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OPTIMAL DESIGNS WHICH ARE EFFICIENT
FOR LACK OF FIT TESTS

BY WOLFGANG BISCHOFF AND FRANK MILLER

Catholic University of Eichstätt–Ingolstadt and AstraZeneca

Linear regression models are among the models most used in practice,
although the practitioners are often not sure whether their assumed linear
regression model is at least approximately true. In such situations, only de-
signs for which the linear model can be checked are accepted in practice. For
important linear regression models such as polynomial regression, optimal
designs do not have this property. To get practically attractive designs, we
suggest the following strategy. One part of the design points is used to allow
one to carry out a lack of fit test with good power for practically interesting
alternatives. The rest of the design points are determined in such a way that
the whole design is optimal for inference on the unknown parameter in case
the lack of fit test does not reject the linear regression model.

To solve this problem, we introduce efficient lack of fit designs. Then we
explicitly determine the ek-optimal design in the class of efficient lack of fit
designs for polynomial regression of degree k − 1.

1. Introduction. Linear regression models are among the models most used
in practice. Such a parametric assumption for the regression function is very attrac-
tive among practitioners, although they are often not sure whether their assumed
linear regression model is at least approximately true. Therefore, if a design can be
chosen (according to which the data are sampled), the practitioners spread out the
design points over the whole experimental region. For important linear regression
models such as polynomial regression, such designs and classical optimal designs
are quite different. Even more serious when using such an optimal design, devi-
ations from the assumed polynomial regression model are not detectable. In this
paper we address these concerns.

To explain the above mentioned problem in more detail, let us consider the
linear regression model

Y = Xθ + ε,(1.1)

where Y = (Y1, . . . , Yn)
� is the vector of observations, X is the design (model)

matrix, θ ∈ R
k is an unknown parameter vector and ε = (ε1, . . . , εn)

� is the
vector of errors. In this paper we assume that ε1, . . . , εn are independent, iden-
tically distributed real random variables with expectation 0 and unknown variance
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σ 2 ∈ (0,∞). Furthermore, we assume X = Xn = (f (x1), . . . , f (xn))
�, where

(x1, . . . , xn) ∈ En is a design for n observations, E = [a, b] ⊆ R is some com-
pact interval and f = (f1, . . . , fk)

� :E → R
k is a vector of known continuous

regression functions that have bounded variation.
It is common to solve classical experimental design problems for linear regres-

sion models of the form (1.1) in an approximate way. To do this, one identifies
an arbitrary design with n design points (x1, . . . , xn) ⊆ En with the probability
measure ξn := 1

n

∑n
i=1 δxi

, where δt is the Dirac measure in t ∈ E . Then it is more
feasible to solve a classical design problem in the set of all probability measures
on E instead in �n := { 1

n

∑n
i=1 δxi

|(x1, . . . , xn) ∈ En}, or in
⋃∞

n=1 �n. If we are
interested in inference on the parameter vector K�θ , where K ∈ R

k×s , 1 ≤ s ≤ k,
rank(K) = s, then, given the design ξ , the variance/covariance matrix of the best
linear unbiased (least squares) estimator for K�θ is given by

σ 2

n
K�M(ξ)−1K, M(ξ) :=

∫
E

ff � dξ

[provided that M(ξ) is invertible, otherwise we have to deal with generalized
inverses]; see [17], page 65. Hence, the “quality” of statistical inference on the
unknown parameter θ depends on the choice of the design ξ . The most interest-
ing optimality criteria, such as the φp-criteria, are functions of the information
matrix C(ξ) := (K�M(ξ)−1K)−1. By a famous theorem of Carathéodory (see,
e.g., [22]), the optimal designs for a criterion that is a function of the information
matrix can be determined in the set of probability measures with k(k + 1)/2 mass
points instead of in the set of all probability measures. Indeed, the classical opti-
mal designs for polynomial regression were determined in this set of probability
measures just mentioned. Therefore, in case the number k of different regression
functions is small (which is most interesting in practice), the optimal designs have
only a small number of different design (mass) points. For instance, for polyno-
mial regression of degree k − 1, the known classical D-, G-, A- and ek-optimal
[with ek = (0, . . . ,0,1)� ∈ R

k] designs have only k different design points. There
is a huge literature on classical optimal designs in case model (1.1) is true; see, for
example, [9, 12, 14, 17, 22].

To check models, Wiens [24] introduced optimal lack of fit- (LOF-) designs
based on the power of a given lack of fit test. Wiens [24] considered the usual
lack of fit test for regression models of the form (1.1). This approach was recently
generalized by Biedermann and Dette [1].

