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POSTERIOR CONSISTENCY OF GAUSSIAN PROCESS PRIOR FOR
NONPARAMETRIC BINARY REGRESSION

BY SUBHASHIS GHOSAL1 AND ANINDYA ROY

North Carolina State University and University of Maryland, Baltimore County

Consider binary observations whose response probability is an unknown
smooth function of a set of covariates. Suppose that a prior on the response
probability function is induced by a Gaussian process mapped to the unit
interval through a link function. In this paper we study consistency of the re-
sulting posterior distribution. If the covariance kernel has derivatives up to a
desired order and the bandwidth parameter of the kernel is allowed to take
arbitrarily small values, we show that the posterior distribution is consistent
in the L1-distance. As an auxiliary result to our proofs, we show that, un-
der certain conditions, a Gaussian process assigns positive probabilities to
the uniform neighborhoods of a continuous function. This result may be of
independent interest in the literature for small ball probabilities of Gaussian
processes.

1. Introduction. Consider a binary response variable Y corresponding to
a d-dimensional covariate x. The problem is to estimate the response p(x) =
P(Y = 1|x) over the entire covariate space based on an increasing number of ob-
servations. We assume that the possible values of the covariate lie in a compact
subset X ⊂ R

d . A Bayesian method for estimating p was developed in [4]. A prior
on p was induced by the relation p(x) = H(η(x)), where η is a Gaussian process
indexed by X and H is a known strictly increasing, Lipschitz continuous cumu-
lative distribution function on R. Choudhuri, Ghosal and Roy [4] described algo-
rithms for computing the posterior distribution of p and numerically investigated
the properties of the posterior.

In this paper we show consistency of the posterior distribution of p, where the
prior is assigned through a Gaussian process as in [4]. Statistical procedures are
often justified by asymptotics, and posterior consistency plays a major role in val-
idating a Bayesian method. The posterior distribution is said to be consistent if the
posterior probability of any small neighborhood of the true parameter value con-
verges to one. Because the notion of consistency is dependent on the topology used
to define the neighborhoods, one needs to consider an appropriate topology such
as the one based on the L1-distance. Because consistency of p is directly related
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to the distribution of the covariate values, it makes sense to consider L1-distance
weighted by the distribution of the covariates or their empirical measure. In the
next section we present three different consistency results, for a random covari-
ate with respect to the L1-distance based on the distribution of covariates, for a
designed covariate with respect to the L1-distance based on the empirical distrib-
ution of the covariate, and finally for a designed one-dimensional covariate with
respect to the L1-distance based on Lebesgue measure. The results hold provided
that the covariance kernel of the Gaussian process has a certain number of deriva-
tives. We show posterior consistency by verifying prior positivity and entropy (or
testing) conditions of the general posterior consistency results of Ghosal, Ghosh
and Ramamoorthi [6] or Choudhuri, Ghosal and Roy [3]. An interesting alternative
approach to posterior consistency was given in Walker [13].

In the course of our proof we derive two important auxiliary results. First, we
show that a Gaussian process assigns positive probability to any uniform neighbor-
hood of a function in the reproducing kernel Hilbert space of the covariance kernel.
This result is of significant general interest. Second, we establish a probabilistic
bound on the supremum of the derivative of Gaussian processes with covariance
kernels that are differentiable up to a certain order.

The complete flexibility in the shape of the sample paths of a Gaussian process
makes it an interesting prior for other function estimation problems, such as
density estimation or regression function estimation on a bounded interval. The
Gaussian process prior was first used in the context of density estimation by
Leonard [10] and Lenk [9]. Posterior consistency of the resulting procedure was
recently shown by Tokdar and Ghosh [11]. In the context of additive error non-
parametric regression, Choi and Schervish [2] established posterior consistency
under certain conditions. Following our approach, it seems possible to treat other
generalized regression models, such as Poisson regression, in a similar manner,
although the test construction method will be problem specific. The natural ex-
tension of consistency results will be the characterization of the posterior rate of
convergence in the sense of Ghosal, Ghosh and van der Vaart [7]. Some of the
results obtained here may be useful for that purpose as well.

The paper is organized as follows. In the next section we state our main results.
Positivity of uniform balls under the Gaussian measure is shown in Section 3. In
Section 4 we obtain a useful result on the tail of a Gaussian process and its deriva-
tives, which is subsequently used to show that a certain function sieve only spares
an exponentially small probability under the Gaussian process prior. Tests with ex-
ponentially small error probabilities for testing a function against the complement
of an appropriate neighborhood are obtained in Section 5. The results of these
sections are used to prove the main theorems in Section 6.

