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ORDER SELECTION FOR SAME-REALIZATION PREDICTIONS IN
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Assume that observations are generated from an infinite-order autore-
gressive [AR(∞)] process. Shibata [Ann. Statist. 8 (1980) 147–164] consid-
ered the problem of choosing a finite-order AR model, allowing the order
to become infinite as the number of observations does in order to obtain a
better approximation. He showed that, for the purpose of predicting the fu-
ture of an independent replicate, Akaike’s information criterion (AIC) and
its variants are asymptotically efficient. Although Shibata’s concept of as-
ymptotic efficiency has been widely accepted in the literature, it is not a
natural property for time series analysis. This is because when new obser-
vations of a time series become available, they are not independent of the
previous data. To overcome this difficulty, in this paper we focus on order
selection for forecasting the future of an observed time series, referred to as
same-realization prediction. We present the first theoretical verification that
AIC and its variants are still asymptotically efficient (in the sense defined in
Section 4) for same-realization predictions. To obtain this result, a techni-
cal condition, easily met in common practice, is introduced to simplify the
complicated dependent structures among the selected orders, estimated para-
meters and future observations. In addition, a simulation study is conducted
to illustrate the practical implications of AIC. This study shows that AIC
also yields a satisfactory same-realization prediction in finite samples. On the
other hand, a limitation of AIC in same-realization settings is pointed out. It is
interesting to note that this limitation of AIC does not exist for corresponding
independent cases.

1. Introduction. To select a model for the realization of a stationary time
series, it is common to assume that the realization comes from an autoregres-
sive moving-average (ARMA) process whose AR and MA orders are known to
lie within prescribed finite intervals. Then a model selection procedure is used to
select orders within these intervals and thereby determine a model for the data.
However, as pointed out by Burnham and Anderson [9], it is not common for the
true model to be a function of a small number of unknown parameters, and a model
having many parameters is sometimes essential to obtain a better approximation
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of the true model. From this perspective, a more flexible alternative to the ARMA
assumption is the assumption that data are generated by an AR(∞) process. In this
situation, the focus of model selection is usually placed on the forecasting ability
of the chosen model, and not on the correctness of the selection.

Shibata [27] gave the first justification for several model selection criteria along
this line. He considered the problem of choosing a finite-order AR model, allow-
ing the order to become infinite as the number of observations does. He showed
that for the purpose of forecasting the future of an independent replicate, which
is referred to as independent-realization prediction [see (1.4)], Akaike’s informa-
tion criterion (AIC) [2], the final prediction error (FPE) method [1] and Sn(k) [27]
are asymptotically efficient in the sense that no other selection criterion achieves a
smaller limiting mean square prediction error criterion value. (Since this is an as-
ymptotic result, the name AIC could also be thought of as an acronym for “Asymp-
totic Information Criterion.”) Based on a similar analysis, Bhansali [5] extended
Shibata’s result to the case of multistep predictions. However, Shibata’s concept
of asymptotic efficiency, which focuses on independent-realization predictions, is
not a natural property for time series analysis, because when new observations of
a time series become available, they are usually dependent on the previous data.
So far, no time series model selection theory has been established without this
unnatural assumption. This motivated our study.

To begin with, let us assume that observations x1, . . . , xn come from a stationary
AR(∞) process {xt } with

xt +
∞∑
i=1

aixt−i = et , t = . . . ,−1,0,1, . . . ,(1.1)

where et is a sequence of independent random noise values with zero mean and
variance σ 2, and the coefficients ai are absolutely summable. For predicting xn+h,
h ≥ 1, we consider the finite-order approximation models AR(1), . . . , AR(Kn).
Here, we allow the maximal order, Kn, to increase to infinity with n in order
to reduce approximation errors. The prediction for xn+h is referred to as same-
realization prediction. For brevity, our theoretical discussion only focuses on the
one-step prediction case, h = 1. But the related extensions to cases h > 1 are
straightforward as discussed in Section 6. When model AR(k), 1 ≤ k ≤ Kn, is
adopted, we use ân(k) to estimate the model’s coefficient vector and use

x̂n+1(k) = −x′
n(k)ân(k)(1.2)

to predict xn+1, where xj (k) = (xj , . . . , xj−k+1)
′ and

ân(k) = (
â1,n(k), . . . , âk,n(k)

)′
satisfies

−R̂n(k)ân(k) = 1

N

n−1∑
j=Kn

xj (k)xj+1,(1.3)



PREDICTION IN AUTOREGRESSIVE PROCESSES 2425

with N = n − Kn and

R̂n(k) = 1

N

n−1∑
j=Kn

xj (k)x′
j (k).

Since the difference between ân(k) and the least squares estimator âL
n (k), where

âL
n (k) = −

(
n−1∑
j=k

xj (k)x′
j (k)

)−1n−1∑
j=k

xj (k)xj+1,

is asymptotically negligible under the assumptions on Kn and xt we use herein
(see Section 2), x̂n+1(k) is still called the least squares predictor. For assessing the
model’s predictive ability, we consider the second-order (unconditional) mean-
squared prediction error (MSPE), ln(k), of x̂n+1(k), where

ln(k) = E
(
xn+1 − x̂n+1(k)

)2 − σ 2.

In Section 2 some asymptotic properties of ln(k) from a companion paper [17]
are introduced. In particular, Proposition 2 of Section 2 shows that ln(k) can be
uniformly (in k) approximated by Ln(k) = (k/N)σ 2 + ‖a − a(k)‖2

R , where a(k)

is defined after (2.3), a = (a1, a2, . . . )
′ is an infinite-dimensional vector with ai ’s

defined in (1.1), and ‖a − a(k)‖2
R is defined after (2.6). The first term of Ln(k),

(k/N)σ 2, which is proportional to the order of the candidate model, k, can be
viewed as a measure of model complexity. The second term of Ln(k), ‖a−a(k)‖2

R ,
which decreases as k increases, measures the goodness of fit. Proposition 3 of Sec-
tion 2 further points out that Ln(k) can also be used to uniformly approximate
ln,0(k) = E(yn+1 − ŷn+1(k))2 − σ 2, the second-order unconditional MSPE for
independent-realization predictions. Here {y1, . . . , yn} is a realization from an in-
dependent copy of {xt }, yn+1 is the future observation to be predicted, and the
predictor ŷn+1(k) is given by

ŷn+1(k) = −y′
n(k)ân(k),(1.4)

with ân(k) [see (1.3)] obtained from x1, . . . , xn and y′
n(k) = (yn, . . . , yn+1−k).

Therefore, these two types of MSPEs are asymptotically equivalent. To us this
equivalence is somewhat surprising because some recent studies have shown that
this equivalence does not hold in other situations; see the discussion after Propo-
sition 3 for details. It can be erroneous to directly assume that the results from
same-realization predictions will be the same as those for corresponding indepen-
dent cases without theoretical justification.

When the order of the least squares predictor is selected by an order selec-
tion criterion, due to more complicated probabilistic structures, analyzing the pre-
dictor’s MSPE becomes more difficult. Section 3 is devoted to this problem. For
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independent-realization predictions, Theorem 1 of Section 3 provides an asymp-
totic expression for the second-order unconditional MSPE of ŷn+1(k̂n),

ln,0(k̂n) = E
(
yn+1 − ŷn+1(k̂n)

)2 − σ 2,(1.5)

where 1 ≤ k̂n = k̂n(x1, . . . , xn) ≤ Kn is an order determined by AIC, FPE, Cp [22],
Sp [14] or Sn(k). The reason why Cp and Sp are included in our analysis is given
in Remark 2 of Section 3. We are interested in the other criteria because their
asymptotic optimalities for independent-realization predictions were justified by
Shibata [27] through a conditional version of ln,0(k̂n), namely,

E
{(

yn+1 − ŷn+1(k̂n)
)2∣∣x1, . . . , xn

} − σ 2;
see (3.1) and (4.11) for more details. However, since this paper focuses on the
unconditional MSPE, an extension of Shibata’s result to the unconditional case
is needed. It should be noted that this extension is nontrivial since there are sev-
eral technical gaps to be bridged, as detailed in Section 5. According to Theo-
rem 1, �n,0(k̂n) with k̂n selected by these criteria can ultimately achieve the best
compromise between model complexity and goodness of fit, provided {xt } is truly
an infinite-order AR process. Viewing this result, it is interesting to ask whether
AIC [Cp , Sp , FPE or Sn(k)] still possesses a similar property for same-realization
predictions. The main difficulty of this question lies in the fact that the selected
orders, estimated parameters and future observations are all stochastically depen-
dent in the same-realization case. Since, as observed in (1.5), the future obser-
vations are independent of the estimated parameters and the selected order for
independent-realization predictions, the approaches used in [27] and Theorem 1
are no longer applicable. To overcome this difficulty, an assumption for Ln(k), as-
sumption (K.6), is introduced in this section. Two examples are given to illustrate
that assumption (K.6) is easily met in common practice. Based on this assumption
(among others), Theorem 2 (also in Section 3) shows that

E
(
xn+1 − x̂n+1(k̂n)

)2 − σ 2

and

E
(
yn+1 − ŷn+1(k̂n)

)2 − σ 2,

with k̂n selected by AIC [Cp , Sp , FPE or Sn(k)], have the same asymptotic ex-
pressions. Moreover, we also apply the same techniques to analyze some other
AIC-like criteria having different penalty functions; see Corollary 1 and Remark 3
of Section 3. Armed with Corollary 1, the performances of these criteria are first
evaluated from the same-realization prediction point of view.

In Section 4 the results obtained in Section 3 are re-examined in greater depth. In
particular, we show that, for same-realization predictions, the predictor with an or-
der determined by AIC [FPE, Sp , Cp or Sn(k)] is ultimately no worse than the best
predictor among the candidate predictors, {x̂n+1(1), . . . , x̂n+1(Kn)}. This property
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is referred to as asymptotic efficiency; see (4.1). To the authors’ knowledge, this is
the first result that confirms AIC’s (and its variants’) validity in same-realization
settings. In addition, a simulation study is conducted to illustrate the practical
implications of AIC. This study shows that AIC also yields a satisfactory same-
realization prediction in many finite-sample situations; see Table 1 in Section 4 for
more details. On the other hand, a limitation of AIC in same-realization settings is
demonstrated. Empirical results, given in Table 2 in Section 4, reveal that it seems
very difficult for AIC to possess strong asymptotic efficiency; see (4.5) for the defi-
nition. This is a somewhat interesting discovery because we show at the end of Sec-
tion 4 that AIC has no such difficulty when it is used for independent-realization
predictions. It is worth noting that AIC’s asymptotic efficiency is established un-
der the assumption that the underlying process is truly an AR(∞) process. If the
order of the true model is finite, then the BIC-like criterion, for example, BIC [24]
and HQ [13], can choose the smallest true model with probability tending to 1, but
AIC does not possess this optimal property (see [26]). Therefore, to achieve opti-
mal same-realization predictions in situations where the underlying AR model has
a possibly finite order, further investigation is still required. For ease of reading, all
proofs of the results in Section 3 are deferred to Section 5. Concluding remarks are
given in Section 6. Discussions of moment restrictions, connections between time
series and regression model selections, and extensions to the multivariate case are
also given in this section.

2. Preliminary results. We first list several assumptions essential to the fol-
lowing analysis.

(K.1) Let {xt } be a linear process satisfying (1.1) with A(z) = 1 + a1z + a2z
2 +

· · · �= 0 for |z| ≤ 1. Furthermore, let the coefficients {ai} obey one of
the following restrictions: (a)

∑∞
i=1|ai | < ∞, (b)

∑∞
i=1|i1/2ai | < ∞, or

(c)
∑∞

i=1|iai | < ∞.
(K.2) Let the distribution function of et be denoted by Ft . Some positive num-

bers α, δ and C0 exist such that, for all t = . . . ,−1,0,1, . . . and |x −y| < δ,

|Ft(x) − Ft(y)| ≤ C0|x − y|α.

(K.3) sup−∞<t<∞E|et |s < ∞, s = 1,2, . . . .

