ (t |q∗). This establishes (20) with the same δ0 and ρ0 as in The-
orem 4.1(b). Furthermore, note that (54) remains valid if an infimum extending
over all estimators is inserted between the limit inferior and the supremum on both
sides of (54). Again applying Theorem 4.1(b) with p = q∗ completes the proof
of (21)–(22). �

PROOF OF PROPOSITION 2.4. See [14]. �

APPENDIX D: AUXILIARY LEMMATA FOR APPENDIX C

LEMMA D.1. Let p satisfy O < p ≤ P , and assume that Aθ̃(p) and θ̃p(p) are

asymptotically correlated, that is, C
(p)∞ �= 0. Moreover, let θ ∈ Mp−1, let σ satisfy

0 < σ < ∞ and let t ∈ Rk be such that the set {z ∈ Rp :A[p]z ≤ t} has positive
Lebesgue measure in Rp (which is satisfied for all t ∈ Rk if, e.g., rank(A[p]) = k).
Then G∞,θ,σ,γ (t |p) is nonconstant as a function of γ ∈ Mp .

LEMMA D.2. Let p satisfy O ≤ p < P , assume that Aθ̃(q) and θ̃q(q) are

asymptotically correlated, that is, C
(q)∞ �= 0, for some q satisfying p < q ≤ P , and

let q∗ denote the largest q with this property. Moreover, let t ∈ Rk , let θ ∈ Mp

and let σ satisfy 0 < σ < ∞. Then G∞,θ,σ,γ (t |p) is nonconstant as a function of
γ ∈ Mq∗ .

Before we prove the above lemmata, we provide a representation of G∞,θ,σ,γ (t |
p) for p > 0 that will be useful in the following. For 0 < p ≤ P , define Zp =∑p

r=1 ξ−2∞,rC
(r)∞ Wr , where C

(r)∞ has been defined after (45) and the random vari-
ables Wr are independent and normally distributed with mean zero and variances
σ 2ξ2∞,r . For convenience, let Z0 denote the zero vector in Rk . Observe that Zp ,
p > 0, is normally distributed with mean zero and variance–covariance matrix
σ 2A[p]Q[p :p]−1A[p]′, since we have shown in the proof of Proposition 4.4
that the asymptotic variance–covariance matrix of

√
nAθ̃(p) can be expressed

as
∑p

r=1 σ 2ξ−2∞,rC
(r)∞ C

(r)′∞ . Also, the joint distribution of Zp and the set of vari-
ables Wr , 1 ≤ r ≤ P , is normal, with the covariance vector between Zp and Wr

given by σ 2C
(r)∞ in case r ≤ p; otherwise Zp and Wr are independent. Define the

constants νr = γr + (Q[r : r]−1Q[r :¬r]γ [¬r])r for 0 < r ≤ P . It is now easy to
see that β(p) defined in Proposition A.1 equals −∑P

r=p+1 ξ−2∞,rC
(r)∞ νr . [This is seen
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as follows: It was noted in Proposition A.1 that β(p) = limn→∞
√

nA(ηn(p)− θ −
γ /

√
n ) for θ ∈ Mp , when ηn(p) is defined as in (9), but with θ + γ /

√
n replac-

ing θ . Using the representation (20) of [10] and taking limits, the result follows
if we observe that

√
nηn,r (r) −→ νr for θ ∈ Mp and r > p.] In view of (47), the

c.d.f. G∞,θ,σ,γ (t |p) can now equivalently be written as

G∞,θ,σ,γ (t |p) = P

(
Zp ≤ t +

P∑
r=p+1

ξ−2∞,rC
(r)∞ νr

)
(55)

in case p = max{p0(θ),O} > 0, and (55) trivially holds in case p = 0. In case
p > max{p0(θ),O} the c.d.f. G∞,θ,σ,γ (t |p) is given by (48), and it is elementary
but tedious to show, following the steps in Section 3.1 of [10], that this is equivalent
to

G∞,θ,σ,γ (t |p) = P

(
Zp ≤ t +

P∑
r=p+1

ξ−2∞,rC
(r)∞ νr

∣∣∣|Wp + νp| ≥ cpσξ∞,p

)
.(56)

(This can also be derived from the fact that the distribution of (Z′
p,Wp +

νp, . . . ,WP + νP )′ represents the limiting distribution of
√

n(A(θ̃(p) − ηn(p))′,
θ̃p(p), . . . , θ̃P (P ))′ under Pn,θ+γ /

√
n,σ with θ ∈ Mp−1 [and ηn(p) defined as

in (9), but with θ + γ /
√

n replacing θ ].)