2. Main results. In this section we describe the model and the prior and
present our main results. Let Y be a binary response corresponding to a d-di-
mensional covariate x and p(x) = P(Y = 1|x). Let the covariate values belong
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to a compact subset X of R
d . Let H be a known strictly increasing, Lipschitz con-

tinuous cumulative distribution function on R and let η(x) = H−1(p(x)). A prior
on p(x) is induced by a Gaussian process prior on {η(x) :x ∈ X} with mean func-
tion µ(x) and covariance kernel σ(x, x′) through the mapping p(x) = H(η(x)).
The covariance kernel is assumed to be of the form

σ(x, x′) = τ−1σ0(λx,λx′),(2.1)

where σ0(·, ·) is a nonsingular covariance kernel and the hyper-parameters τ > 0
and λ > 0 play the roles of a scaling parameter and (the reciprocal of ) a bandwidth
parameter, respectively. Let the hyper-priors on τ and λ be τ ∼ �τ and λ ∼ �λ,
respectively, where �τ and �λ are absolutely continuous probability measures
on R

+.
Theorem 4 shows that the sample paths of the Gaussian processes can approx-

imate a large class of functions very well and thus, for the purpose of posterior
consistency, it is not necessary to consider additional uncertainty in the link func-
tion H . In fact, the parameter τ could be taken to be a fixed constant without
affecting posterior consistency. However, practical considerations of small sam-
ple accuracy suggest putting a suitable prior on τ . Likewise, it is also sensible to
consider the possibility of the presence of hyper-parameters in the “trend func-
tion” µ(x); see Remark 2. On the other hand, it is necessary to vary the bandwidth
parameter λ all over (0,∞) to obtain posterior consistency.

We shall work with the sieve of response probability functions

�n = �n,α = {p(·) :p(x) = H(η(x)),‖Dwη‖∞ < Mn, |w| ≤ α};(2.2)

here and below Dwη stands for (∂ |w|/∂w1 t1 · · · ∂wd td)η(t1, . . . , td), |w| = ∑
wj ,

α is some positive integer and Mn is a sequence of real numbers. Let sequences
λn and τn be such that �τ(τ < τn) = e−cn and �λ(λ > λn) = e−cn, for some
constant c. Specific forms of the hyper-priors and the sequences will be discussed
later.

Let

A =
{
η(x) =

k∑
i=1

aiσ0(λx,λti), a1, . . . , ak ∈ R,

(2.3)

t1, . . . , tk ∈ X, k ≥ 1, λ > 0

}
.

Then Ā, the closure of A in the supremum metric, is called the reproducing ker-
nel Hilbert space (RKHS) of σ0 (or, equivalently, of σ ). We make the following
assumptions.

ASSUMPTION (P). For every fixed x ∈ X, the covariance function σ0(x, ·) has
continuous partial derivatives up to order 2α + 2, where α is a positive integer to
be specified later.
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The mean function µ(x) belongs to the RKHS, Ā, of the covariance kernel
σ0(·, ·).

The prior �λ for λ is fully supported on (0,∞).

ASSUMPTION (C). The covariate space X is a bounded subset of R
d .

ASSUMPTION (T). The transformed true response function η0 belongs to Ā.

Assumption (T) implies that η0 is uniformly bounded above and below, and
hence, p0(x) = H(η0(x)) is bounded away from 0 and 1. In our setup, the free
quantities are α and the sequences Mn,λn and τn. We do not require �τ and �λ

to have specific forms as long as they satisfy some tail conditions specified by
the magnitude of the tail cut-off points λn and τn. The quantity α specifies the
smoothness of the covariance kernel. The numbers α, Mn, λn and τn need to satisfy
some interrelation described by the following growth condition.

ASSUMPTION (G). For every b1 > 0 and b2 > 0, there exist sequences Mn,
τn and λn such that

M2
nτnλ

−2
n ≥ b1n and Md/α

n ≤ b2n.

The first part of Assumption (G) will be used to prove exponential decay of the
prior probability of the complement of the sieve �n and the second part will be
used to bound the uniform entropy number of �n.

Now we state our main results under different specifications for the covariate
values.

2.1. Random covariate. Let P n
0 denote the true distribution of the whole data.

We first state the posterior consistency result for the case where the covariates arise
as a random sample from a distribution Q on X.

THEOREM 1. Suppose the random covariate X is sampled from a probability
distribution Q on X. Suppose that Assumptions (P), (C), (T) and (G) hold. Then
for any ε > 0,

�

(
p :

∫
|p(x) − p0(x)|dQ(x) > ε

∣∣∣Y1, . . . , Yn, X1, . . . ,Xn

)
→ 0

in P n
0 -probability.

The covariate measure, Q, may be viewed as a fixed quantity or a nuisance
parameter. When Q is a fixed quantity, the posterior distribution does not depend
on Q. Therefore, to evaluate the posterior, we need not actually know Q. On the
other hand, when Q is treated as an unknown parameter, we need to specify a
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prior on Q. Under the natural assumption that p is unrelated to Q, the likelihood
for p can be separated out from that of Q. Thus, with independent priors, p and Q

will be independent a posteriori, and hence, the posterior distribution of p may be
obtained without even specifying a prior on Q. Note that the posterior for p will
be computed the same as in the case of fixed covariates.

If the covariate measure Q permits a Lebesgue density, then we have the fol-
lowing trivial corollary.

COROLLARY 1. If the covariate distribution Q has Lebesgue density q which
is bounded below by some positive constant, then under the conditions of Theo-
rem 1, consistency in the usual L1-distance

∫ |p(x) − p0(x)|dx holds.

2.2. Designed covariate. In the case of fixed design, often the entire set of
covariate values changes with the sample size. This is the case when the covari-
ates are chosen on some equally spaced grids. Thus, the covariate values form a
triangular array of the form {xi,n, i = 1, . . . , n}, where repetitions are allowed. Let
Qn be the empirical measure of the design points defined as Qn = n−1 ∑n

i=1 δxi,n
,

where δx denotes the unit mass probability at x. Then we have consistency with
respect to the L1-distance based on the empirical measure. Such a distance au-
tomatically adjusts to the concentration of the covariates and appears to be more
intrinsic than the L1-distance with respect to a fixed measure not related to the
distribution of the covariate values.