(K.4) Let Kn be chosen to satisfy

Cl ≤ K
2+δ1
n

n
≤ Cu

for some positive numbers δ1, Cl and Cu.
(K.5) an �= 0 for infinitely many n.
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REMARK 1. (K.1)(a) implies that xt has a one-sided infinite moving-average
representation ([30], page 245),

xt =
∞∑
i=0

biet−i ,(2.1)

where the bi are absolutely summable with b0 = 1, and the polynomial B(z) =
A−1(z) = 1 + b1z + b2z

2 + · · · is bounded away from zero for |z| ≤ 1. There-
fore, the spectral density function, f (λ), of {xt } satisfies f1 ≤ f (λ) ≤ f2 for
some 0 < f1 ≤ f2 < ∞, where −π < λ ≤ π . This property also ensures that
supk≥1 ‖R(k)‖ < ∞ and supk≥1 ‖R−1(k)‖ < ∞, where

R(k) = E
(
xn(k)x′

n(k)
)

(2.2)

and ‖A‖2 = λmax(A
′A) denotes the maximal eigenvalue of the matrix A′A. More-

over, according to Brillinger ([8], Theorem 3.8.4), (K.1)(b) and (K.1)(c) imply that∑∞
i=1|i1/2bi | < ∞ and

∑∞
i=1|ibi | < ∞, respectively.

The MSPE of x̂n+1(k) can be expressed as

E
(
xn+1 − x̂n+1(k)

)2 − σ 2 = E
(
f(k) + S(k)

)2
,(2.3)

where 1 ≤ k ≤ Kn,

f(k) = x′
n(k)R̂−1

n (k)
1

N

n−1∑
j=Kn

xj (k)ej+1,k,

ej+1,k = xj+1 + x′
j (k)a(k),

a(k) = (
a1(k), . . . , ak(k)

)′
is the minimizer of mk(c) = E(xk+1 + x′

k(k)c)2, c ∈ Rk , and

S(k) =
∞∑
i=1

(
ai − ai(k)

)
xn+1−i ,

with ai(k) = 0 for i > k. To simplify the notation, a(k) is sometimes viewed as an
infinite-dimensional vector with entries ai(k), i = 1,2, . . . .

To find an asymptotic expression for ln(k) = E(xn+1 − x̂n+1(k))2 − σ 2, Propo-
sition 1 below deals with the moment properties of R̂−1

n (k), defined after (1.3). Its
proof can be found in [17] [see equations (2.27) and (2.28) and Theorem 2]. For
the sake of convenience, in the rest of this paper we use C to denote a generic
positive constant independent of the sample size n and of any index with an upper
(or lower) limit depending on n. But C may depend on the distributional properties
of xt . It also may have different values in different places.
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PROPOSITION 1. Assume (K.1)(a), (K.2), (K.3) and (K.4). Then, for any
q > 0,

max
1≤k≤Kn

E‖R̂−1
n (k)‖q ≤ C(2.4)

and

max
1≤k≤Kn

E‖R̂−1
n (k) − R−1(k)‖q

(k2/N)q/2 ≤ C(2.5)

hold for all sufficiently large n, where R−1(k) denotes the inverse of R(k)

[see (2.2)].

Armed with Proposition 1, Ing and Wei ([17], Theorem 3) obtained an asymp-
totic expression for ln(k) which holds uniformly for all 1 ≤ k ≤ Kn. This result is
summarized in the following proposition.

PROPOSITION 2. Assume (K.1)(b), (K.2), (K.3) and (K.4). Then

lim
n→∞ max

1≤k≤Kn

∣∣∣∣E(xn+1 − x̂n+1(k))2 − σ 2

Ln(k)
− 1

∣∣∣∣ = 0,(2.6)

where Ln(k) = (k/N)σ 2 + ‖a − a(k)‖2
R , a = (a1, a2, . . . )

′, a(k) is now viewed
as an infinite-dimensional vector, and for an infinite-dimensional vector d =
(d1, d2, . . . )

′,

‖d‖2
R = ∑

i≤i,j≤∞
didjγi−j ,

with γi−j = E(xixj ). We also note that ‖a − a(k)‖2
R = E(S2(k)) decreases as k

increases.

The following result provides an asymptotic expression for the MSPE of the
least squares predictor, ŷn+1(k), in independent-realization settings.

PROPOSITION 3. Assume that the assumptions of Proposition 2 hold. Then

lim
n→∞ max

1≤k≤Kn

∣∣∣∣E{(yn+1 − ŷn+1(k))2} − σ 2

Ln(k)
− 1

∣∣∣∣ = 0.(2.7)

A proof of Proposition 3 can be found in Theorem 4 of [17]. Viewing
(2.6) and (2.7), both types of second-order MSPEs can be uniformly approximated
by the same function, Ln(k), and, hence, they are asymptotically equivalent. How-
ever, this equivalence should not be taken for granted. To see this, Ing [15] recently



2430 C.-K. ING AND C.-Z. WEI

showed that, if the underlying process is a random walk model and the assumed
model is correctly specified, then

lim
n→∞

E(xn+1 − x̂n+1(1))2 − σ 2

E(yn+1 − ŷn+1(1))2 − σ 2
.= 2

13.2859
.

Therefore, the equivalence mentioned above does not hold in this example. For
stationary AR processes, Kunitomo and Yamamoto ([20], pages 946–947) also
considered a comparison between same- and independent-realization MSPEs.
They showed that the difference between the terms of order 1/n of the two
types of MSPEs can be substantial when a fixed-order and underspecified AR
model is used. [Note that their conclusion does not contradict that obtained from
(2.6) and (2.7), because the second-order MSPE is of order O(1) in the underspec-
ified and fixed-order case.] These comparisons show that the difference between
the MSPEs in two types of forecasting settings should be carefully examined in
each different situation. It can be erroneous to directly assume that the results for
same-realization predictions will be the same as those for the corresponding inde-
pendent case without theoretical justification.

Due to more complicated probabilistic structures, this analysis becomes more
difficult when the order of the predictor is selected by a data-driven method. This
situation is considered in the following section.

3. Asymptotic expressions for the MSPEs of AIC and its variants. Values
of Sn, AIC, FPE, Sp and Cp for an AR(k) model are defined by

Sn(k) = (N + 2k)σ̂ 2
k ,

AIC(k) = log σ̂ 2
k + 2k

n
,

FPE(k) =
(

n + k

n − k

)
σ̂ 2

k ,

Sp(k) =
(

1 + k

N − k − 1

)
ˆ̂σ 2
k

and

Cp(k) = Nσ̂ 2
k − (N − 2k) ˆ̂σ 2

Kn
,

respectively, where

σ̂ 2
k = 1

N

n−1∑
t=Kn

(
xt+1 + â1,n(k)xt + · · · + âk,n(k)xt+1−k

)2

and

ˆ̂σ 2
k =

(
N

N − k

)
σ̂ 2

k .
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Also define

k̂S
n = arg min

1≤k≤Kn

Sn(k),

k̂A
n = arg min

1≤k≤Kn

AIC(k),

k̂F
n = arg min

1≤k≤Kn

FPE(k),

k̂
Sp
n = arg min

1≤k≤Kn

Sp(k)

and

k̂C
n = arg min

1≤k≤Kn

Cp(k).

For independent-realization predictions, Shibata ([27], Section 4), assum-
ing (K.1)(a), (K.5), Kn = o(n1/2) and Gaussian noise, showed that∣∣∣∣E{(yn+1 − ŷn+1(k̂n))

2|x1, . . . , xn} − σ 2

Ln(k∗
n)

− 1
∣∣∣∣ = op(1),(3.1)

where 1 ≤ k̂n ≤ Kn equals k̂A
n , k̂F

n or k̂S
n , and k∗

n is defined implicitly through
Ln(k

∗
n) = min1≤k≤Kn Ln(k). (Note that k∗

n → ∞, provided Kn → ∞ and (K.5)
holds; see [27], page 154.) However, since, as mentioned in the first section, this
paper focuses on the unconditional MSPE, an unconditional version of (3.1) is
given in the following theorem.

THEOREM 1. Let the assumptions of Proposition 2 and (K.5) hold. Then

lim
n→∞

E(yn+1 − ŷn+1(k̂n))
2 − σ 2

Ln(k∗
n)

= 1,

where k̂n = k̂A
n , k̂F

n , k̂C
n , k̂

Sp
n or k̂S

n .

REMARK 2. It is unclear from Shibata’s [27] paper whether (3.1) holds with

k̂n = k̂C
n or k̂

Sp
n . In fact, both Cp’s and Sp’s predictive abilities in AR(∞) mod-

els have seldom been discussed in the literature. On the other hand, Cp and AIC
have been proven to be asymptotically equivalent in the regression model with
infinitely many parameters; see, for example, [28] and [25]. Under a similar situ-
ation, Breiman and Freedman [7] also established Sp’s asymptotic optimality for
prediction (see Section 6 for more details). These previous results motivated us to
include Cp and Sp in the analysis.



2432 C.-K. ING AND C.-Z. WEI

Theorem 1 shows that, for independent-realization settings, the second-order
(unconditional) MSPE of the least squares predictor with the order selected
by AIC, Sn(k), FPE, Sp or Cp can ultimately achieve the best compromise be-
tween model complexity, (k/N)σ 2, and goodness of fit, ‖a − a(k)‖2

R . This result
led us to ask whether AIC still possesses a similar property for same-realization
predictions. Since the model selection criteria, estimated parameters and future ob-
servations are all stochastically dependent in same-realization settings, we impose
the following assumption on Ln(k) in order to simplify the dependent structures
among these components.

(K.6) For any ξ > 0, there is an exponent θ = θ(ξ) with 0 ≤ θ < 1 such that, for
all large n and all k ∈ An,θ = {k : 1 ≤ k ≤ Kn, |k − k∗

n| ≥ k∗θ

n },

k∗ξ

n

N(Ln(k) − Ln(k
∗
n))

|k − k∗
n| ≥ C̄ > 0,(3.2)

where Kn satisfies (K.4) and C̄ is some positive constant independent of n.

Note that if {xt } is a stationary AR model of finite order, then (3.2) holds auto-
matically. When {xt } is truly a stationary AR(∞) model, the following two exam-
ples also show that (3.2) is flexible enough to accommodate a variety of applica-
tions.

EXAMPLE 1 (Exponential-decay case). Assume that, for all k = 0,1, . . . , the
AR coefficients satisfy

C1k
−θ1e−βk ≤ ∑

i≥k

a2
i ≤ C2k

θ1e−βk,(3.3)

where θ1 is some nonnegative number, and β,C2 and C1 are some positive
numbers with C2 ≥ C1. Note that (3.3) is satisfied by any causal and invertible
ARMA(p, q) model with q > 0. It is shown in the Appendix that (3.3) and (K.4)
yield

k∗
n = 1

β
logN + O(log2 N),

where log denotes the natural logarithm and log2 N = log(logN). This result
and (3.3) further ensure that, for any 0 < η < 1 and all |k − k∗

n| > k∗η

n ,

N(Ln(k) − Ln(k
∗
n))

|k − k∗
n| ≥ C3(3.4)

holds for all sufficiently large n and some positive number C3 independent of n.
Hence, for any ξ > 0, (3.2) is satisfied with any 0 < θ < 1. For a proof of (3.4),
see the Appendix.
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EXAMPLE 2 (Algebraic-decay case). Assume that, for all k = 0,1, . . . ,

(C4 − M1k
−ξ1)k−β ≤ ‖a − a(k)‖2

R ≤ (C4 + M1k
−ξ1)k−β,(3.5)

where C4,M1, ξ1 and β are some positive numbers. Note that for independent-
realization predictions, Shibata ([27], page 162) gave a similar condition,

‖a − a(k)‖2
R = C5k

−β,(3.6)

to illustrate that AIC is strictly better than the other criteria that have different
weights for penalizing the number of regressors in the model. However, since (3.6)
imposes a rather restrictive limitation on ‖a − a(k)‖2

R , we use (3.5) to replace it.
Under (K.4) and (3.5) with ξ1 ≥ 2 and β > 1 + δ1 [note that δ1, defined in (K.4),
can be an arbitrarily small positive number], we show in the Appendix that

k∗
n =

(
σ 2

NC4β

)−1/(β+1)

+ O(1),

and for some positive number C6 and all |k − k∗
n| > C6,

N(Ln(k) − Ln(k
∗
n))

|k − k∗
n| ≥ C7

(∣∣∣∣k − k∗
n

k∗
n

∣∣∣∣ ∧ 1
)

(3.7)

holds for all sufficiently large n and some positive number C7 independent of n,
where, for real numbers a and b, a ∧ b = a if a ≤ b and a ∧ b = b if a > b.
Therefore, for any ξ > 0, (3.2) is satisfied with any 1 − min{ξ,1} < θ < 1.