It is of practical interest to develop (in some sense) optimal designs that offer
the possibility to check whether the assumed model is true (or is at least not so far
away from the true one) and with which one makes good inference on θ in case the
assumed regression model is true. To establish designs which fulfill the above two
postulates, we combine both ideas. For that, let g :E → R be the true but unknown
regression function. Then the hypothesis

H0 :∃ θ = (θ1, . . . , θk)
� ∈ R

k with g = f �θ(1.2)
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is of practical main interest. A test for this hypothesis is called “lack of fit”-test
(LOF-test). Loosely speaking, our approach is then as follows. Let r ∈ [0,1] and
let a certain lack of fit test be given. Then an optimal LOF-design has the “best”
power for certain alternatives (of regression functions) that are separated from H0;
see Section 2.2. At first, we determine the class of r-efficient LOF-designs, that
is, all designs for which the efficiency with respect to the optimal LOF-design
is r . Hence, for r = 1, we obtain the optimal LOF-designs. Note that the known
classical optimal designs for polynomial regression models, however, often belong
to the class of 0-efficient LOF-designs. Next, in the class of LOF-designs which
are at least r-efficient, the optimal design with respect to statistical inference on
θ is determined under the assumption that the model (1.1) is true. In practice,
the value r of efficiency has to be chosen by the practitioner according to the
statistical problem under consideration. Then the data are sampled according to the
r-efficient-optimal LOF-design. In case model (1.1) is rejected by the LOF-test,
the data are useless for inference on θ . In case model (1.1) is not rejected, the data
are used for inference on θ .

In Section 2 we compare ours with other approaches that handle the problem un-
der consideration. Furthermore, the class of r-efficient LOF-designs is established
there. Then we determine ek-optimal designs in the class of at least r-efficient
LOF-designs for polynomial regression of degree k − 1 in Section 3. For corre-
sponding results for a general linear regression model (1.1), see [15]. Moreover,
we show the relation to Bayesian optimal designs. Proofs are postponed to the
Appendix.

2. LOF-designs.

2.1. LOF-tests and an asymptotic aspect of LOF-designs. Let us again con-
sider the assumed linear model (1.1), Y = Xθ + ε = (f (xn1), . . . , f (xnn))

�θ + ε,
the true model, Y = (g(xn1), . . . , g(xnn))

�+ε, and the hypothesis (1.2), H0 :∃ θ =
(θ1, . . . , θk)

� ∈ R
k with g = f �θ . Many LOF-tests are possible for H0. Wiens [24]

considered the usual LOF-test that has a noncentral F -distribution if the errors
are normally distributed. This holds asymptotically as well under mild conditions;
see [24]. If the regression function and the density of the design ξ fulfill some
smoothness assumptions, then tests based on nonparametric estimation of the re-
gression function are possible. Biedermann and Dette [1] proposed three LOF-tests
of this kind. Every test mentioned above has an asymptotic (for ξn converging in
some sense to ξ , as n → ∞) power, which is a function of

B(g, ξ) := 1

σ 2

∫
E

((
prL

2(ξ)

[f1,...,fk]⊥ g
)
(x)

)2
ξ(dx),

where prL
2(ξ)

[f1,...,fk]⊥ is the orthogonal projector onto [f1, . . . , fk]⊥ in L2(ξ); see [1,
24]. The greater B(g, ξ) is, the greater is the asymptotic power. It is easy to argue
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that we have to put B(g, ξ) := ∞ for g /∈ L2(ξ). In practice, however, it is suffi-
cient to consider regression functions that have bounded variation. Additionally,
we assume that the regression function is regular, which here means g is contin-
uous from the left in b and continuous from the right in [a, b). We denote this
class of functions by BV (E) = BV [a, b]. In the sequel we assume that the true
regression function g is an element of BV (E).