THEOREM 2. Assume that the covariate values arise from a fixed design. Then
under Assumptions (P), (C), (T) and (G), for any ε > 0,

�

(
p :

∫
|p(x) − p0(x)|dQn(x) > ε

∣∣∣Y1, . . . , Yn

)
→ 0

in P n
0 -probability.

2.3. One-dimensional covariate. In the case of a one-dimensional nonrandom
covariate, one can also obtain consistency in the usual L1-sense under an additional
assumption on the covariate values. Without loss of generality, assume that the
covariate values xi,n, i = 1, . . . , n, are in ascending order. Let Si,n = xi+1,n − xi,n

be the spacings between consecutive covariate values.

ASSUMPTION (U). Given δ > 0, there exist a constant K1 and an integer N

such that, for n > N , we have that
∑

i:Si,n>K1n
−1 Si,n ≤ δ.

The assumption merely states that the measure of the part of the design space
where data is sparse is small. Obviously, Assumption (U) is satisfied by any regu-
larly spaced design. If the design was chosen by sampling from a nonsingular dis-
tribution, then by the properties of spacings, it can be shown that Assumption (U)
holds with probability tending to one.
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THEOREM 3. Suppose that the values of the covariate arise as design points
on X satisfying Assumption (U) and X is a bounded interval of R. Assume that the
prior satisfies Assumption (P). The mapping x 
→ η0(x) and the prior mean µ(·)
are assumed to have two continuous derivatives on X and the covariance kernel
σ(·, ·) is assumed to have continuous partial derivatives up to order 6. Assume that
�τ and �λ are such that τ−1

n λ4
n = O(n). Then for any ε > 0,

�

(
p :

∫
|p(x) − p0(x)|dx > ε

∣∣∣Y1, . . . , Yn

)
→ 0

in P n
0 -probability.

2.4. Remarks.

REMARK 1. If �τ(τ < T ) = O(e−b/T r
) as T → 0 and �λ(λ > L) =

O(e−bLs
) as L → ∞, for some b, r, s > 0, it then follows that τn = n−1/r and

λn = n1/s satisfy the exponential tail requirement. Then by both assertions of As-
sumption (G), we have that

n � M2
nτnλ

−2α
n = M2

nn−(r−1+2αs−1) � n2α/dn−(r−1+2αs−1),

which implies that s > d and α ≥ (1+ r−1)/(2(d−1 − s−1)). In the most favorable
case when r → ∞ and s → ∞, we need α > d/2. In other words, with the most
favorably tailed priors on τ and λ, we need to assume the existence of at least d +3
derivatives of the covariance function, with the requirement going up if the tails are
thicker. The natural conjugate prior on τ is a gamma prior, which assigns too much
probability to the lower tail and, hence, does not seem to be good in this respect.
A better choice would be the inverse gamma prior which corresponds to r = 1 and
imposes the restriction α ≥ sd/(s −d). As there is no natural conjugate prior on λ,
it makes sense to use a prior with a very thin tail, such as �λ(λ > L) ≤ e−eL

. For
such thin tails the restriction on α reduces to α > d . Then we will need to assume
the existence of at least 2d + 3 derivatives of the covariance kernel for our results
to hold.

REMARK 2. For practical considerations, it is useful to allow hyper-
parameters in the mean function µ(·). For instance, the mean could be taken as
a linear combination of a fixed number of functions, so that µ(x) = ∑J

j=1 βjψj (x).
A lower degree polynomial is often a good choice. In order to establish posterior
consistency under this scenario, one needs to ensure that the tail of the distribution
of β is thin enough. For instance, if P(‖β‖ > B) = O(e−c1B

d/α
) for some c1 > 0,

then (‖β‖ > c2n
α/d) has exponentially small prior probability for any c2 > 0. Now

for any β with ‖β‖ ≤ c2n
α/d , the complement of the sieve defined by (2.2) contin-

ues to have exponentially small prior probability in view of (4.2) below, provided
that c2 is chosen small enough depending on b2 in Assumption (G).
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REMARK 3. A popular method of prior construction on functions is by ex-
panding the function in a series

∑
θjψj (x) and then putting independent N(0, τ 2

j )

priors on the coefficients. Such a prior leads to a Gaussian process prior on the
function, where the covariance kernel is σ(x, y) = ∑

j τ 2
j ψj (x)ψj (y). Under ap-

propriate differentiability conditions, our results imply posterior consistency at any
p0 = H(η0), where η0 belongs to the RKHS of σ .

3. Probability of uniform balls. In this section we establish a property of the
support of a Gaussian process which is also of general interest. Let {W(t), t ∈ T }
be a Gaussian process indexed by a compact set T ⊂ R

d , which we take as [0,1]d
without loss of generality. Let the mean function of W(t) be µ(t) and the covari-
ance kernel be σ(s, t) = τ−1σ0(λs, λt), where σ0 is a fixed covariance kernel, and
τ > 0 and λ > 0 are parameters that can possibly vary according to some distribu-
tion. We are interested in finding conditions under which P{‖W − w‖∞ < ε) > 0
for some nonrandom function w(t). Such a result was recently obtained by Tokdar
and Ghosh [11] using an approach based on conditioning the process at some grid
points and then establishing bounds on the conditional mean and variance. Here we
provide a shorter proof based on the Karhunen–Loève expansion of the process.