The above discussion shows that assumption (K.6) is quite natural from both
practical and theoretical points of view, since it includes the ARMA models
(which are the most used short-memory time series models in practice) and the
AR models with algebraic-decay coefficients (which are of much theoretical in-
terest in the context of model selection) as special cases. Technically speaking,
(3.2) gives Ln(k) a basin-like shape such that, for k distant from the bottom (falling

into An,θ ), the probability of {k̂n = k}, with k̂n = k̂A
n , k̂F

n , k̂C
n , k̂

Sp
n or k̂S

n , is “suffi-
ciently” small (see the proof of Theorem 2 for more details). Now the main result
of this section is stated as follows.

THEOREM 2. Let the assumptions of Theorem 1 and (K.6) hold. Then for
same-realization predictions, one has

lim
n→∞

E(xn+1 − x̂n+1(k̂n))
2 − σ 2

Ln(k∗
n)

= 1,(3.8)

where k̂n = k̂A
n , k̂F

n , k̂C
n , k̂

Sp
n or k̂S

n .
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In the literature the penalty for the number of regressors in the model sometimes
has a weight different from that used in AIC. Following [3], we now consider
AICα(k), where α > 1,

AICα(k) = log σ̂ 2
k + αk

n
,

L(α)
n (k) = (α − 1)kσ 2

N
+ ‖a − a(k)‖2

R,

k̂Aα
n = arg min

1≤k≤Kn

AICα(k)

and

k∗(α)

n = arg min
1≤k≤Kn

L(α)
n (k).

To investigate the performances of AICα(k), α > 1, for same-realization predic-
tions, we need the following analogy of (K.6).

(K.6′) For any ξ > 0, there exists an exponent θ = θ(ξ) with 0 ≤ θ < 1 such that,
for all large n and all k ∈ A

(α)
n,θ = {k : 1 ≤ k ≤ Kn, |k − k∗(α)

n | ≥ (k∗(α)

n )θ },
(
k∗(α)

n

)ξ N(L
(α)
n (k) − L

(α)
n (k∗(α)

n ))

|k − k∗(α)

n | ≥ C̄ > 0,(3.9)

where α > 1, Kn satisfies (K.4) and C̄ is some positive number independent
of n.

For any α > 1, it is easy to see that (3.9) is fulfilled by finite-order stationary
AR models. By arguments similar to those given in the Appendix, we can also
show that, for any α > 1, (3.9) is satisfied by stationary AR(∞) models with coef-
ficients which obey (3.3) or (3.5) (with β > 1+δ1 and ξ1 ≥ 2). Therefore, assump-
tion (K.6′), like assumption (K.6), is reasonable for a wide range of applications.
In Corollary 1 we obtain an asymptotic expression for the MSPE of x̂n+1(k̂

Aα
n ),

α > 1, in same-realization settings.

COROLLARY 1. Let the assumptions of Theorem 2 hold with (K.6) replaced
by (K.6′). Then

lim
n→∞

E(xn+1 − x̂n+1(k̂
Aα
n ))2 − σ 2

Ln(k∗(α)

n )
= 1.(3.10)

REMARK 3. By arguments like those used to prove Corollary 1, (3.10) still
holds with k̂Aα

n replaced by k̂Fα
n or k̂

(α)
n , where α > 1,

k̂Fα
n = arg min

1≤k≤Kn

FPEα(k) = arg min
1≤k≤Kn

(
1 + αk

n

)
σ̂ 2

k
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and

k̂(α)
n = arg min

1≤k≤Kn

S(α)
n (k) = arg min

1≤k≤Kn

(N + αk)σ̂ 2
k .

Therefore, AICα(k), FPEα(k) and S
(α)
n (k) are (asymptotically) equally efficient

for the same choice of α. Note that FPEα(k) and S
(α)
n (k) were first introduced by

Bhansali and Downham [6] and Shibata [27], respectively.

To illustrate Corollary 1, we first consider a special case of (3.3),

C1e
−βk ≤ ∑

i≥k

a2
i ≤ C2e

−βk,(3.11)

where β,C1 and C2 are some positive numbers with C2 ≥ C1. Condition (3.11)
is satisfied by any causal and invertible ARMA(p, q) process with q > 0. Un-
der (3.11), it can be shown that, for any α > 1,

Ln(k
∗(α)

n )

Ln(k∗
n)

= 1.

This fact and (3.10) yield that, for any two positive numbers α1 and α2 larger
than 1, AICα1(k) and AICα2(k) are asymptotically equivalent, namely,

lim
n→∞

E(xn+1 − x̂n+1(k̂
Aα2
n ))2 − σ 2

E(xn+1 − x̂n+1(k̂
Aα1
n ))2 − σ 2

= 1.(3.12)

Next consider the algebraic-decay case (3.5) with ξ1 ≥ 2 and β > 1 + δ1. By
arguments similar to those used for obtaining (3.7) and Case I of [27], page 162,
one has, for 1 < α2 < α1 ≤ 2 or 2 ≤ α1 < α2 < ∞,

lim inf
n→∞

Ln(k
∗(α2)

n )

Ln(k
∗(α1 )
n )

> 1

and, hence, for 1 < α2 < α1 ≤ 2 or 2 ≤ α1 < α2 < ∞,

lim inf
n→∞

E(xn+1 − x̂n+1(k̂
Aα2
n ))2 − σ 2

E(xn+1 − x̂n+1(k̂
Aα1
n ))2 − σ 2

> 1.(3.13)

Inequality (3.13) and Corollary 1 together imply that AIC asymptotically domi-
nates AICα , α �= 2, in the sense that

lim inf
n→∞

E(xn+1 − x̂n+1(k̂
Aα
n ))2 − σ 2

E(xn+1 − x̂n+1(k̂A
n ))2 − σ 2

≥ 1,(3.14)

with strict inequality holding for at least the algebraic-decay case (3.5).
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Before leaving this section, we note that (3.12)–(3.14) seem to be the first results
that can evaluate (compare) the performances of AICα(k), α > 1, from the same-
realization prediction point of view. For more applications of these results, see
Section 4. In addition to (3.5), we have also found a similar case, ‖a − a(k)‖2

R =
C5(log k)θ3k−β , with C5 > 0, −∞ < θ3 < ∞, and β > 1 + δ1, where (3.14) holds
with strict inequality only. However, to gain a deeper understanding of AIC it
would be interesting to identify more AR(∞) models which can lead to the same
property.

4. Performances of AIC and its variants for independent- and same-
realization predictions. Based on the results obtained in Section 3, this section
aims to investigate how well AIC (or its variants) works for independent- and
same-realization predictions. Let k̂n ∈ {1,2, . . . ,Kn} be determined by a certain
order selection criterion with Kn satisfying assumption (K.4). Define

PE
(
x̂n+1(k̂n)

) = E(xn+1 − x̂n+1(k̂n))
2 − σ 2

min1≤k≤KnE(xn+1 − x̂n+1(k))2 − σ 2 .

We say that k̂n is asymptotically efficient for same-realization predictions if

lim sup
n→∞

PE
(
x̂n+1(k̂n)

) ≤ 1.(4.1)

Similarly, for independent-realization predictions, define PEI(ŷn+1(k̂n)) as

PEI
(
ŷn+1(k̂n)

) = E(yn+1 − ŷn+1(k̂n))
2 − σ 2

min1≤k≤KnE(yn+1 − ŷn+1(k))2 − σ 2 .

We say that k̂n is asymptotically efficient for independent-realization predictions if

lim sup
n→∞

PEI
(
ŷn+1(k̂n)

) ≤ 1.(4.2)

Inequality (4.1) [(4.2)] says that, if k̂n is determined by an asymptotically effi-
cient criterion, then the relative prediction efficiency of the best predictor (from the
MSPE point of view) among {x̂n+1(1), . . . , x̂n+1(Kn)} [{ŷn+1(1), . . . , ŷn+1(Kn)}]
of x̂n+1(k̂n) [ŷn+1(k̂n)], that is, PE(x̂n+1(k̂n)) (PEI(ŷn+1(k̂n))), will ultimately not
exceed 1.

Proposition 3 and Theorem 1 yield that

lim
n→∞ PEI

(
ŷn+1(k̂n)

) = 1,(4.3)

where k̂n = k̂A
n , k̂F

n , k̂S
n , k̂

Sp
n or k̂C

n . Therefore, AIC, FPE, Sn(k), Sp and Cp are
all asymptotically efficient for independent-realization predictions. According to
Proposition 2 and Theorem 2, we have

lim
n→∞ PE

(
x̂n+1(k̂n)

) = 1,(4.4)
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where k̂n = k̂A
n , k̂F

n , k̂S
n , k̂

Sp
n or k̂C

n , which shows that these criteria are also as-
ymptotically efficient for same-realization predictions. In addition, if it is already
known that the exponential-decay case (3.11) holds, then (3.12) and Remark 3 sug-
gest that more options, for example, AICα [FPEα , S

(α)
n (k)], with any α > 1, are

available for achieving asymptotic efficiency. However, AIC and its variants can-
not be replaced by AICα [FPEα , S

(α)
n (k)], α �= 2, in general, since (3.13) and (4.4)

imply that the latter criterion is not asymptotically efficient in the algebraic-decay
case.

To gain further insight into the practical implications of asymptotically efficient
criteria for same-realization predictions, a simulation study is conducted. Let ob-
servations be generated from an ARMA(1,1) model

xt+1 = φ0xt + εt − θ0εt−1,

where the εt ’s are independent and identically N (0,1) distributed, φ0 = ±0.9,

±0.7,±0.5 and θ0 = ±0.8,±0.6. For each combination (φ0, θ0), the empirical es-
timates of PE(x̂n+1(k̂

A
n )), denoted by P̂E(x̂n+1(k̂

A
n )), are obtained based on 20,000

replications for (n,Kn) = (60,7), (120,10), (200,14), (500,22) and (1000,31).
(Note that Kn here is set to the largest integer ≤ n1/2.) In addition, the empirical
estimates of

γopt(n,Kn) = min1≤k≤Kn E(xn+1 − x̂n+1(k))2 − σ 2

min1≤k≤6 E(x61 − x̂61(k))2 − σ 2 ,

denoted by γ̂opt(n,Kn), with σ 2 = 1 and (n,Kn) = (60,7), (120,10), (200,14),

(500,22) and (1000,31), are also obtained based on the same ARMA(1,1) model
and 20,000 replications. [Note that γopt(n,Kn) is used to illustrate how fast
min1≤k≤Kn E(xn+1 − x̂n+1(k))2 − σ 2 decreases as n and Kn simultaneously in-
crease.] According to the rate of convergence of γ̂opt(n,Kn), these empirical re-
sults (which are summarized in Table 1) can be classified into three categories.
[Since γopt(60,7) = 1, γ̂opt(60,7) is set to 1 in Table 1.] We first observe that
the fast rate of decrease of γ̂opt(n,Kn) clearly occurs when sgn(φ0) �= sgn(θ0),
(φ0, θ0) = (0.9,0.6), or (φ0, θ0) = (−0.9,−0.6), where, for a nonzero real num-
ber a, sgn(a) = 1 if a > 0 and sgn(a) = −1 if a < 0. In these cases, we also
observe that the rate of convergence of P̂E(x̂n+1(k̂