Opposed to the approximation approach for the classical design problem, an
asymptotic statistical argument is decisive for the set of probability measures in
which the LOF-design problem should be solved. Bischoff [2, 3] and Bischoff
and Miller [4] consider partial sum processes of regression models. These pa-
pers imply that a regression function g ∈ BV (E) which does not belong to the
assumed regression model can be detected asymptotically if the sequence of exact
designs converges uniformly to an asymptotic design (probability measure) that
has an absolutely continuous part with positive density which belongs to BV (E).
Uniform convergence of probability distributions means uniform convergence of
the corresponding distribution functions. Therefore, as a class of interesting de-
signs, we consider the set � of probability measures on E that can be decomposed
into a finitely discrete part and an absolutely continuous part with respect to the
Lebesgue measure whose density belongs to BV (E). Moreover, the papers men-
tioned above additionally show that B(g, ξ) is a suitable measure for how well an
alternative regression function can be detected. Indeed,

√
B(g, ξ) is the norm of

the residual sum limit process with respect to the reproducing kernel Hilbert space
of the corresponding limit process. Before we continue, we have to approximate
ξ ∈ � by a design in �n if n is the fixed number of observations. To this end, let
F0(t) := ξ((−∞, t]), t ∈ E , be the distribution function of ξ , and let Q0 be the
right continuous inverse of F0. Then the design ξn = 1

n

∑n
i=1 δxni

∈ �n with

xni+1 := Q0
(
i/(n − 1)

)
, i = 0, . . . , n − 1,(2.1)

has the property that ξn converges uniformly to ξ . These designs correspond to
designs defined by Sacks and Ylvisaker [20].

There are several other approaches that handle the problem under consideration.
For polynomial regression of fixed degree, for instance, Dette [8] and Pukelsheim
and Rosenberger [18] consider designs for a polynomial of higher degree (as an
alternative) and a mixture of two optimality criteria. Box and Draper [7] (see
also [11]) look for designs minimizing a bias. Montepiedra and Yeh [16] uses a
sequential approach. Biswas and Chaudhuri [6] select the correct model from a
known finite family of nested linear models and estimate the parameters associ-
ated with that model. But the optimal designs of these approaches do not have the
property that each fixed alternative of the class mentioned above can be discovered
as n → ∞.
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2.2. Optimal LOF-designs. For the definition of LOF-efficiency, it is tech-
nically necessary to consider a subset of alternatives which is separated from
the hypothesis H0. Following Biedermann and Dette [1], let v ∈ BV (E) be a
weight function which gives more weight to those points of E for which a de-
viation is more serious, and let λ be Lebesgue measure. Then we consider {h ∈
BV (E)| ∫E h2v dλ ≥ c,

∫
E f hv dλ = 0k}, c > 0 fixed, as a set of alternatives which

is separated from the hypothesis H0. Let λ̃ be the uniform distribution on E , that
is, λ̃ = (λ(E))−1 · λ|E . By choosing v :E → [0,∞) with∫

E
v dλ̃ = 1(2.2)

and c > 0 suitably, the above set of alternatives can be written as

Fv,c :=
{
h ∈ BV (E)

∣∣∣ ∫
E

h2v dλ̃ ≥ c,

∫
E

f hv dλ̃ = 0k

}
.

In the sequel let Fv,c be fixed and let v satisfy (2.2). Following Wiens [24], we
continue with a maximin approach.

DEFINITION 2.1. (a) [24]. A design ξ0 ∈ � is called LOF-optimal if

max
ξ∈�

min
h∈Fv,c

B(h, ξ) = min
h∈Fv,c

B(h, ξ0).

(b) The relative LOF-efficiency of a design ξ1 ∈ � is

EffLOF(ξ1) = min
h∈Fv,c

B(h, ξ1)/ min
h∈Fv,c

B(h, ξ0) ∈ [0,1],
where ξ0 is an optimal LOF-design.

2.3. Efficient LOF-designs. Wiens [24] computed optimal LOF-designs for
v ≡ const. Biedermann and Dette [1] generalized this result to arbitrary v. These
papers imply that the optimal LOF-design is the probability measure v · λ̃, where
for a measure η defined on the Borel field B and a Borel-measurable function
w : R → [0,∞) the measure w · η is defined by (w · η)(A) := ∫

A w dη, A ∈ B.
Next we give a generalization of this result. We use for two measures µ1,µ2 on B
the notation µ1 ≤ µ2 ⇔ ∀B ∈ B :µ1(B) ≤ µ2(B).

THEOREM 2.2. The set of designs with relative LOF-efficiency greater than
or equal to r ∈ [0,1] is given by ϒv[r] := {ξ ∈ �|rv · λ̃ ≤ ξ}.

Given ξ /∈ ϒv[r], the main part of the proof is to construct a regression func-
tion h0 ∈ Fv,c with (EffLOF(ξ) ≤)B(h0, ξ)/minh∈Fv,c B(h, v · λ̃) < r . The proof is
mainly along the lines of Wiens [24] and Biedermann and Dette [1] and therefore
is omitted. An immediate consequence of Theorem 2.2 is the following interesting
corollary.