It suffices to show that the result holds for λ and τ varying over a set of positive
probability. For our purpose, τ can be fixed, as the basis function in the Karhunen–
Loève expansion is independent of τ . It follows from Lemma 2 of [11] that it
suffices to fix λ at some suitable value. Thus, with fixed τ and λ, W is a Gaussian
process. We intend to show, under appropriate conditions on the covariance kernel,
that w belongs to the support of the mixture of Gaussian process priors. First, we
establish that a Gaussian process, under mild conditions, assigns positive probabil-
ities to the uniform balls around functions in the RKHS of the covariance kernel.

THEOREM 4. Assume that {W(t), t ∈ T } is a Gaussian process with contin-
uous sample paths having mean function µ(t) and continuous covariance kernel
σ(s, t). Assume that µ(t) and a function w(t) belong to the RKHS of the kernel
σ(s, t). Then

P
(

sup
t∈T

|W(t) − w(t)| < ε

)
> 0 for all ε > 0.(3.1)

PROOF. We may assume without loss of generality that µ(t) is the zero func-
tion; else we can subtract µ(t) from W(t) as well as from w(t).

Let
∑∞

k=1
√

λiξiψi(t) be the Karhunen–Loève expansion of W(t), so that λi’s
are the eigenvalues of the kernel operator σ(s, t), ψi(t) are the corresponding
eigenfunctions and ξi are independent N(0,1); see [1], Section III.3. Let w(t) also
be represented as

∑∞
k=1

√
λiaiψi(t), where

∑∞
i=1 λia

2
i < ∞. It follows from Mer-

cer’s theorem (cf. Theorem 3.15 of [1]) that the series
∑∞

i=1
√

λiaiψi(t) converges
uniformly, and hence, the tail sum is uniformly small.
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Bound |W(t) − w(t)| as

sup
t∈T

|W(t) − w(t)| ≤ sup
t∈T

|WN(t) − wN(t)| + sup
t∈T

|w̄N(t)| + sup
t∈T

|W̄N(t)|,(3.2)

where WN(t) = ∑N
i=1

√
λiξψi(t), W̄N(t) = ∑∞

i=N+1
√

λiξiψi(t), wN(t) =∑N
i=1

√
λiaiψi(t) and w̄N(t) = ∑∞

i=N+1
√

λiaiψi(t). Let ε > 0 be given. The sec-
ond term on the right-hand side of (3.2) is nonrandom and less than ε/3 for N

large enough by the uniform convergence.
The basis expansion of the Gaussian process WN(t) − wN(t), for any given N ,

has finitely many terms involving i.i.d. N(0,1) variables and continuous function
coefficients. Then, the nonsingularity of a normal distribution with nonsingular
covariance implies that P(supt∈T |WN(t) − wN(t)| < ε/3) > 0 for any fixed N .

Now if P(supt∈T |W̄N(t)| < ε/3) > 0 for some N , then exploiting the indepen-
dence of WN and W̄N , it can be easily shown that (3.1) holds. Thus, it suffices to
show that P(supt∈T |W̄N(t)| < ε) → 1 as N → ∞ for any fixed ε > 0. However,
as W(t) has continuous sample paths, by assumption, it follows that

P
(

sup
t∈T

|W̄N(t)| ≥ ε

)
= P

(
sup
t∈T

|WN(t) − W(t)| ≥ ε

)

≤ ε−2E
(

sup
t∈T

|WN(t) − W(t)|2
)
,

which converges to 0 as N → ∞ by Theorem 3.8 of [1]. This completes the proof.
�

Now assume that σ0 is bounded away from zero on T × T . Let

C =
{
w ∈ C(T ) :w(t) =

k∑
i=1

aiσ0(λt, λti),

(3.3)

ai ∈ R, ti ∈ T ,1 ≤ i ≤ k, k ≥ 1, λ > 0

}
.

Let w0 ∈ C̄, where C̄ is the closure of C. Then by the discussion preceding Theo-
rem 4, it follows that P(supt∈T |W(t) − w0(t)| < ε) > 0, where W has the mixture
of Gaussian processes distribution discussed there.

For many covariance kernels, C is dense in C(T ), in which case every con-
tinuous function will be in the support of the prior. For example, if d = 1 and
σ0(s, t) = ψ(s − t) for some nonzero, continuous density function ψ on R, then
Tokdar and Ghosh [11] showed that C is dense in C(T ). For higher dimensions,
if the covariance kernel is the Kronecker product of one-dimensional kernels in
the sense that σ((s1, . . . , sd), (t1, . . . , td)) = σ1(s1, t1) · · ·σd(sd, td), where each σj

has RKHS C(Tj ), j = 1, . . . , d , then Tokdar and Ghosh [11] showed also that the
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RKHS of σ is C(T1 × · · · × Td). For instance, it follows from there that the kernel
σ((s1, . . . , sd), (t1, . . . , td)) = τ−1 exp[−∑d

j=1 λj (sj − tj )
2] on X, where the λj ’s

are unrestricted, has RKHS C(X) for any product type compact domain X.