A
n )) is very slow and the val-

ues fluctuate around a certain number which is not distant from 1. In particular, if
θ0 = ±0.8, the values fluctuate around 1.25, while, if θ0 = ±0.6, the values fluctu-
ate around 1.5 (or slightly higher). The second category contains those parameter
combinations satisfying |φ0 − θ0| = 0.1. The decreasing rate of γ̂opt(n,Kn) in this
category is obviously slower than that in the first category. On the other hand, ex-
cept in the cases where (φ0, θ0) = (0.9,0.8) and (−0.9,−0.8), the advantage of
increasing n and Kn in reducing the values of P̂E(x̂n+1(k̂

A
n )) becomes quite sig-

nificant and the ratio P̂E(x̂1001(k̂
A
1000))/P̂E(x̂61(k̂

A
60)) is smaller than 2/3. When

(φ0, θ0) = (0.9,0.8) and (−0.9,−0.8), the values of P̂E(x̂n+1(k̂
A
n )) are smaller
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TABLE 1
Empirical estimates of PE(x̂n+1(k̂A

n )) and γopt(n,Kn)

θ0

0.8 0.6 −0.6 −0.8

φ0 n/Kn P R P R P R P R

−0.9 60/7 1.23 1 1.46 1 1.64 1 1.68 1
120/10 1.21 0.56 1.46 0.54 1.58 0.58 1.55 0.71
200/14 1.29 0.36 1.56 0.34 1.67 0.38 1.52 0.54
500/22 1.25 0.17 1.56 0.15 1.63 0.17 1.53 0.34

1000/31 1.29 0.09 1.54 0.08 1.58 0.10 1.46 0.17
−0.7 60/7 1.23 1 1.44 1 2.90 1 2.49 1

120/10 1.25 0.57 1.49 0.54 2.48 0.68 2.37 0.70
200/14 1.29 0.37 1.61 0.35 2.25 0.51 1.95 0.59
500/22 1.31 0.17 1.53 0.16 1.97 0.27 1.65 0.38

1000/31 1.28 0.10 1.56 0.09 1.93 0.17 1.62 0.23
−0.5 60/7 1.23 1 1.50 1 3.48 1 1.49 1

120/10 1.25 0.57 1.62 0.53 3.01 0.65 1.47 0.67
200/14 1.33 0.36 1.57 0.35 2.78 0.47 1.53 0.46
500/22 1.33 0.17 1.56 0.16 2.29 0.27 1.44 0.21

1000/31 1.26 0.10 1.56 0.09 1.99 0.17 1.42 0.13
0.5 60/7 1.55 1 3.10 1 1.49 1 1.25 1

120/10 1.51 0.67 2.98 0.63 1.59 0.55 1.23 0.56
200/14 1.48 0.46 2.86 0.45 1.55 0.38 1.31 0.37
500/22 1.47 0.22 2.45 0.26 1.61 0.16 1.28 0.17

1000/31 1.41 0.13 1.99 0.16 1.57 0.09 1.32 0.10
0.7 60/7 2.71 1 2.97 1 1.55 1 1.25 1

120/10 2.31 0.71 2.56 0.62 1.58 0.53 1.25 0.56
200/14 1.92 0.62 2.31 0.48 1.61 0.36 1.29 0.37
500/22 1.79 0.37 2.04 0.27 1.53 0.16 1.28 0.18

1000/31 1.56 0.24 1.95 0.16 1.44 0.09 1.31 0.10
0.9 60/7 1.75 1 1.58 1 1.43 1 1.24 1

120/10 1.56 0.70 1.61 0.57 1.50 0.53 1.23 0.57
200/14 1.57 0.51 1.66 0.37 1.58 0.32 1.31 0.37
500/22 1.49 0.29 1.68 0.17 1.54 0.15 1.31 0.17

1000/31 1.48 0.17 1.57 0.10 1.47 0.08 1.29 0.10

NOTE. Column P denotes the empirical estimates of PE(x̂n+1(k̂A
n )) and column R denotes the em-

pirical estimates of γopt(n,Kn).

than those in the other cases in this category. However, the reduction in the values
of P̂E(x̂n+1(k̂

A
n )) is also much smaller (only a slightly decreasing trend can be ob-

served). Another observation regarding this category is that, as (n,Kn) increases
to (1000, 31), P̂E(x̂n+1(k̂

A
n )) decreases to a value around 1.5 if θ0 = ±0.8, and

decreases to a value around 1.95 if θ0 = ±0.6. The third category contains the re-
maining parameter combinations, namely, (φ0, θ0) = (0.5,0.8) and (−0.5,−0.8).
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The rate of convergence of γ̂opt(n,Kn) in this category is intermediate (slower
than in the first category, but faster than in the second category), while the rate for
P̂E(x̂n+1(k̂

A
n )) is slow and its value fluctuates around 1.5. In summary, although the

convergence rate of P̂E(x̂n+1(k̂
A
n )) is slow when |φ0 − θ0| ≥ 0.3 (which includes

the first and the third categories), the relatively small values of P̂E(x̂n+1(k̂
A
n )), ac-

companied by a (very) fast rate of decrease of γ̂opt(n,Kn), show that, even in finite
sample situations, AIC also yields a satisfactory same-realization prediction for
AR(∞) models, provided the number of candidate models is allowed to increase
with the sample size. On the other hand, when |φ0 − θ0| = 0.1, the (prediction)
efficiency of AIC is not satisfactory (except in the cases where |φ0| = 0.9) and the
reduction in the values of γ̂opt(n,Kn) through increasing n and Kn also becomes
relatively insignificant. However, the efficiency of AIC can be substantially im-
proved (except in the cases where |φ0| = 0.9) if n and Kn are allowed to increase
simultaneously.

In the rest of this section, the question of whether AIC is asymptotically optimal
among all order selection criteria from the MSPE point of view is investigated.
This question led us to define a stronger version of asymptotic efficiency. An order
selection criterion k̂SA

n with 1 ≤ k̂SA
n ≤ Kn is said to be strongly asymptotically

efficient for same-realization predictions if

lim
n→∞

E(xn+1 − x̂n+1(k̂
SA
n ))2 − σ 2

inf
În∈Jn

E(xn+1 − x̂n+1(În))2 − σ 2
= 1,(4.5)

and is said to be strongly asymptotically efficient for independent-realization pre-
dictions if

lim
n→∞

E(yn+1 − ŷn+1(k̂
SA
n ))2 − σ 2

inf
În∈Jn

E(yn+1 − ŷn+1(În))2 − σ 2
= 1.(4.6)

Here Jn in (4.5) and (4.6) is the family of all Gn-measurable random variables
taking values on {1,2, . . . ,Kn}, and Gn is the σ -algebra generated by {x1, . . . , xn}.
Observe that, for any random variable În ∈ Jn,

E
(
xn+1 − x̂n+1(În)

)2 = E

{
Kn∑
k=1

E
[(

xn+1 − x̂n+1(k)
)2∣∣x1, . . . , xn

]
I{În=k}

}

≥ E

{
min

1≤k≤Kn

E
[(

xn+1 − x̂n+1(k)
)2∣∣x1, . . . , xn

]}
,

where I{În=k} = 1 if În = k and I{În=k} = 0 if În �= k. Also notice that the mini-
mizer of

E
[(

xn+1 − x̂n+1(k)
)2∣∣x1, . . . , xn

]
, k = 1,2, . . . ,Kn,
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is a member of Jn. Therefore

inf
În∈Jn

E
(
xn+1 − x̂n+1(În)

)2 = E

{
min

1≤k≤Kn

E
[(

xn+1 − x̂n+1(k)
)2∣∣x1, . . . , xn

]}
and, hence, (4.5) can be rewritten as

lim
n→∞

E(xn+1 − x̂n+1(k̂
SA
n ))2 − σ 2

E{min1≤k≤KnE[(xn+1 − x̂n+1(k))2|x1, . . . , xn] − σ 2} = 1.(4.7)

Similarly, (4.6) can be rewritten as

lim
n→∞

E(yn+1 − ŷn+1(k̂
SA
n ))2 − σ 2

E{min1≤k≤KnE[(yn+1 − ŷn+1(k))2|x1, . . . , xn] − σ 2} = 1.(4.8)

To examine whether AIC satisfies (4.5) [or (4.7)], it suffices to check whether

r∗
n = E(xn+1 − x̂n+1(k̂

A
n ))2 − σ 2

E{min1≤k≤KnE[(xn+1 − x̂n+1(k))2|x1, . . . , xn] − σ 2}
converges to 1. Instead of evaluating r∗

n theoretically, empirical estimates of r∗
n ,

denoted by r̂∗
n , with (n,Kn) = (60,7), (120,10), (200,14), (500,22), (1000,31),

are obtained based on the MA(1) model

xt = εt − θ0εt−1(4.9)

and 20,000 replications. Here we take the noise {εt } to be i.i.d. N (0,1) and use
the parameter values θ0 = 0.8,0.6,−0.6,−0.8. These estimates are summarized in
Table 2. It can be seen from this table that when (n,Kn) = (60,7), values of r̂∗

n are
larger than 5.5 for all θ0. Moreover, r̂∗

n increases considerably as n and Kn grow. In
particular, when n and Kn increase to 1000 and 31, respectively, all values of r̂∗

n are
larger than 13.5. Viewing the relatively moderate values given in Table 1, Table 2
suggests that it seems very difficult for AIC to achieve (4.7). This is a somewhat

TABLE 2
Simulation results for r∗

n

θ0

n Kn 0.8 0.6 −0.6 −0.8

60 7 5.61 6.04 6.48 5.60
120 10 7.44 7.82 7.97 8.16
200 14 9.68 9.17 9.66 9.17
500 22 13.10 12.30 12.48 13.54

1000 31 16.18 13.56 13.84 15.72
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different situation from that encountered in independent-realization settings. To see
this, let us restrict ourselves to model (4.9) again. Motivated by (4.8), the empirical
estimates of

r∗
I,n = E(yn+1 − ŷn+1(k̂

A
n ))2 − σ 2

inf
În∈Jn

E(yn+1 − ŷn+1(În))2 − σ 2

= E(yn+1 − ŷn+1(k̂
A
n ))2 − σ 2

E{min1≤k≤KnE[(yn+1 − ŷn+1(k))2|x1, . . . , xn] − σ 2} ,

denoted by r̂∗
I,n, with (n,Kn) = (60,7), (120,10), (200,14), (500,22), (1000,31)

and θ0 = 0.8,0.6,−0.6,−0.8, are obtained based on 20,000 replications (see Ta-
ble 3). Table 3 shows that values of r̂∗

I,n, like values of P̂E(x̂n+1(k̂
A
n )) in Table 1,

are not distant from 1, particularly for large n, Kn and |θ0|. In fact, by (5.36) (see
Section 5) and Theorem 1, it can be shown that

lim
n→∞ r∗

I,n = 1,(4.10)

provided the assumptions of Theorem 1 hold. Therefore, for independent-
realization predictions, AIC is asymptotically efficient, as well as strongly asymp-

totically efficient. [Note that (4.10) also holds with k̂A
n replaced by k̂S

n , k̂F
n , k̂

Sp
n or

k̂C
n .] Related to (4.10), but from a conditional MSPE point of view, Shibata [27]

showed that, for a Gaussian AR(∞) process,

E{(yn+1 − ŷn+1(k̂n))
2|x1, . . . , xn} − σ 2

inf
În∈Jn

E[(yn+1 − ŷn+1(În))2|x1, . . . , xn] − σ 2
− 1 = op(1)(4.11)

holds with k̂n = k̂A
n , k̂S

n or k̂F
n . An order selection criterion k̂n is said to be as-

ymptotically efficient in Shibata’s paper if it satisfies (4.11). For an equivalent
definition of (4.11), see (5.37).

TABLE 3
Simulation results for r∗

I,n

θ0

n Kn 0.8 0.6 −0.6 −0.8

60 7 1.54 2.10 2.12 1.56
120 10 1.50 2.05 2.12 1.49
200 14 1.57 1.93 1.90 1.59
500 22 1.47 1.79 1.91 1.44

1000 31 1.42 1.81 1.75 1.41
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5. Proofs. We first introduce two frequently used results, Lemmas 1 and 2.
The proofs of Lemmas 1 and 2 are similar to those of Lemmas 3 and 4 of [17],
respectively. To save space, we skip the details.