COROLLARY 2.3. Let ξ ∈ � and r := sup{t |tv · λ̃ ≤ ξ} ∈ [0,1]. Then the
LOF-efficiency of ξ is equal to r .
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3. ek-optimal designs in ϒv[r] for polynomial regression. In this section
we calculate ek-optimal designs in ϒv[r], where v is an arbitrary weight func-
tion, in case the parametric model (1.1) is the polynomial regression model of de-
gree k − 1, that is, f (x) = (1, x, . . . , xk−1)�, k ≥ 2, where ek = (0, . . . ,0,1)� ∈
R

k . As discussed in [15], we can consider the experimental region E = [−1,1]
for ek-optimality, without loss of generality. Furthermore, the ek-optimal design
in ϒv[r] for polynomial regression is unique; see also [15]. The proof of the fol-
lowing theorem can be found in the Appendix.

THEOREM 3.1. A design ξ ∈ ϒv[r] is optimal for e�
k θ in ϒv[r] if and only if

∀y ∈ [−1,1], ∀ z ∈ {
z ∈ [−1,1]|ξ({z}) > 0

}
:

(3.1) (
e�
k M(ξ)−1f (y)

)2 ≤ (
e�
k M(ξ)−1f (z)

)2
.

Moreover, the optimal design for e�
k θ in ϒv[r] has the form rv · λ̃ + (1 − r) ×∑�

i=1 piδti , where t1, . . . , t� ∈ [−1,1] are �(≤ k) different points with |e�
k ×

M(ξ)−1f (ti)| = maxy∈[−1,1] e�
k M(ξ)−1f (y) and p1, . . . , p� ∈ (0,1] are suitable

values with
∑�

i=1 pi = 1.

Note that our design problem is related to a Bayesian design problem. For that,
let rv · λ̃ + (1 − r)ζ ∗ be the e�

k θ -optimal design in ϒv[r] and let M0 := M(v · λ̃).
Then ζ ∗ is the Bayesian optimal design for e�

k θ of the Bayesian design problem
with a priori information M0. This means that ζ ∗ maximizes the information ma-
trix’ rM0 + (1 − r)M(ζ ) with respect to ζ ∈ �; see [10], Section 5, [8], [17],
Chapter 11, and [15].

Kiefer and Wolfowitz [13] showed that 1
2(k−1)

(δ−1 + δ1) + 1
k−1 ×∑k−2

i=1 δcos(π(k−1−i)/(k−1)) is an ek-optimal design in �; see also [23]. The support
points of this optimal design are the extremal points in [−1,1] of the Chebyshev
polynomial Tk−1 of degree k − 1. See [19] and [21] for properties of Chebyshev
polynomials Tn(x), n ∈ N0, x ∈ [−1,1]. The proof of the following main result
can be found in the Appendix.

THEOREM 3.2. Let νi = 1/2 if i ∈ {0, k − 1}, νi = 1 if i ∈ {1, . . . , k − 2}, let
pi = νi

k−1 − rqi , i = 0, . . . , k − 1, where

qi = νi

2(k − 1)

2k−3∑
j=0

cos
(

j (k − 1 − i)π

k − 1

)∫ 1

−1
Tj (x)v(x) dx,

and let

α
(k)
0 := min

{
νi/

(
(k − 1)qi

)|i = 0, . . . , k − 1 with qi > 0
}
.(3.2)

Then for r ∈ [0, α
(k)
0 ], the design ξ = rv · λ̃ + ∑k−1

i=0 piδcos(π(k−1−i)/(k−1)) is
ek-optimal in ϒv[r].
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Next let us consider this result for two special weight functions.

EXAMPLE 3.3. For the weight function v(x) = 2/(π
√

1 − x2 ), Theorem 3.2
can be simplified substantially. Since∫ 1

−1
Tj (x)v(x) dx = 2

π

∫ 1

−1
Tj (x)

dx√
1 − x2

=
{

2, if j = 0,
0, otherwise

(see [19], page 35), we get pi = (1 − r) νi

k−1 and α
(k)
0 = 1, where νi = 1/2, i ∈

{0, k − 1}, νi = 1, i ∈ {1, . . . , k − 2}. Hence, for arbitrary r ∈ [0,1], the ek-optimal
design in ϒv[r] is

ξ = rv · λ̃ + 1 − r

k − 1

(
1

2
(δ−1 + δ1) +

k−2∑
i=1

δcos(π(k−1−i)/(k−1))

)
.