4. Sieves and tail probabilities.

LEMMA 1. Let �n be as defined in (2.2) and Assumptions (P), (C) and (G)
hold. Then �(�c

n) ≤ Ae−cn for some constants A and c.

Because �λ(λ > λn) ≤ e−cn and �τ(τ < τn) ≤ e−cn, it suffices to uniformly
bound the probability of �c

n for given λ ≤ λn and τ ≥ τn. The lemma will follow
from the following result about Gaussian processes which could also be of general
interest.

THEOREM 5. Let η(·) be a Gaussian process on X, a bounded subset of R
d .

Assume that the mean function µ(·) is in Cα(X) and the covariance kernel σ(·, ·)
has 2α + 2 mixed partial derivatives for some α ≥ 1. Then η(·) has differentiable
sample paths with mixed partial derivatives up to order α and the successive deriv-
ative processes Dwη(·) are also Gaussian with continuous sample paths. Also, the
derivative processes are sub-Gaussian with respect to a constant multiple of the
Euclidean distance. Further, there exists a constant dw such that

P
(

sup
x∈X

|Dwη(x)| > M

)
≤ K(η)e−dwM2/σ 2

w(η)(4.1)

for w = (w1,w2, . . . ,wd), wi ∈ {0,1,2, . . . , α}, |w| ≤ α and σ 2
w(η) =

supx∈X var(Dwη(x)) < ∞, K(η) is a polynomial in the supremum of the
(2α + 2)-order derivatives of σ and the covariance functions of the derivative
processes Dwη(x) are functions of the derivatives of the covariance kernel σ(·, ·).

PROOF. We may assume, without loss of generality, that the mean function is
identically zero, because for M sufficiently large,

P(η :‖η‖∞ > M) ≤ P(η :‖η − µ‖∞ > M − ‖µ‖∞)
(4.2)

≤ P(η :‖η − µ‖∞ > M/2).

First we show that the process constructed by taking the partial derivative of η

with respect to the j th component, Djη(·), is again a Gaussian process with con-
tinuous sample paths and covariance kernel D2

j σ (·, ·). Here and below, D2
j is the

partial derivative operator with respect to the j th components of both arguments of
σ , that is, D2

j σ ((s1, . . . , sd), (t1, . . . , td)) = (∂2/∂sj ∂tj )σ ((s1, . . . , sd), (t1, . . . , td)).

According to our general notation, Djη(·) = Dwη(·) and D2
j σ (·, ·) = DwDwσ(·, ·)

componentwise, where w = ej , the d-dimensional vector with one at the j th place
and zeros elsewhere.
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To show Djη is again a Gaussian process, we need to investigate the path prop-
erties of the one-parameter Gaussian process obtained by letting the j th compo-
nent vary and holding all other d − 1 parameters fixed. For notational simplicity,
we suppress the dependence of the process on the other d − 1 parameters. By Sec-
tion 9.4 of [5] (a version of ) η(·) has continuously differentiable sample paths
if

|�h�hD
2
j σ (s, t)| ≤ C

| log |h||a as h → 0

for some C > 0 and a > 3, where

�h�hD
2
j σ (s, t) = D2

j σ (s + hej , t + hej ) − D2
j σ (s + hej , t)

− D2
j σ (s, t + hej ) + D2

j σ (s, t).

Because σ(·, ·) has bounded mixed partial derivatives of at least up to fourth order,
the above condition is trivially satisfied and the process η(·), as a process with
respect to the j th coordinate, has continuously differentiable sample paths. The
limit of a sequence of multivariate normal variables is again a multivariate normal,
and Djη(t) = limh→0(η(t + hej ) − η(t))/h.

It follows that Djη(·) is a Gaussian process. Moreover,

E
(
Djη(s) − Djη(t)

)2 = lim
h→0

E
{
η(s + hej ) − η(s) − η(t + hej ) + η(t)

h

}2

.

This follows by the uniform integrability of (η(t + hej ) − η(t))2/h2, which is
a consequence of the fact

E
( |η(t + hej ) − η(t)|

h

)4

= 3
( |σ(t + hej , t + hej ) + σ(t, t) − 2σ(t + hej , t)|

h2

)2

≤ 3B2
0 < ∞,

for some constant B0. Then, the intrinsic semimetric for the partial derivative
process is given by

E
(
Djη(s) − Djη(t)

)2 = lim
h→0

E{|η(s + hej ) − η(s) − η(t + hej ) + η(t)|}2/h2

= lim
h→0

h−2{
σ(s + hej , s + hej ) + σ(t + hej , t + hej )

+ σ(s, s) + σ(t, t) + 2σ(s + hej , t)

+ 2σ(s, t + hej )

− 2
(
σ(s + hej , t + hej ) + σ(t, t + hej )

+ σ(s, t) + σ(s, s + hej )
)}

.
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Using the symmetry of the covariance function and by Taylor’s expansion, we
have, after simplification, that

E
(
Djη(s) − Djη(t)

)2 = D2
j σ (s, s) + D2

j σ (t, t) − 2D2
j σ (s, t)

(4.3)
= σ ∗(s, t), say.