LEMMA 1. Assume that (K.1)(a) holds and sup−∞<t<∞ E(|et |2q) < ∞ for
some q ≥ 2. Let {mi,n}, i = 0,1,2, be sequences of positive integers satisfying
m2,n ≥ m1,n ≥ m0,n for all n ≥ 1. Then, for all 1 ≤ k ≤ m0,n,

E

∥∥∥∥∥ 1√
mn

m2,n∑
j=m1,n

xj (k)(ej+1,k − ej+1)

∥∥∥∥∥
q

≤ Ckq/2‖a − a(k)‖q
R,(5.1)

where mn = m2,n −m1,n +1, ej+1,k is defined after (2.3), ‖a−a(k)‖2
R is defined in

Proposition 2, and for a k-dimensional vector v = (v1, . . . , vk)
′, ‖v‖2 = ∑k

i=1 v2
i .

[Note that if (K.5) holds, then ‖a − a(k)‖2
R > 0 for all k = 1,2, . . . . In this case

(5.1) can be expressed as

max
1≤k≤m0,n

E‖(1/
√

mn )
∑m2,n

j=m1,n
xj (k)(ej+1,k − ej+1)‖q

kq/2‖a − a(k)‖q
R

≤ C.]

LEMMA 2. Assume that (K.1)(a) holds and sup−∞<t<∞ E{|et |q} < ∞ for
q ≥ 2. Let {mi,n}, i = 0,1,2, and {mn} be defined as in Lemma 1. Then

max
1≤k≤m0,n

(k−q/2)E

∥∥∥∥∥ 1√
mn

m2,n∑
j=m1,n

xj (k)ej+1

∥∥∥∥∥
q

≤ C(5.2)

and

max
1≤k1<k2≤m0,n

(k2 − k1)
−q/2E

∥∥∥∥∥ 1√
mn

m2,n∑
j=m1,n

(
xj (k2) − xj (k1)

)
ej+1

∥∥∥∥∥
q

≤ C,(5.3)

where xj (k1) in (5.3) is regarded as a k2-dimensional vector with undefined entries
set to 0.

Lemmas 3–6, listed below, are essential tools for verifying Theorems 1 and 2.
To provide motivation for Lemma 3, we note that, under (K.1)(a) and the Gaussian
assumption on {et }, Shibata ([27], Lemmas 3.2 and 3.4) showed that, for q = 2,4
and 1 ≤ k ≤ Kn,

E

∣∣∣∣∣
∥∥∥∥∥ 1√

N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− kσ 2

∣∣∣∣∣
q

=
q/2∑
i=1

Ci,qki + O(1/N)kq,(5.4)

where, for a k × k symmetric matrix A and a k-dimensional vector y, ‖y‖2
A =

y′Ay, and the Ci,q ’s, independent of n and k, are some positive numbers.
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Under (K.1)(c) with the i.i.d. assumption on {et } and the assumption that
E|e1|16 < ∞, Karagrigoriou ([19], Lemma 3.1) also gave a result similar to
Shibata’s. However, since they needed to calculate et ’s (or xt ’s) 4qth cross mo-
ments, extensions of their approaches to large q cases are not easy due to heavy
computational burdens. For example, in order to verify (5.4) with q = 6 through
their approaches, one must deal with et ’s (or xt ’s) 24th cross moments. In addition,
even if (5.4) holds for large q’s, the remainder term, O(1/N)kq , may dominate
the main term,

∑q/2
i=1 Ci,qki (which is of order kq/2), in situations where kq/2/N is

large as well. This causes another difficulty since bounding the left-hand side
of (5.4) by Ckq/2 for sufficiently large q and all 1 ≤ k ≤ Kn seems indispensable
for our analysis, especially for proving Theorem 2. Under a slightly stronger as-
sumption (than Shibata’s) on AR coefficients, the difficulties mentioned above are
resolved by Lemma 3.

LEMMA 3. Assume (K.1)(b), sup−∞<t<∞ E|et |2q < ∞ for some q ≥ 2, and
Kn = O(n1/2). Then

max
1≤k≤Kn

k−q/2E

∣∣∣∣∣
∥∥∥∥∥ 1√

N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− kσ 2

∣∣∣∣∣
q

≤ C.(5.5)

PROOF. First observe that

E

{∣∣∣∣∣k−1/2

(∥∥∥∥∥ 1√
N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− kσ 2

)∣∣∣∣∣
q}

= E

{∣∣∣∣∣ 1

Nk1/2

n−1∑
j=Kn

(
x′
j (k)R−1(k)xj (k)e2

j+1 − kσ 2)

+ 2

Nk1/2

n−1∑
l=Kn+1

l−1∑
j=Kn

x′
j (k)R−1(k)xl(k)ej+1el+1

∣∣∣∣∣
q}

≤ C

[
E

{∣∣∣∣∣ 1

Nk1/2

n−1∑
j=Kn

x′
j (k)R−1(k)xj (k)(e2

j+1 − σ 2)

∣∣∣∣∣
q}

(5.6)

+ E

{∣∣∣∣∣ 1

Nk1/2

n−1∑
j=Kn

(
x′
j (k)R−1(k)xj (k) − k

)∣∣∣∣∣
q}

+ E

{∣∣∣∣∣ 1

Nk1/2

n−1∑
l=Kn+1

l−1∑
j=Kn

x′
j (k)R−1(k)xl(k)ej+1el+1

∣∣∣∣∣
q}]

≡ C{(I) + (II) + (III)}.
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Since {x′
j (k)R−1(k)xj (k)(e2

j+1 − σ 2),Mj+1} is a sequence of martingale dif-
ferences, where Mj+1 is the σ -algebra generated by {ej+1, ej , . . . }, and

E

∣∣∣∣∣
n−1∑

j=Kn

x′
j (k)R−1(k)xj (k)(e2

j+1 − σ 2)

∣∣∣∣∣
q

≤ E sup
Kn≤m≤n−1

∣∣∣∣∣
m∑

j=Kn

x′
j (k)R−1(k)xj (k)(e2

j+1 − σ 2)

∣∣∣∣∣
q

,

by Wei ([29], Lemma 2), the assumption that sup−∞<t<∞E|e2
t+1|q < ∞ and the

convexity of xq/2, x > 0,

(I) ≤ C

(
1

Nk1/2

)q

E

[
n−1∑

j=Kn

(
x′
j (k)R−1(k)xj (k)

)2
]q/2

≤ C

(
1

Nk

)q/2 1

N

n−1∑
j=Kn

E|x′
j (k)R−1(k)xj (k)|q .

Simple algebraic manipulations and Remark 1 yield

E|x′
j (k)R−1(k)xj (k)|q ≤ E‖xj (k)‖2q‖R−1(k)‖q ≤ CE‖xj (k)‖2q

= CE

(
k∑

l=1

x2
j−l+1

)q

≤ Ckqk−1
k∑

l=1

E|xj−l+1|2q .

Since xj−l+1 = ∑∞
l1=0 bl1ej−l+1−l1 , by Wei ([29], Lemma 2), one has, for all inte-

gers j and l,

E|xj−l+1|2q ≤ C

( ∞∑
l1=0

b2
l1

)q

≤ C,(5.7)

which further implies, for all Kn ≤ j ≤ n and all 1 ≤ k ≤ Kn,

E|x′
j (k)R−1(k)xj (k)|q ≤ Ckq.(5.8)

As a result,

(I) ≤ C

(
k

N

)q/2

(5.9)

holds for all 1 ≤ k ≤ Kn.
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Observe that, for all 1 ≤ k ≤ Kn,

E

∣∣∣∣∣ 1

N

n−1∑
j=Kn

(
x′
j (k)R−1(k)xj (k) − k

)∣∣∣∣∣
q

= E
∣∣tr{R−1(k)

(
R̂n(k) − R(k)

)}∣∣q
= E

∣∣∣∣∣
k∑

i=1

k∑
j=1

R−1
i,j (k)

(
r̂
(n)
j,i − rj,i

)∣∣∣∣∣
q

≤
{

k∑
i=1

k∑
j=1

|R−1
i,j (k)|(E∣∣r̂ (n)

j,i − rj,i
∣∣q)1/q

}q

≤ C
k3q/2

Nq/2 ,

where R−1
i,j (k), r̂

(n)
i,j and ri,j denote the (i, j) components of R−1(k), R̂n(k)

and R(k), respectively, the first inequality follows from Minkowski’s inequality,
and the second inequality follows from an inequality given after (2.19) of [17]
[which shows that, for all 1 ≤ i, j ≤ k ≤ Kn, E|r̂ (n)

j,i − rj,i)|q ≤ CN−q/2] and the
fact that

∑k
i=1

∑k
j=1 |R−1

i,j (k)| ≤ Ck3/2 (see also [21], page 98). Consequently, we
have, for all 1 ≤ k ≤ Kn,

(II) ≤ C
kq

Nq/2 .(5.10)

By Wei ([29], Lemma 2), the moment assumption on {et } and some algebraic
manipulations,

(III) ≤ C

(
1

Nk1/2

)q

E

[
n−1∑

l=Kn+1

(
l−1∑

j=Kn

x′
j (k)R−1(k)xl(k)ej+1

)2]q/2

≤ C

{(
1

Nk1/2

)q

E

[ 3Kn∑
l=Kn+1

(
l−1∑

j=Kn

x′
j (k)R−1(k)xl(k)ej+1

)2]q/2

+
(

1

Nk1/2

)q

× E

[
n−1∑

l=3Kn+1

(
l−2Kn−1∑

j=Kn

x′
j (k)R−1(k)xl(k)ej+1

)2]q/2

(5.11)

+
(

1

Nk1/2

)q

× E

[
n−1∑

l=3Kn+1

(
l−1∑

j=l−2Kn

x′
j (k)R−1(k)xl(k)ej+1

)2]q/2}

≡ C{(IV) + (V) + (VI)}.
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By the Cauchy–Schwarz inequality, (5.8), Remark 1 and (5.2), we have, for all
Kn + 1 ≤ l ≤ 3Kn,

E

∣∣∣∣∣
l−1∑

j=Kn

x′
j (k)R−1(k)xl(k)ej+1

∣∣∣∣∣
q

≤
{
E|x′

l(k)R−1(k)xl(k)|qE

∥∥∥∥∥
l−1∑

j=Kn

xj (k)ej+1

∥∥∥∥∥
2q

‖R−1(k)‖q

}1/2

(5.12)

≤ CkqKq/2
n ,

and for all 3Kn + 1 ≤ l ≤ n − 1,

E

∣∣∣∣∣
l−1∑

j=l−2Kn

x′
j (k)R−1(k)xl(k)ej+1

∣∣∣∣∣
q

≤ CkqKq/2
n .(5.13)

Hence, by the convexity of xq/2, x > 0, (5.12) and (5.13), one obtains, for all
1 ≤ k ≤ Kn,

(IV) ≤ C

(
K

q
nkq/2

Nq

)
and (VI) ≤ C

(
Knk

N

)q/2

.(5.14)

In view of (5.9), (5.10), (5.11) and (5.14), this proof is complete if we can show
that (V) is bounded. Observe that

E

{∣∣∣∣∣
l−2Kn−1∑

j=Kn

x′
j (k)R−1(k)xl(k)ej+1

∣∣∣∣∣
q}

≤ C

[
E

{∣∣∣∣∣
l−2Kn−1∑

j=Kn

x′
j (k)R−1(k)

(
xl(k) − x̃(n)

l (k)
)
ej+1

∣∣∣∣∣
q}

(5.15)

+ E

{∣∣∣∣∣
l−2Kn−1∑

j=Kn

x′
j (k)R−1(k)x̃(n)

l (k)ej+1

∣∣∣∣∣
q}]