PROOF OF LEMMA D.1. Since θ ∈ Mp−1, G∞,θ,σ,γ (t |p) is given by (56). For
γ ∈ Mp , the quantities νp+1, . . . , νP are easily seen to be zero, while νp equals γp .
This leads to

G∞,θ,σ,γ (t |p) = P(Zp ≤ t ||Wp + γp| ≥ cpσξ∞,p)

for γ ∈ Mp . Since Zp = Zp−1 + ξ−2∞,pC
(p)∞ Wp , we obtain

G∞,θ,σ,γ (t |p) = P
(
Zp−1 + ξ−2∞,pC(p)∞ Wp ≤ t ||Wp + γp| ≥ cpσξ∞,p

)
.(57)

Assume now that (57) is constant in γp ∈ R. Using Lemma D.3 below with

Zp−1 − t , Wp , −ξ−2∞,pC
(p)∞ , −γp and cpσξ∞,p replacing Z, W , C, x and δ, re-

spectively, we obtain that either P(Zp ≤ t) = 0 or that ξ−2∞,pC
(p)∞ = 0. By assump-

tion of the lemma, the set {z ∈ Rp :A[p]z ≤ t} has positive Lebesgue measure.
Hence, P(Zp ≤ t) must be positive. (To see why, note that Zp is concentrated in
the column space of A[p], and that Zp is nondegenerate within the column-space

of A[p].) It would follow that ξ−2∞,pC
(p)∞ = 0, contradicting the assumption that

Aθ̃(p) and θ̃p(p) are asymptotically correlated. �

PROOF OF LEMMA D.2. By the assumptions on q∗, note that either q∗ = P

or that C
(r)∞ = 0 for each r = q∗ + 1, . . . ,P . Consider first the case p =
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max{p0(θ),O}. By (55), we have G∞,θ,σ,γ (t |p) = P(Zp ≤ t + ∑q∗
r=p+1 ξ−2∞,r ×

C
(r)∞ νr). Observe that (νp+1, . . . , νq∗)′ varies in all of Rq∗−p when γ varies in

Mq∗ . Hence, the last mentioned probability goes to zero along an appropriate se-
quence of (νp+1, . . . , νq∗)′ (viz., a sequence along which at least one coordinate of

t +∑q∗
r=p+1 ξ−2∞,rC

(r)∞ νr goes to −∞). Since Zq∗ = Zp +∑q∗
r=p+1 ξ−2∞,rC

(r)∞ Wr and
since the Wr , r = p + 1, . . . ,P , are independent of Zp , the c.d.f. G∞,θ,σ,γ (t |p)

can also be written as a (regular) conditional probability

G∞,θ,σ,γ (t |p) = P(Zq∗ ≤ t |Wp+1 = −νp+1, . . . ,Wq∗ = −νq∗).(58)

Suppose now that G∞,θ,σ,γ (t |p) is constant in γ ∈ Mq∗ , or equivalently, is
constant when (νp+1, . . . , νq∗)′ varies in all of Rq∗−p . It follows from the
above discussion that the conditional probability in (58) is then zero for all
(νp+1, . . . , νq∗)′ ∈ Rq∗−p . By integration with respect to the distribution of
(Wp+1, . . . ,Wq∗), we obtain that P(Zq∗ ≤ t) = 0. From Proposition 4.4(c), it
follows that Zq∗ has a nonsingular normal distribution on Rk , which contradicts
P(Zq∗ ≤ t) = 0. This proves the lemma in case p = max{p0(θ),O}. Consider
next the case p > max{p0(θ),O} and assume that G∞,θ,σ,γ (t |p) is constant
in γ ∈ Mq∗ . Now G∞,θ,σ,γ (t |p) is given by (56). Letting γp → ∞, νp con-
verges to ∞ as well, and the expression in (56) converges to that in (55).
Hence, (55) would have to be constant as a function of (νp+1, . . . , νq∗)′ (note
that (νp+1, . . . , νq∗)′ depends only on γ [¬p] but not on γp), which already has
been shown to lead to a contradiction. �

LEMMA D.3. Let Z be a random vector with values in Rk , let W be a univari-
ate random variable independent of Z and assume that W has a Lebesgue density
which is positive almost everywhere. Furthermore, let C ∈ Rk and let δ > 0. Then
P(Z ≤ CW ||W − x| ≥ δ) is constant in x ∈ R if and only if P(Z ≤ CW) = 0 or
C = 0.

PROOF. If C = 0, then P(Z ≤ CW ||W − x| ≥ δ) equals P(Z ≤ 0), which is
constant in x. If P(Z ≤ CW) = 0, obviously also P(Z ≤ CW ||W − x| ≥ δ) = 0,
and hence, is constant in x. Conversely, assume that P(Z ≤ CW ||W − x| ≥ δ) =
P(Z ≤ CW ||W − x′| ≥ δ) for each x, x′ ∈ R. Letting x′ → ∞ implies that

P(Z ≤ CW, |W − x| ≥ δ)

P (|W − x| ≥ δ)
= P(Z ≤ CW)

holds for each x ∈ R. This is equivalent to

P(Z ≤ CW,W ∈ B) = P(Z ≤ CW)P (W ∈ B),(59)

for all sets B of the form B = (x − δ, x + δ) with x ∈ R. Since both sides in (59)
are sigma-additive set functions and since W is absolutely continuous with re-
spect to Lebesgue measure, both set functions also agree on all sets of the form
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(−∞, x + δ], and hence, on the entire Borel sigma-field on R. This implies inde-
pendence of {Z ≤ CW } and W . In particular, we have