EXAMPLE 3.4. Finally, we specialize Theorem 3.2 for v ≡ 1 by using stan-
dard results for Chebyshev polynomials. Let νi = 1/2 for i ∈ {0, k − 1}, let νi = 1
for i ∈ {1, . . . , k − 2}, let

pi = pk−1−i = νi

k − 1
− rqi

= νi

k − 1
− r

1

2

νi

k − 1

k−2∑
j=0

cos
(

2jiπ

k − 1

)
·
(

1

2j + 1
− 1

2j − 1

)

for i = 0, . . . , k − 1, and let α
(k)
0 = min{νi/((k − 1)qi)|i = 0, . . . , k − 1 with

qi > 0}. Then for r ∈ [0, α
(k)
0 ] arbitrarily fixed, the design ξ = rλ̃ + ∑k−1

i=0 pi ×
δcos(π(k−1−i)/(k−1)) is ek-optimal in ϒv[r]. In Table 1 we state the values α

(k)
0 =

min{νi/((k−1)qi)|i = 0, . . . , k−1 with qi > 0} for k = 2,3, . . . ,8. Next, we state
the optimal designs in ϒ[r] := ϒv[r] for polynomial regression of certain degrees.

(a) Straight-line regression, that is, k = 2. Let r ∈ [0,1] be arbitrarily fixed.
Then the design ξ = rλ̃ + (1 − r)1

2(δ−1 + δ1) is e2-optimal in ϒ[r].
(b) Quadratic regression, that is, k = 3. Let r ∈ [0,3/4] be arbitrarily fixed.

Then the design rλ̃ + (1
4 − r

6)(δ−1 + δ1) + (1
2 − 2r

3 )δ0 is e3-optimal in ϒ[r].
(c) Cubic regression, that is, k = 4. Let r ∈ [0,5/6] be arbitrarily fixed. Then

the design rλ̃+ (1
6 − r

10)(δ−1 + δ1)+ (1
3 − 2r

5 )(δ−1/2 + δ1/2) is e4-optimal in ϒ[r].

TABLE 1
α

(k)
0 of Example 3.4

k 2 3 4 5 6 7 8

α
(k)
0 1 0.75 0.8333 0.7721 0.7980 0.7755 0.7882
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(d) Polynomial regression of degree 4, that is, k = 5. Let r ∈ [0,105/136] be
arbitrarily fixed. Then the design ξ = rλ̃+ (1

8 − r
14)(δ−1 +δ1)+ (1

4 − 4r
15)(δ−1/

√
2 +

δ1/
√

2) + (1
4 − 34r

105)δ0 is e5-optimal in ϒ[r].
It is worth mentioning that in [5] the case that r is near 1 is considered. For

this case the ek-optimal designs in ϒ[r] can also be explicitly calculated for
r ∈ [α(k)

1 ,1], where α
(k)
1 is some bound that can be calculated. By this result, for

each r ∈ [0,1] the ek-optimal designs in ϒ[r] can be calculated for k = 3,4.

APPENDIX: PROOFS OF THEOREMS 3.1 AND 3.2

We first state an equivalence theorem which is useful for explicitly calculat-
ing optimal designs in ϒv[r]. Since {M(ξ)|ξ ∈ ϒv[r]} is convex and compact,
the proof of the following equivalence theorem is related to equivalence theorems
stated in the literature; see, for example, [17]. But note that we consider arbitrary
designs of � and not only designs with finite support. For details, see [15].

THEOREM A.1. A design ξ ∈ ϒv[r] is φp-optimal [p ∈ (−∞,1)] for K�θ
in ϒv[r] if and only if the inequality

∀y ∈ E ∀ z ∈ S :f (y)�Nf (y) ≤ f (z)�Nf (z)(A.1)

holds, where S := {z ∈ E |∀ ε > 0 : (ξ − rv · λ̃)((z − ε, z + ε) ∩ E) > 0} and N =
M(ξ)−1K(K�M(ξ)−1K)−p−1K�M(ξ)−1.

PROOF OF THEOREM 3.1. We consider Theorem A.1 with E = [−1,1],
p = −1 and K = ek . Then we have N = M(ξ)−1eke�

k M(ξ)−1 and f (x)�Nf (x) =
(e�

k M(ξ)−1f (x))2 for all x ∈ [−1,1]. Note that e�
k M(ξ)−1f (y) is a polynomial

of degree k − 1 since M(ξ)−1 is positive definite. Hence, this polynomial has at
most k extremal points in [−1,1]. Thus, the assertion follows. �

In the proof of Theorem 3.2 we use the following lemma.