≡ C{(VII) + (VIII)},
where

x̃(n)
l (k) =

(
Kn∑
s=0

bsel−s, . . . ,

Kn∑
s=0

bsel+1−k−s

)′
,

and bj is defined from the infinite MA representation in Remark 1. Since

xl(k) − x̃(n)
l (k) =

( ∞∑
s=Kn+1

bsel−s, . . . ,

∞∑
s=Kn+1

bsel+1−k−s

)′
,
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reasoning as for (5.8) and (5.12), we have, for all 3Kn + 1 ≤ l ≤ n − 1, that

(VII) ≤ C

(
k

∞∑
j=Kn+1

b2
j

)q/2

Nq/2kq/2.(5.16)

It also can be shown that, for all 3Kn + 1 ≤ l ≤ n − 1,

(VIII) ≤ CE

{∣∣∣∣∣
(

l−2Kn−1∑
j=Kn

xj (k)ej+1

)′

× R−1(k)R̃(n)(k)R−1(k)

(
l−2Kn−1∑

j=Kn

xj (k)ej+1

)∣∣∣∣∣
q/2}

(5.17)

≤ C‖R̃(n)(k)‖q/2‖R−1(k)‖qE

∥∥∥∥∥
l−2Kn−1∑

j=Kn

xj (k)ej+1

∥∥∥∥∥
q

≤ C(Nq/2kq/2),

where R̃(n)(k) = E(x̃(n)
l (k)x̃(n)′

l (k)), the first inequality is guaranteed by the in-

dependence between x̃(n)
l (k) and

∑l−2Kn−1
j=Kn

xj (k)ej+1, Wei ([29], Lemma 2) and
an argument similar to that used for verifying (3.25) and (3.26) of [17]; the third
inequality follows from (5.2), Remark 1 and the fact that max1≤k≤Kn R̃(n)(k) < C,
which is ensured by

∑∞
j=0 |bj | < ∞. [Note that (5.17) is valid even under a

weaker moment assumption, sup−∞<t<∞ E|et |q < ∞, q ≥ 2.] By the convexity
of xq/2, x > 0 and (5.15)–(5.17), we have, for all 1 ≤ k ≤ Kn,

(V) ≤ C

(
k

∞∑
j=Kn+1

b2
j + 1

)q

.(5.18)

Consequently, the desired property follows from (5.18) and the fact that
n
∑∞

j=n+1b
2
j is uniformly bounded. �

REMARK 4. Note that when q = 2, Lee and Karagrigoriou [21] introduced a
decomposition for

E

(∥∥∥∥∥ 1√
Nk

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− σ 2

)q

which is similar to those given by (5.6), (5.11) and (5.15). By applying this de-
composition, they established (5.5) for the special case of q = 2 under (K.1)(c)
with {et } being a sequence of i.i.d. random variables, E|e1|4 < ∞ and
Kn = o(n1/2). See Lemma 2.3 of [21] for more details.

As a direct application of Lemma 3, we get the following result.
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LEMMA 4. Assume (K.1)(b), (K.5), sup−∞<t<∞ E|et |2q < ∞ for some q > 2
and Kn = O(n1/2). Then

lim
n→∞E

(
max

1≤k≤Kn

∣∣∣∣∣
(∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− k

N
σ 2

)
L−1

n (k)

∣∣∣∣∣
q)

= 0.(5.19)

PROOF. By Lemma 3 and an argument similar to that used for obtaining (3.5)
of [27], (5.19) follows. �

Under (K.1)(a) with i.i.d. Gaussian noise, (K.5) and Kn = o(n1/2), Shibata
([27], (3.5)) obtained, for any ε > 0,

lim
n→∞P

(
max

1≤k≤Kn

∣∣∣∣‖ân(k) − a‖2
R

Ln(k)
− 1

∣∣∣∣ > ε

)
= 0,(5.20)

where ân(k) in (5.20) is viewed as an infinite-dimensional vector (â1,n(k),

â2,n(k), . . . )′ with âi,n(k) = 0 for i > k, and P denotes the probability measure.
This leads to a lower bound theorem for model selection in independent-realization
settings (see Theorem 3.2 of [27]), which serves as an important vehicle for estab-
lishing Sn(k)’s (and its variants’) asymptotic optimality in the sense of (4.11). Re-
cently several authors have attempted to establish (5.20) in non-Gaussian settings.
Among them, Lee and Karagrigoriou [21] attained this goal by imposing (K.5),
the assumptions described in Remark 4, and for all integer t and all positive inte-
gers k, j with k ≥ j ,

Ew4
t,j (k) ≤ C̄1,(5.21)

where C̄1 > 0 is independent of t, j and k, and (wt,1(k),wt,2(k), . . . ,wt,k(k))′ =
Wt (k) = R−1/2(k)xt (k). Their moment assumption on {et }, E|e1|4 < ∞ (see
Remark 4), is considerably weaker than others proposed in the literature. But,
(5.21) does not seem to be needed. This is because wt,j (k) is a linear combi-
nation in {el, l ≤ t}, and by an argument similar to that used for showing (5.7),
(5.21) holds automatically when the other assumptions are imposed. In fact,
by (5.6), (5.9)–(5.11), (5.14)–(5.17) and an idea of Lee and Karagrigoriou ([21],
Lemma 2.4), (5.20) can be ensured by a set of weaker assumptions, (K.1)(b), (K.5),
sup−∞<t<∞ E|et |4 < ∞ and Kn = o(n1/2). However, to obtain asymptotic ex-
pressions for unconditional MSPEs of the least squares predictors with estimated
orders, we require a strengthened version of (5.20). The following lemma is given
to fulfill this aim.

LEMMA 5. Let the assumptions of Proposition 2 and (K.5) hold. Then, for any
q > 0,

lim
n→∞E

(
max

1≤k≤Kn

∣∣∣∣‖ân(k) − a‖2
R

Ln(k)
− 1

∣∣∣∣q)
= 0,(5.22)

where Ln(k) is defined in Proposition 2 of Section 2.
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PROOF. Note that∣∣∣∣‖ân(k) − a‖2
R

Ln(k)
− 1

∣∣∣∣
=

∣∣∣∣‖ân(k) − a(k)‖2
R(k) − kσ 2/N

Ln(k)

∣∣∣∣
(5.23)

=
∣∣∣∣∣
∥∥∥∥∥R̂−1

n (k)
1

N

n−1∑
j=Kn

xj (k)ej+1,k

∥∥∥∥∥
2

R(k)

− kσ 2

N

∣∣∣∣∣(Ln(k))−1

=
∣∣∣∣A(k) + B(k) + C(k) + D(k)

Ln(k)

∣∣∣∣,
where

A(k) =
∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1,k

∥∥∥∥∥
2

R̂−1
n (k)R(k)R̂−1

n (k)−R−1(k)

,

B(k) =
(

1

N

n−1∑
j=Kn

x′
j (k)ej+1,k

)
R−1(k)

(
1

N

n−1∑
j=Kn

xj (k)(ej+1,k − ej+1)

)
,

C(k) =
(

1

N

n−1∑
j=Kn

x′
j (k)(ej+1,k − ej+1)

)
R−1(k)

(
1

N

n−1∑
j=Kn

xj (k)ej+1

)

and

D(k) =
∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
2

R−1(k)

− kσ 2

N
.

By Lemmas 1 and 2 and Proposition 1, one has, for any q > 0 and all 1 ≤ k ≤ Kn,

E|A(k)|q ≤ E

{∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1,k

∥∥∥∥∥
2q

‖R̂−1
n (k)R(k)R̂−1

n (k) − R−1(k)‖q

}
(5.24)

≤ C
k2q

N3q/2 ,

E|B(k)|q ≤ E

{∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1,k

∥∥∥∥∥
q

×
∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)(ej+1,k − ej+1)

∥∥∥∥∥
q

‖R−1(k)‖q

}
(5.25)

≤ C
kq‖a − a(k)‖q

R

Nq
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and

E|C(k)|q ≤ E

{∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)ej+1

∥∥∥∥∥
q

×
∥∥∥∥∥ 1

N

n−1∑
j=Kn

xj (k)(ej+1,k − ej+1)

∥∥∥∥∥
q

‖R−1(k)‖q

}
(5.26)

≤ C
kq‖a − a(k)‖q

R

Nq
.

Now, according to (5.23)–(5.26) and Lemma 3, we have, for sufficiently large q ,

Kn∑
k=1

E

∣∣∣∣‖ân(k) − a‖2
R

Ln(k)
− 1

∣∣∣∣q

≤ C

Kn∑
k=1

(
k2q

N3q/2L
q
n(k)

+ kq‖a − a(k)‖q
R

NqL
q
n(k)

+ kq/2

NqL
q
n(k)

)
(5.27)

≤ C

Kn∑
k=1

(
kq

Nq/2 +
k∗
n∑

k=1

kq/2

k∗q

n

+
Kn∑

k=k∗
n+1

k−q/2

)
= o(1),

where the second inequality is ensured by

‖a − a(k)‖2
R

Ln(k)
≤ 1

and NLn(k) ≥ C max{k, k∗
n}, and the equality is guaranteed by k∗

n → ∞. Conse-
quently, (5.22) is ensured by (5.27) and Jensen’s inequality. �

Under (K.1)(a) with i.i.d. Gaussian noise, Shibata ([27], Lemmas 4.2, 4.3
and 4.4 and Proposition 4.1) established that, for all 1 ≤ k, j ≤ Kn with
Kn ≤ n − 1,

E|S2
k − σ 2

k − (S2
j − σ 2

j )|4 ≤ C(max{k, j})1/2N−2‖a(j) − a(k)‖4,(5.28)

where S2
k = (1/N)

∑n−1
t=Kn

e2
t+1,k , a(j) and a(k) are viewed as infinite-dimensional

vectors and σ 2
k = E(S2

k ). [Since, by Remark 1, Dl‖a(j) − a(k)‖2 ≤ ‖a(j) −
a(k)‖2

R ≤ Du‖a(j) − a(k)‖2 for some 0 < Dl ≤ Du < ∞ independent of j and k,
‖a(j) − a(k)‖4 in (5.28) can be replaced by ‖a(j) − a(k)‖4

R .] However, his ap-
proach, based on heavy calculations for the cross moments of Gaussian ran-
dom variables, is not easy to extend to higher-moment cases. Moreover, the term
(max{k, j})1/2 is cumbersome because it is difficult to infer how this term varies
with the exponent on the left-hand side of (5.28). Lemma 6 below not only shows
that this term is not needed, but also provides a general bound valid for each q ≥ 2.
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For some applications of Lemma 6, see Remark 6 and the proofs of Theorems
2 and 3.

LEMMA 6. Assume (K.1)(a), sup−∞<t<∞ E|et |2q < ∞ with q ≥ 2 and
Kn ≤ n − 1. Then

max
1≤k≤Kn

E|S2
k − σ 2

k |q ≤ CN−q/2,(5.29)

and for all 1 ≤ k, j ≤ Kn,

E|S2
k − σ 2

k − (S2
j − σ 2

j )|q ≤ CN−q/2‖a(j) − a(k)‖q
R.(5.30)

PROOF. First observe that

|S2
k − σ 2

k |q =
∣∣∣∣∣ 1

N

n−1∑
t=Kn

e2
t+1,k − E(e2

t+1,k)

∣∣∣∣∣
q

.

Since, according to Remark 1 and the definition of et,k [given after (2.2)], et,k ,
t = . . . ,−1,0,1, . . . , is a linear process, by Findley and Wei ([11], the first mo-
ment bound theorem) one has, for all 1 ≤ k ≤ Kn,

E|S2
k − σ 2

k |q ≤ C
1

Nq

{
n−1∑
i=Kn

n−1∑
j=Kn

[E(ei+1,kej+1,k)]2

}q/2

(5.31)

≤ C
1

Nq/2

( ∞∑
j=−∞

ξ∗2

j

)q/2

,

where ξ∗
i−j = E(ei+1,kej+1,k). By Remark 1,

∞∑
j=−∞

ξ∗2

j = 2π

∫ π

−π

(∣∣∣∣∣
k∑

j=0

aj (k)e−ijλ

∣∣∣∣∣
2

f (λ)

)2

dλ

≤ 4π2f 2
2

(
k∑

j=0

|aj (k)|
)4

,

where a0(k) = 1. By Berk ([4], Lemma 4),

sup
0≤k<∞

k∑
j=0

|aj (k)| < ∞.