As the covariance function has bounded mixed partial derivatives up to order 2α +
2, by Taylor’s expansion, we have for C = sup{|D2

j σ
∗(s, t)| : s, t} that

E
(
Djη(s) − Djη(t)

)2 ≤ C‖s − t‖2.(4.4)

Thus, the partial derivative process is sub-Gaussian with respect to a constant mul-
tiple of the Euclidean distance. Note that from (4.4), the covariance kernel for
Djη(·) is given by

cov
(
Djη(s),Djη(t)

) = D2
j σ (s, t).(4.5)

Further, as the kernel D2
j σ (s, t) has at least two mixed derivatives with respect

to each component, it follows from [5] that the multi-indexed process Djη has
continuous sample paths. Thus, the sample paths of η are, with probability one,
continuously differentiable with respect to each argument.

Replacing η by Djη, the mixed partial derivative process DkDjη is again
a Gaussian process and is sub-Gaussian with respect to a constant multiple of
the Euclidean distance. In general, the derivative process Dwη(s) for |w| ≤ α is
a Gaussian process with covariance kernel DwDwσ(·, ·).

Now σ 2
w(η) = sup{var(Dwη(s)) : s ∈ X} < ∞. We thus have N(ε,X,‖ · ‖) ≤

C′ε−d and N(ε,X,‖ · ‖ρ) ≤ C′′ε−d for some constants C′ and C′′ depending on
the measure of the set X and the kernel σ . Here N stands for the covering number,
‖·‖ is the Euclidean distance and ‖·‖ρ is the intrinsic semi-metric of the derivative
process Dwη(s). The result then follows by applying Proposition A.2.7 of [12],
page 442, to each of the derivative processes. �

To complete the proof of Lemma 1, consider the kernel of the form σ(s, t) =
τ−1σ0(λs, λt). Let ξ be a process with a fixed covariance kernel σ0. Then the
mixed derivative processes Dwξ(·) up to order α have uniformly bounded vari-
ances. Now for λ ≤ λn, τ ≥ τn and |w| = α,

σ 2
w(η) = τ−1λ2ασ 2

w(ξ) ≤ τ−1
n λ2α

n σ 2
w(ξ).

The rest of the proof now follows easily from Theorem 5 because the contribution
from K(η) grows only polynomially in n.
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5. Entropy bounds and test construction.

LEMMA 2. The ε-covering number N(ε,�n,‖ · ‖∞), in the supremum norm,
of �n defined by (2.2), is given by logN(ε,�n,‖ · ‖∞) ≤ KM

d/α
n ε−d/α for some

constant K .

PROOF. The result follows immediately from Theorem 2.7.1 of [12], page 155.
�

LEMMA 3. Let ν be a finite measure on X and let ψ1 and ψ2 be measurable
functions such that 0 ≤ ψ1,ψ2 ≤ M and

∫ |ψ1 − ψ2|dν > (1 + ν(X))ε for some
M , ε > 0. Then ν{x : |ψ1(x) − ψ2(x)| > ε} ≥ ε/M .

PROOF. By the given condition,
(
ν(X) + 1

)
ε ≤

∫
x : |ψ1(x)−ψ2(x)|>ε

|ψ1(x) − ψ2(x)|dν(x)

+
∫
x : |ψ1(x)−ψ2(x)|≤ε

|ψ1(x) − ψ2(x)|dν(x)(5.1)

≤ Mν{x : |ψ1(x) − ψ2(x)| > ε} + εν(X).

The result now follows by rearranging the terms. �

Applying Lemma 3 to ψ1 = p,ψ2 = p0 and ν = Qn, we obtain

In,p = #{xi : |p(xi) − p0(xi)| > ε} ≥ K ′n(5.2)

for some K ′. Let A+
p = {x :p(x) > p0(x) + ε} and A−

p = {x :p(x) < p0(x) − ε}.
Then either A+

p or A−
p contains at least K ′n/2 points. For definiteness, assume that

m = mn = #I+
n,p ≥ K ′n/2, where I+

n,p = {i :xi ∈ A+
p }. For a given p, to test the

simple null p0 against the simple alternative p, we construct a test based on the ob-
servations corresponding to only those design points which are in A+

p . Then (5.2)
asserts that there is no loss of order of the number of indices. The next lemma is
stated in a general framework and shows how to construct such a test.

LEMMA 4. Let Yj be independent Bernoulli variables with P(Yj = 0) = µj ,
j = 1, . . . ,m. Consider testing H0 :µj = µ0j against H1 :µj = µ1j , where µ1j >

µ0j + ε for all j and 0 < ε0 < µ0j < 1 − ε0 < 1; here ε0 > 0 and ε > 0 do not
depend on m and ε < ε0. Consider the test �m = 1{∑m

j=1(Yj − µ0j ) > mε/2}.
Then for all sufficiently large m,

EP0(�m) ≤ e−mε2/2, EP1(1 − �m) ≤ e−mε2/2,(5.3)

where P0 and P1 are respectively the probability measures under the null and the
alternative.
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REMARK 4. The above lemma also holds if µ1j < µ0j − ε for all j =
1, . . . ,m if the test �m is defined as one that rejects H0 for

∑m
j=1(Yj − µ0j ) <

−mε/2.

PROOF OF LEMMA 4. By Hoeffding’s inequality ([8], Theorem 1),

EP0(�m) = P0
(
Ȳm − EP0 Ȳm > ε/2

) ≤ e−mε2/2.