LEMMA A.2. Let k ≥ 2, let F = ((xi−1)
�−1)k�,i=1 ∈ R

k×k , where xi =
cos( (k−1−i)π

k−1 ), i = 0, . . . , k −1, and let S = diag(. . . ,−1,1,−1,1). Then we have

∀x ∈ [−1,1] : 1�
k SF−1f (x) = Tk−1(x).

PROOF. The function x �→ 1�
k SF−1f (x) is a polynomial of degree at

most k − 1. We have

1�
k SF−1f (xi) = 1�

k Sei+1 = (−1)k−1−i = cos
(
(k − 1 − i)π

)
= cos

(
(k − 1) arccos(xi)

) = Tk−1(xi), i = 0, . . . , k − 1.

Hence the assertion follows. �
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PROOF OF THEOREM 3.2. First note that r ∈ [0, α
(k)
0 ] is a natural condi-

tion because otherwise ξ is not a measure any more. Let xi = cos( (k−1−i)π
k−1 ),

i = 0, . . . , k − 1, be defined as in Lemma A.2 and let p∗
i := νi

k−1 . Then ξ∗ :=∑k−1
i=0 p∗

i δxi
is an ek-optimal design in �. Hence,

∀y ∈ [−1,1] ∀ i ∈ {0,1, . . . , k − 1} :
(
e�
k M(ξ∗)−1f (y)

)2 ≤ (
e�
k M(ξ∗)−1f (xi)

)2
.

Thus, to show Theorem 3.2 it is sufficient by Theorem 3.1 to show, for some γ ∈ R,

M(ξ∗)−1ek = γM(ξ)−1ek.(A.2)

Let F,S = diag(. . . ,−1,1,−1,1) be defined as in Lemma A.2, let R = ∫ 1
−1 ff �×

v dλ̃, and let F̃ and R̃ ∈ R
(k−1)×k be the first k − 1 rows of F and R, respectively.

Further, let p∗ := (p∗
0, . . . , p∗

k−1)
�, q := (q0, . . . , qk−1)

�, where qi is defined in
Theorem 3.2, and let P ∗ := diag(p∗

0, . . . , p∗
k−1), Q := diag(q0, . . . , qk−1). Note

that M(ξ∗) = FP ∗F�, M(ξ) = M(ξ∗) + r(R − FQF�). Hence (A.2) is equiva-
lent to

(R − FQF�)F�−1P ∗−1F−1ek = γ ek for some γ ∈ R.

Thus, to prove the assertion it is sufficient to show

0k−1 = (R̃F�−1P ∗−1F−1 − F̃QP ∗−1F−1)ek

= (R̃F�−1
SP ∗−1

SF−1 − F̃ SQP ∗−1
SF−1)ek(A.3)

= R̃F�−1
S1k − F̃ Sq,

where the last equation holds since Elfving’s theorem (ek-optimality of ξ∗ in �)
gives ek

ρ(ek)
= FSp∗. We define the following functions and matrices using Cheby-

shev polynomials:

h(1)(x) = (
T0(x), . . . , Tk−2(x)

)�
,

h(2)(x) = (
Tk−1(x), . . . , T2k−3(x)

)�
,

h(x) = (
h(1)(x)�, h(2)(x)�

)�
,

H (j) = (
h(j)(x0), . . . , h

(j)(xk−1)
)
, j = 1,2,

H = (
h(x0), . . . , h(xk−1)

)
.

With these definitions we can write

q = 1

2(k − 1)
diag(1/2,1,1, . . . ,1,1/2)H�

∫ 1

−1
h(x)v(x) dx.
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Since (−1)k−1−iTj (xi) = Tj+k−1(xi), we get by using problems 1.5.28 and 1.1.3
in [19],

H(1)Sq = 1

2(k − 1)
H (2) diag(1/2,1,1, . . . ,1,1/2)H�

∫ 1

−1
h(x)v(x) dx

=




0 0 · · · 0 1/2 0 · · · 0
0 0 1/4 0 1/4 0
...

... . . .

0 1/4 0 · · · 0 1/4




∫ 1

−1
h(x)v(x) dx(A.4)

= 1

2

∫ 1

−1
h(1)(x)Tk−1(x)v(x) dx.

Next we multiply (A.4) on the left side by the matrix which changes the basis
from T0, . . . , Tk−2 to x0, . . . , xk−2 and use Lemma A.2. Then we obtain F̃ Sq =
R̃F�−1

S1k , implying that (A.3) is true. �
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