This fact and (5.31) yield (5.29).
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To obtain (5.30), assume k < j . Then

|S2
k − σ 2

k − (S2
j − σ 2

j )|

=
∣∣∣∣∣ 1

N

n−1∑
t=Kn

e2
t+1,k − ‖a(j) − a(k)‖2

R − e2
t+1,j

∣∣∣∣∣
(5.32)

≤
∣∣∣∣∣ 1

N

n−1∑
t=Kn

(et+1,k − et+1,j )et+1,k − ‖a(j) − a(k)‖2
R

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

n−1∑
t=Kn

(et+1,k − et+1,j )et+1,j

∣∣∣∣∣.
By Findley and Wei ([11], the first moment bound theorem) again, the expectation
of the first term on the right-hand side of (5.32) is bounded by

CN−q

(
n−1∑

t1=Kn

n−1∑
t2=Kn

E
(
(et1+1,k − et1+1,j )(et2+1,k − et2+1,j )

)
ξ∗
t1−t2

)q/2

≤ CN−q/2{E(e1,k − e1,j )
2}q/2

( ∞∑
l=−∞

|ξ∗
l |

)q/2

≤ CN−q/2‖a(j) − a(k)‖q
R,

where the second inequality follows from E(e1,k − e1,j )
2 = ‖a(j) − a(k)‖2

R and

∞∑
j=−∞

|ξ∗
j | ≤ C

(
k∑

i=0

|ai(k)|
∞∑

j=0

|bj |
)2

< C.

Similarly, an upper bound for the expectation of the second term on the right-hand
side of (5.32) is also given by CN−q/2‖a(j) − a(k)‖q

R . As a result, (5.30) holds.
�

REMARK 5. Assume {et } in Lemma 6 is a sequence of martingale differences
corresponding to an increasing sequence of σ -fields of events, {Ft }. Further, as-
sume that

E(e2
t |Ft−1) = σ 2 a.s.

for t = . . . ,−1,0,1, . . . , and

sup
−∞<t<∞

E(|et |2q |Ft−1) ≤ C < ∞ a.s.

Then by the same argument as in Lemma 6, (5.29) and (5.30) are still valid.
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According to the decomposition of Sn(k) given by (4.1) of [27],

Sn(k) = NLn(k) + 2k(σ̂ 2
k − σ 2) + (

kσ 2 − N‖â(k) − a(k)‖2
R̂n(k)

)
(5.33)

+ Nσ 2 + N(S2
k − σ 2

k ).

Equality (5.33) yields

P(k̂S
n = k) ≤ P

(
Sn(k) ≤ Sn(k

∗
n)

) = P

(
Sn(k)

NLn(k)
≤ Sn(k

∗
n)

NLn(k)

)
(5.34)

≤
5∑

i=1

P
(|Vin(k)| ≥ (1/5)Vn(k)

)
,

where

V1n(k) = −2k(σ̂ 2
k − σ 2)

NLn(k)
,

V2n(k) = 2k∗
n(σ̂ 2

k∗
n
− σ 2)

NLn(k)
,

V3n(k) = −
kσ 2 − N‖ân(k) − a(k)‖2

R̂n(k)

NLn(k)
,

V4n(k) =
k∗
nσ 2 − N‖ân(k

∗
n) − a(k∗

n)‖2
R̂n(k∗

n)

NLn(k)
,

V5n(k) = −S2
k − σ 2

k − S2
k∗
n
− σ 2

k∗
n

Ln(k)

and

Vn(k) = Ln(k) − Ln(k
∗
n)

Ln(k)
.

By (5.34), Chebyshev’s inequality and Lemmas 1–6, we can obtain an upper
bound for P(k̂S

n = k) through moment bounds for Vin(k)/Vn(k), i = 1, . . . ,5. This
is our motivation for verifying that, for any r > 0,

lim
n→∞E

(
Ln(k̂

S
n )

Ln(k∗
n)

− 1
)r

= 0;(5.35)

see Theorem 3 below for more details. Equality (5.35), which provides a (general)
moment convergence result for Ln(k̂

S
n )/Ln(k

∗
n), is the key to proving Theorem 1,

and can be applied to verify (5.74) and (5.75), which are the final steps in the
proof of Theorem 2. As a byproduct, (5.35) also yields k̂S

n ’s asymptotic efficiency
for independent-realization predictions in the sense of Shibata [27], as defined
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in (4.11). To see this, first notice that, for any random variable În ∈ Jn [Jn is
defined after (4.6)],

E
{(

yn+1 − ŷn+1(În)
)2∣∣x1, . . . , xn

} − σ 2 = ‖ân(În) − a‖2
R.

It is also not difficult to show that

1 − max
1≤k≤Kn

∣∣∣∣‖ân(k) − a‖2
R

Ln(k)
− 1

∣∣∣∣ ≤ inf
În∈Jn

‖ân(În) − a‖2
R

Ln(În)

≤
inf

În∈Jn
‖ân(În) − a‖2

R

Ln(k∗
n)

(5.36)

≤ ‖ân(k
∗
n) − a‖2

R

Ln(k∗
n)

.

Since by (5.20) both sides of (5.36) converge to 1 in probability, (4.11) can be
rewritten as

Ln(k̂n)

Ln(k∗
n)

− 1 = op(1)

(
or

‖ân(k̂n) − a‖2
R

Ln(k∗
n)

− 1 = op(1)

)
.(5.37)

Obviously,

Ln(k̂
S
n )

Ln(k∗
n)

− 1 = op(1)(5.38)

is an immediate consequence of (5.35).

THEOREM 3. Let the assumptions of Proposition 2 and (K.5) hold. Then
(5.35) holds.

PROOF. Let ε > 0. By (5.34),

E

(
Ln(k̂

S
n )

Ln(k∗
n)

− 1
)r

=
Kn∑
k=1

(
Ln(k)

Ln(k∗
n)

− 1
)r

P (k̂S
n = k)

(5.39)

≤ εr + ∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P (k̂S
n = k)

≤ εr +
5∑

i=1

{ ∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P
(|Vin(k)| > (1/5)Vn(k)

)}
,
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where

Aε,n =
{
k : 1 ≤ k ≤ Kn,

Ln(k)

Ln(k∗
n)

− 1 > ε

}
.(5.40)

To obtain (5.35), it suffices to show that the value inside the braces of (5.39) is
asymptotically negligible in the sense that

lim
n→∞

∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P
(|Vin(k)| > (1/5)Vn(k)

) = 0,(5.41)

for i = 1, . . . ,5.
By (4.2) of [27] and some algebraic manipulations,

|σ̂ 2
k − σ 2| ≤ ‖ân(k) − a(k)‖2

R̂n(k)
+ ‖a(k) − a‖2

R + |S2
k − σ 2

k |
(5.42)

≤ (‖R̂n(k) − R(k)‖‖R−1(k)‖ + 1
)‖ân(k) − a‖2

R + |S2
k − σ 2

k |.
By Ing and Wei ([17], Lemma 2), (5.22), (5.29), (5.42) and Hölder’s inequality,
one has, for any q > 0 and all 1 ≤ k ≤ Kn,

E|V1n(k)|q ≤ C

(
kq

Nq
+ N−q/2

)
.(5.43)

Since

Ln(k)

Ln(k∗
n)

≤
{

CL−1
n (k∗

n), if 1 ≤ k ≤ k∗
n,

Ck, if k∗
n + 1 ≤ k ≤ Kn

and

V −1
n (k) ≤ 1 + ε

ε
for k ∈ Aε,n,

by the Chebyshev inequality and (5.43), we have, for large q ,∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P
(|V1n(k)| > (1/5)Vn(k)

)

≤ C
∑

k∈Aε,n

(
Ln(k)

Ln(k∗
n)

)r

V −(q−r)
n (k)

(
kq

Nq
+ N−q/2

)

≤ C

(
1 + ε

ε

)q−r
{ k∗

n∑
k=1

(
kq

k∗r

n Nq−r
+ 1

k∗r

n Nq/2−r

)
(5.44)

+
Kn∑

k=k∗
n+1

(
kq+r

Nq
+ kr

Nq/2

)}
= o(1).
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Therefore, (5.41) holds for i = 1. Similarly, we also have, for any q > 0 and all
1 ≤ k ≤ Kn,

E|V2n(k)|q ≤ C

{
k∗q

n

Nq
+ N−q/2

}
.(5.45)

By (5.45) and the same argument used for verifying (5.44), (5.41) holds for i = 2.
For i = 3, we have

|V3n(k)| ≤
∣∣∣∣1 − ‖ân(k) − a‖2

R

Ln(k)

∣∣∣∣
+

∣∣∣∣‖ân(k) − a(k)‖2
R̂n(k)

− ‖ân(k) − a(k)‖2
R(k)

Ln(k)

∣∣∣∣
(5.46)

≤
∣∣∣∣1 − ‖ân(k) − a‖2

R

Ln(k)

∣∣∣∣
+ ‖R̂n(k) − R(k)‖‖R−1(k)‖‖ân(k) − a‖2

R

Ln(k)
.

By Ing and Wei ([17], Lemma 2) and (5.23)–(5.26), we have, for any q > 0 and all
1 ≤ k ≤ Kn,

E|V3n(k)|q ≤ C

(
kq

Nq/2 + kq/2

NqL
q
n(k)

)
.(5.47)

Now, by taking a sufficiently large q ,∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P
(|V3n(k)| > (1/5)Vn(k)

)

≤ C
∑

k∈Aε,n

(
Ln(k)

Ln(k∗
n)

)r

V −(q−r)
n (k)

(
kq

Nq/2 + kq/2

NqL
q
n(k)

)

≤ C

(
1 + ε

ε

)q−r
{ k∗

n∑
k=1

(
kq

k∗r

n Nq/2−r
+ kq/2

k∗q

n

)

+
Kn∑

k=k∗
n+1

(
kq+r

Nq/2 + k∗−r

n k−q/2+r

)}

= o(1).

Consequently, (5.41) holds for i = 3. Similarly, we can also show that, for any
q > 0 and all 1 ≤ k ≤ Kn,

E|V4n(k)|q ≤ C

(
k∗q

n

Nq/2 + k∗q/2

n

NqL
q
n(k)

)
,(5.48)
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and, hence, (5.41) holds for i = 4.
Since (K.3) is assumed, by (5.30) one has, for any q > 0 and all 1 ≤ k ≤ Kn,

E|V5n(k)|q ≤ C
‖a(k) − a(k∗

n)‖q
R

Nq/2L
q
n(k)

.(5.49)

This gives for large q ,∑
k∈Aε,n

(
Ln(k)

Ln(k∗
n)

− 1
)r

P
(|V5n(k)| > (1/5)Vn(k)

)

≤ C

(
1 + ε

ε

)q−r Kn∑
k=1

‖a(k) − a(k∗
n)‖q

R

Lr
n(k

∗
n)Nq/2L

q−r
n (k)

≤ C

(
1 + ε

ε

)q−r

×
( k∗

n∑
k=1

‖a − a(k)‖q
R

Lr
n(k

∗
n)Nq/2L

q−r
n (k)

+
Kn∑

k=k∗
n+1

‖a − a(k∗
n)‖q

R

L
q/2
n (k∗

n)Nq/2L
q/2
n (k)

)

≤ C

(
1 + ε

ε

)q−r
( k∗

n∑
k=1

k∗−q/2

n +
Kn∑

k=k∗
n+1

k−q/2

)

= o(1).