For all sufficiently large m, another application of Hoeffding’s inequality gives

EP1(1 − �m) = P1
(
Ȳm − EP0 Ȳm ≤ ε/2

)
= P1

((
Ȳm − EP1 Ȳm

) + m−1
m∑

j=1

(µ1j − µ0j ) ≤ ε/2

)

≤ P1
((

Ȳm − EP1 Ȳm

) ≤ −ε/2
) ≤ e−mε2/2.

This completes the proof. �

For a given p, we consider the test �n,p which rejects the simple null p0 against
the simple alternative p if

m−1
∑

i∈I+
n,p

(
Yi − p0(xi)

)
> mε/2.(5.4)

By Lemma 4 above, the test satisfies (5.3) for a simple alternative p.
To remove the dependence on p, we use the standard technique of covering a set

by small balls and estimating the covering numbers. Note that, for a fixed ε > 0, if
i ∈ A+

p and ‖p∗ − p‖ < ε/2, then

p∗(xi) − p0(xi) ≥ p(xi) − p0(xi) − ‖p − p∗‖∞ > ε/2.(5.5)

Therefore, applying Lemma 4 (with ε replaced by ε/2), we obtain a test �n,p such

that Ep0�n,p ≤ e−mε2/8 and Ep∗(1 − �n,p) ≤ e−mε2/8.
With N = N(ε/2,�n,‖ · ‖∞), get p1, . . . , pN ∈ �n with the property that, for

any p, there exists a pj ∈ �n such that ‖p − pj‖∞ < ε/2. Consider the test �n =
max(�n,pj

, j = 1, . . . ,N). Then

Ep0�n ≤
N∑

j=1

Ep0�pj ,n ≤ Ne−mε2/8 = exp(logN − mε2/8).(5.6)

If p ∈ �n, choose j such that ‖p − pj‖∞ < ε/2. Then

Ep(1 − �n) ≤ Ep

(
1 − �pj ,n

) ≤ e−mε2/8.(5.7)
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Then by Lemma 2, for any given constant b′
2 > 0 we can choose a sufficiently

small b2 and Mn satisfying Assumption (G) with b2, such that logN ≤ b′
2n. Then

choosing m = mn of order n, the test �n satisfies the requirement

Ep0�n ≤ e−c′n, Ep(1 − �n) ≤ e−c′n(5.8)

for some constant c′.

6. Proof of the main theorems. Now we prove Theorems 1–3.

PROOF OF THEOREM 1. We are considering the model

Yi |Xi
ind∼ Binomial

(
1,p(Xi)

)
, Xi

ind∼ Q, i = 1,2, . . . , n.(6.1)

Then the joint density of X and Y with respect to the product of Q and the
counting measure on {0,1}, say, ℵ, is given by f (x, y) = p(x)y(1 − p(x))1−y .
The corresponding true joint density is f0(x, y) = p0(x)y(1 − p0(x))1−y . Re-
call that by Assumption (T), ε0 < p0(x) < 1 − ε0 for some ε0 < 1/2. This im-
plies that f0(x, y) > ε0. Also observe that

∫ |f1 − f2|dℵdQ = 2
∫ |p1 − p2|dQ

and
∫

f0 log(f0/f )dℵdQ = ∫
p0 log(p0/p)dQ + ∫

(1 − p0) log((1 − p0)/(1 −
p))dQ.

We verify the conditions given in Theorem 2 in [6]. It may be noted that al-
though their result is stated for Lebesgue densities on R, it is valid for densities in
any measure space.

We first show that �{f :
∫

f0 log(f0/f ) < ε} > 0 for all ε > 0, where � is the
prior for f , or equivalently,

�

{
p :

∫
p0 log

p0

p
dQ +

∫
(1 − p0) log

1 − p0

1 − p
dQ < ε

}
> 0 for all ε > 0.

We shall use the following lemma which follows easily from Taylor’s expansion.

LEMMA 5. Let 0 < ε0 < 1
2 and ε0 < α,β < 1 − ε0. Then there exists a con-

stant L depending only on ε0 such that

α

(
log

α

β

)m

+ (1 − α)

(
log

1 − α

1 − β

)m

≤ L(α − β)2, m = 1,2.

Let B = {p :‖p − p0‖∞ < 1
2c}, where c = inf{min(p0(x),1 − p0(x)) : 0 ≤ x ≤

1} > 0 and ‖p −p0‖∞ = sup{|p(x)−p0(x)| : 0 ≤ x ≤ 1}. If p ∈ B , then it follows
from Lemma 5 that

max
(∫

p0 log
p0

p
dQ,

∫
(1 − p0) log

1 − p0

1 − p
dQ

)
≤ L‖p − p0‖2∞.(6.2)
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Hence, it suffices to show that �(p :‖p−p0‖∞ < ε) > 0 for every ε > 0. Because
p0(·) = H(η0(·)) and the function u 
→ H(u) is bounded and Lipschitz continu-
ous, it is enough to show that

�(η :‖η − η0‖∞ < ε) > 0 for every ε > 0.(6.3)