P(Z ≤ CW) = P(Z ≤ CW |W = w)

for almost all w ∈ R. Furthermore, by the assumed independence of Z and W , we
have

P(Z ≤ CW) = P(Z ≤ CW |W = w) = P(Z ≤ Cw)

for almost all w ∈ R. Now if C �= 0, the right-hand side of the above display goes
to zero either for w → ∞ or for w → −∞, implying that P(Z ≤ CW) = 0. �

APPENDIX E: PROOFS FOR SECTIONS 3 AND 4.2

PROOF OF THEOREM 4.5. After rearranging the elements of θ (and hence, the
regressors) and correspondingly rearranging the rows of the matrix A if necessary,
we may assume without loss of generality that r∗ = (1, . . . ,1,0), and hence, that
i(r∗) = P . That is, Mr∗ = MP−1 and Mrfull = MP . Furthermore, note that after

this arrangement C
(P)∞ �= 0. Let p̂ be the model selection procedure introduced

in Section 2 with O = P − 1, cP = c and cO = 0. Let θ̃ be the corresponding
post-model-selection estimator and let Gn,θ,σ (t |p) be as defined in Section 2.1.
Condition (24) now implies the following: For every θ ∈ MP−1 which has exactly
P − 1 nonzero coordinates,

lim
n→∞Pn,θ,σ ({r̂ = rfull}�{p̂ = P })

(60)
= lim

n→∞Pn,θ,σ ({r̂ = r∗}�{p̂ = P − 1}) = 0

holds for every 0 < σ < ∞. Since the sequences Pn,ϑ(n),σ and Pn,θ,σ are con-
tiguous for ϑ(n) satisfying ‖θ − ϑ(n)‖ = O(n−1/2) as remarked at the beginning
of Appendix C, it follows that condition (60) continues to hold with Pn,ϑ(n),σ re-
placing Pn,θ,σ . This implies that, for every sequence of positive real numbers sn
with sn = O(n−1/2), for every σ , 0 < σ < ∞, and for every θ ∈ MP−1 which has
exactly P − 1 nonzero coordinates,

lim inf
n→∞ inf

ϑ∈RP

‖ϑ−θ‖<sn

Pn,ϑ,σ (r̂ = rfull) = lim inf
n→∞ inf

ϑ∈RP

‖ϑ−θ‖<sn

Pn,ϑ,σ (p̂ = P) > 0(61)

and

lim inf
n→∞ inf

ϑ∈RP

‖ϑ−θ‖<sn

Pn,ϑ,σ (r̂ = r∗) = lim inf
n→∞ inf

ϑ∈RP

‖ϑ−θ‖<sn

Pn,ϑ,σ (p̂ = P − 1) > 0,(62)

hold, the positivity following from Proposition A.2. A further consequence is that

sup
ϑ∈RP

‖ϑ−θ‖<sn

‖Kn,ϑ,σ (·|rfull) − Gn,ϑ,σ (·|P)‖TV → 0(63)
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and

sup
ϑ∈RP

‖ϑ−θ‖<sn

‖Kn,ϑ,σ (·|r∗) − Gn,ϑ,σ (·|P − 1)‖TV → 0(64)

as n → ∞. From (63)–(64), we conclude that the limit of Kn,θ+γ /
√

n,σ (·|rfull)

(with respect to total variation distance) exists and coincides with G∞,θ,σ,γ (·|P).
Similarly, the limit of Kn,θ+γ /

√
n,σ (·|r∗) is G∞,θ,σ,γ (·|P − 1). Because of (61)

and (62), we may assume that all relevant probabilities are positive (at least from
a certain n0 onward). Repeating the proof of Theorem 4.1 with p = P and where
Kn,ϑ,σ (t |rfull) replaces Gn,ϑ,σ (t |P), as well as repeating the proof of Theorem 4.2
with p = P − 1 = O, q∗ = P and where Kn,ϑ,σ (t |r∗) replaces Gn,ϑ,σ (t |P − 1),
gives the desired result. �

PROOF OF THEOREM 3.1. Observe that (60)–(64) again hold after rearrang-
ing coordinates as in the previous proof and that

lim
n→∞Pn,θ,σ (r̂ = rfull) = lim

n→∞Pn,θ,σ (p̂ = P) > 0,

lim
n→∞Pn,θ,σ (r̂ = r∗) = lim

n→∞Pn,θ,σ (p̂ = P − 1) > 0.

Repeating the proof of Theorem 2.3 with q∗ = P , with Kn,ϑ,σ (t |r̂) replacing
Gn,ϑ,σ (t |p̂), and using Theorem 4.5(b) instead of Theorem 4.1(b) give the desired
result. �
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