The result now follows from Theorem 4.
To verify the entropy condition of Theorem 2 in [6], let β > 0 be given. We

consider the sieve Fn = {f (x, y) = p(x)y(1 − p(x))1−y :p ∈ �n}, where �n is
defined in (2.2) with Mn = bnα/d and b > 0 is a constant to be chosen sufficiently
small. By Lemma 2, for some constant K , we have that logN(ε,�n,‖ · ‖∞) ≤
Kε−d/αbd/αn. Now choosing b < (β/K)α/dε, we can ensure that logN(ε,�n,

‖ · ‖∞) < nβ .
Finally, from Lemma 1, we have that �(�c

n) is exponentially small. This com-
pletes the proof. �

PROOF OF THEOREM 2. For nonrandom covariates, the observations are
independent, nonidentically distributed. We shall apply Theorem 2 of [3]. The
prior positivity condition follows essentially by the same arguments used in the
random covariate case. Consider the sieve �n defined by (2.2). The condition
(A3)(iii) of Theorem 2 of [3] holds by Lemma 1. To verify their conditions
(A3)(i) and (A3)(ii), we need to show that there exist exponentially consistent tests
for testing H0 :p = p0 against an alternative Ha :‖p − p0‖1,Qn > ε for all ε > 0.
The test constructed in (5.8) satisfies the required conditions. �

PROOF OF THEOREM 3. In this case we verify the conditions of Theorem 2
in [3] for the sieve defined by (2.2) with α = 2. In view of the proof of our Theo-
rem 2, the only condition that needs to be additionally verified is the testing con-
dition for the usual L1-distance. To construct the required sequence of tests, we
estimate the number of covariate values where the true probability function p0 and
the alternative p differ by at least a specified amount. The following lemma, where
we assume without loss of generality that X = [0,1], estimates that number. As the
number is at least a fraction of n, it follows that required tests can be constructed
as in the proof of Theorem 2. �

LEMMA 6. For any p ∈ �n,2 such that
∫ |p(x)−p0(x)|dx > 5ε, (5.2) holds.

PROOF. For a given function h, let b(x, k,h) = k
∑k

j=1(
∫ j/k
(j−1)/k h(t) dt) ×(k−1

j−1

)
xj−1(1 − x)k−j stand for the corresponding Bernstein polynomial of or-

der k. Then it is well known (and easy to see) that sup{|h(x) − b(x, k,h)| : 0 ≤
x ≤ 1} ≤ Ak−1 sup{|h′′(x)| : 0 ≤ x ≤ 1}, where A is an absolute constant. Under
given assumptions, the choice Mn ∼ γ n1/2 satisfies Assumption (G) for a suffi-
ciently small γ . Let γ ′ be a given small constant and let γ be sufficiently small
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such that γ < γ ′ε/(2A). Choose a sequence kn ∼ γ ′n. Let b(x) = b(x, kn,p)

and b0(x) = b(x, kn,p0). Therefore, it follows from the above discussion that, for
any p ∈ �n,2, we have that ‖p − b‖∞ ≤ A(γ ′n)−1γ n < ε/2, and ‖p0 − b0‖∞ ≤
A(γ ′n)−1γ n < ε/2. Hence,

|p(x) − p0(x)| > |b(x, kn,p) − b(x, kn,p0)| − ‖p − b‖∞ − ‖p0 − b0‖∞ > ε,

if x ∈ Bp = {t : |b(t, kn,p) − b(t, kn,p0)| > 2ε}. Therefore, Bp ⊂ Ap := {x :
|p(x) − p0(x)| > ε}, and hence, it suffices to show that the assertion with In,p

replaced by I ′
n,p = #{i :xi ∈ Bp}.

Clearly, 0 ≤ b(x), b0(x) ≤ 1. Also, ‖b−b0‖1 ≥ ‖p−p0‖1 −‖p−b‖∞ −‖p0 −
b0‖∞ > 4ε. Applying Lemma 3 to the pair b and b0 and ν, the Lebesgue measure
on [0, 1], and ε replaced by 2ε, we obtain that |Bp| > 2ε.

Now, as b and b0 are polynomials of order at most kn, the set Bp is at most
a union of kn intervals. Let J1, J2, . . . be these intervals. Find K1 such that As-
sumption (U) holds for δ = ε. Call a spacing interval (xi,n, xi+1,n) of type I if
Si,n ≤ K1/n. For any value of j , let J ∗

j be the union of type I spacing inter-
vals (xi,n, xi+1,n) that are completely contained in Jj . Note that at most two
type I spacing intervals may be partially contained in Jj for any j , which has
total length bounded by 2K1/n. Put B∗

p = ⋃
j J ∗

j . Thus by Assumption (U),
|Bp ∩ (B∗

p)c| < ε + 2K1kn/n and hence |B∗
p| > ε − 2K1kn/n. For j = 1,2 . . . , let

Rj be the number of type I spacing intervals completely contained in Jj . Consider-
ing the possibility that J ∗

j may not contain its end points, we find that J ∗
j contains

at least Rj − 2 design points, and hence B∗
p contains at least

∑
j Rj − 2kn design

points. To estimate
∑

j Rj , note that ε − 2K1kn/n ≤ λ(B∗
p) ≤ ∑

j RjK1/n, and
hence

∑
j Rj ≥ nε/K1 − 2kn. Hence Bp contains at least (nε/K1) − 4kn points,

which is greater than nε/(2K1) if we choose γ ′ < ε/(8K1). �
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