Hence, (5.41) holds for i = 5. Consequently (5.35) follows. �

REMARK 6. In this remark we show that (5.38) can be directly verified [with-
out the help of (5.35)] under much weaker conditions than those of Theorem 3.
[Recall that the main purpose of Theorem 3 is to provide a general moment bound
for Ln(k̂

S
n )/Ln(k

∗
n), and (5.38) is only its byproduct.] To see this, first notice that,

by assuming (K.1)(a), k∗
n → ∞ as n → ∞ and the Gaussianity of {et }, Shibata

([27], Proposition 4.1) proved that

max
1≤k≤Kn

|V5n(k)| = op(1).(5.50)

As can be seen from [27] and [21], (5.50) and (5.20) are the two most important
tools for verifying (5.38). However, by (5.30), (5.49) and the assumption that k∗

n →
∞ as n → ∞, one has, for q > 2,

Kn∑
k=1

E|V5n(k)|q ≤
k∗
n∑

k=1

{NLn(k
∗
n)}−q/2 +

Kn∑
k=k∗

n+1

{NLn(k)}−q/2 = o(1),

which in turns implies (5.50). As a result, (5.50) still follows if the Gaussian as-
sumption on {et } is replaced by sup−∞<t<∞ E|et |q < ∞, q > 4. This fact, a re-
sult given before Lemma 5 [which shows that (5.20) can be guaranteed by a



2458 C.-K. ING AND C.-Z. WEI

set of rather mild assumptions], (5.29) and the same argument as the one given
in Theorem 4.1 of [27] together yield that (K.1)(b), (K.5), Kn = o(n1/2) and
sup−∞<t<∞ E|et |q < ∞, q > 4, are sufficient to confirm (5.38). Recently, under
model (1.1) with i.i.d. but non-Gaussian noise, Bhansali [5], Karagrigoriou [19]
and Lee and Karagrigoriou [21] also obtained (5.38). However, all these papers
required a more stringent moment assumption, E|e1|q < ∞ with q larger than or
equal to 8; see Section 6 for more discussion.

The following corollary deals with the moment properties of Ln(k̂n) with k̂n =
k̂A
n , k̂F

n , k̂
Sp
n and k̂C

n .

COROLLARY 2. Let the assumptions of Theorem 3 hold. Then (5.35) holds

with k̂S
n replaced by k̂A

n , k̂F
n , k̂

Sp
n or k̂C

n .

PROOF. Define G
(1)
n (k) = Sn(k) − N exp(AIC(k)), G

(2)
n (k) = Sn(k) −

N(FPE(k)), G
(3)
n (k) = Sn(k) − N(Sp(k)) and G

(4)
n (k) = Sn(k) − Cp(k). By argu-

ments similar to those in Theorem 3 and Shibata ([27], Theorem 4.2), (5.41) still
holds with |Vin(k)| replaced by

|G(j)
n (k) − G

(j)
n (k∗

n)|
NLn(k)

,

j ∈ {1,2,3,4}, or with 1/5 replaced by any positive number independent of n.
Viewing the proof of Theorem 3, the claimed properties are guaranteed by this
finding. �

We are now in position to prove Theorem 1.

PROOF OF THEOREM 1. First note that

E(yn+1 − ŷn+1(k̂n))
2 − σ 2

Ln(k∗
n)

(5.51)

= E

{(‖ân(k̂n) − a‖2
R

Ln(k̂n)
− 1

)
Ln(k̂n)

Ln(k∗
n)

}
+ E

(
Ln(k̂n)

Ln(k∗
n)

)
,

where k̂n = k̂S
n , k̂A

n , k̂F
n , k̂

Sp
n or k̂C

n . By (5.22), Theorem 3 and Corollary 2, the first
expectation on the right-hand side of (5.51) converges to 0, whereas the second
expectation converges to 1. As a result, Theorem 1 follows. �

To obtain Theorem 2, we still need the following two lemmas, Lemmas 7 and 8.
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LEMMA 7. Suppose that the assumptions of Proposition 2 hold. Then, for any
q > 0,

lim
n→∞E

(
max

1≤k≤Kn

∣∣∣∣ f(k) − f1(k)

L
1/2
n (k)

∣∣∣∣q)
= 0,(5.52)

where f(k) is defined after (2.3) and for n ≥ √
n + Kn + 1 and

√
n ≥ 2Kn,

f1(k) = x∗′
n (k)R−1(k)

1

N

n−√
n−1∑

j=Kn

xj (k)ej+1

with x∗′
n (k) = (x∗

n, . . . , x∗
n−k+1) = (

∑√
n/2−Kn

r=0 bren−r , . . . ,
∑√

n/2−Kn

r=0 bren−k+1−r ).

PROOF. By (K.4) we can assume that n ≥ √
n + Kn + 1 and

√
n ≥ 2Kn with-

out loss of generality. To obtain (5.52), we first show that, for any q > 0,

lim
n→∞E

(
max

1≤k≤Kn

∣∣∣∣ f(k) − f0(k)

L
1/2
n (k)

∣∣∣∣q)
= 0,(5.53)

where

f0(k) = x∗′
n (k)R̂◦−1

n (k)
1

N

n−√
n−1∑

j=Kn

xj (k)ej+1,k

with

R̂◦
n(k) = 1

N

n−√
n−1∑

j=Kn

xj (k)x′
j (k).

Set q ≥ 2/3. By Proposition 1, Lemmas 1 and 2, Hölder’s inequality and an
argument similar to that used for obtaining (3.13) of [17],

E

(
max

1≤k≤Kn

∣∣∣∣ f(k) − f0(k)

L
1/2
n (k)

∣∣∣∣q)

≤ C

Kn∑
i=1

L−q/2
n (i)

×
{[

E
(‖xn(i) − x∗

n(i)‖3q)
E

(‖R̂−1
n (i)‖3q)

× E

(∥∥∥∥∥N−1
n−1∑

j=Kn

xj (i)ej+1,i

∥∥∥∥∥
3q)]1/3

+
[
E

(‖x∗
n(i)‖3q)

E
(∥∥R̂−1

n (i) − R̂◦−1

n (i)
∥∥3q)

(5.54)
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× E

(∥∥∥∥∥N−1
n−1∑

j=Kn

xj (i)ej+1,i

∥∥∥∥∥
3q)]1/3

+
[
E

(‖x∗
n(i)‖3q)

E
(∥∥R̂◦−1

n (i)
∥∥3q)

× E

(∥∥∥∥∥N−1
n−1∑

j=n−√
n

xj (i)ej+1,i

∥∥∥∥∥
3q)]1/3}

≤ C

Kn∑
i=1

L−q/2
n (i)

[(
i

∞∑
j≥√

n/2−Kn+1

b2
j

)q/2

iq/2N−q/2

+ i2qN−5q/4 + iqN−3q/4

]
.

By observing that L
−q/2
n (i) ≤ (i/N)−q/2, the right-hand side of (5.54) is bounded by

C

Kn∑
i=1

[(
i

∞∑
j≥√

n/2−Kn+1

b2
j

)q/2

+ i3q/2N−3q/4 + iq/2N−q/4

]
.(5.55)

Moreover, since (K.1)(b) implies that n
∑

j≥n b2
j = o(1), by taking sufficiently

large q , (5.55) converges to 0, and hence (5.53) holds for sufficiently large q . This
result and Jensen’s inequality further guarantee that (5.53) is valid for any q > 0.

In view of (5.53), (5.52) follows if one can show that, for any q > 0,

lim
n→∞E

(
max

1≤k≤Kn

∣∣∣∣ f0(k) − f1(k)

L
1/2
n (k)

∣∣∣∣q)
= 0.(5.56)

By Proposition 1, Lemmas 1 and 2 and an argument similar to that used for show-
ing (3.21) of [17], one has, for sufficiently large q ,

E

(
max

1≤k≤Kn

∣∣∣∣ f0(k) − f1(k)

L
1/2
n (k)

∣∣∣∣q)
≤

Kn∑
i=1

E

∣∣∣∣ f0(i) − f1(i)

L
1/2
n (i)

∣∣∣∣q ≤ C

Kn∑
i=1

iq

Nq/2 = o(1),

which, together with Jensen’s inequality, yields (5.56). �

LEMMA 8. Assume (K.1)(a), sup−∞<t<∞ E|et |2q < ∞, q ≥ 1, and Kn =
o(n1/2). Then, for n ≥ √

n + Kn + 1 and
√

n ≥ 2Kn,

max
1≤i,l≤Kn

i �=l

E|f1(i) − f1(l)|2q

|(i − l)/N |q ≤ C.(5.57)
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PROOF. Without loss of generality, assume that 1 ≤ i < l ≤ Kn. First observe
that

f1(i) − f1(l) = x∗′
n (i)R−1(l)

1

N

n−√
n−1∑

j=Kn

(
xj (i) − xj (l)

)
ej+1

+ (
x∗
n(i) − x∗

n(l)
)′
R−1(l)

1

N

n−√
n−1∑

j=Kn

xj (l)ej+1

(5.58)

+ x∗′
n (i)

(
R−1(i) − R−1(l)

) 1

N

n−√
n−1∑

j=Kn

xj (i)ej+1

≡ (I) + (II) + (III),

where x∗
n(i), xj (i) and R−1(i), respectively, are regarded as l-dimensional vectors

and an l × l matrix with undefined entries set to 0. To obtain (5.57), it suffices to
show that, for all 1 ≤ i < l ≤ Kn,

E|(T )|2q ≤ C

(
l − i

N

)q

,

for all T = (I), (II) and (III). (Note that as mentioned before Proposition 1, C is
used to denote some positive number independent of i, l,Kn and n.)

Since x∗
n(i) is independent of the remaining part of (I), by an argument similar

to that used for showing (5.17), one has, for all 1 ≤ i < l ≤ Kn,

E
(|(I)|2q) ≤ CE

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

(
xj (i) − xj (l)

)
ej+1

∥∥∥∥∥
2q

R−1(l)R
(n)∗ (i)R−1(l)

≤ C‖R−1(l)‖2q
∥∥R(n)∗ (i)

∥∥q

(5.59)

× E

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

(
xj (i) − xj (l)

)
ej+1

∥∥∥∥∥
2q

≤ C

(
l − i

N

)q

,

where R
(n)∗ (i) = E(x∗

n(i)x
∗′
n (i)) and the last inequality follows from Lemma 2 and

max
1≤k≤Kn

∥∥R(n)∗ (k)
∥∥ < C,

which is guaranteed by
∑∞

i=0 |bi | < ∞. Similarly, for all 1 ≤ i < l ≤ Kn,

E
(|(II)|2q) ≤ CE

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

xj (l)ej+1

∥∥∥∥∥
2q

R−1(l)Dn(l,i)R−1(l)
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≤ CE

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

z(n)
j (l, i)ej+1

∥∥∥∥∥
2q

,

where

Dn(l, i) =
(

0i×i 0i×(l−i)

0(l−i)×i R
(n)∗ (l − i)

)
and

z(n)
j (l, i) = (

z
(n)
j,1(l, i), . . . , z

(n)
j,l−i(l, i)

)′
= (

0(l−i)×i ,R
(n)1/2

∗ (l − i)
)
R−1(l)xj (l).

By an argument like that given in Lemma 4 of [17], we have, for all 1 ≤ i < l ≤ Kn,

E

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

z(n)
j (l, i)ej+1

∥∥∥∥∥
2q

≤ C

(
l − i

N

)q 1

l − i

l−i∑
r=1

(
1

N

n−√
n−1∑

j=Kn

E
∣∣z(n)

j,r (l, i)
∣∣2q

)
,

and for all 1 ≤ i < l ≤ Kn, all 1 ≤ r ≤ l − i and all Kn ≤ j ≤ n − √
n − 1,

E
∣∣z(n)

j,r (l, i)
∣∣2q ≤ C.

As a result, for all 1 ≤ i < l ≤ Kn,

E
(|(II)|2q) ≤ C

(
l − i

N

)q

(5.60)

follows.
Reasoning as for (5.59),

E
(|(III)|2q)

(5.61)

≤ CE

∥∥∥∥∥ 1

N

n−√
n−1∑

j=Kn

xj (i)ej+1

∥∥∥∥∥
2q

(R−1(i)−R−1
i (l))′R(n)∗ (i)(R−1(i)−R−1

i (l))

holds for all 1 ≤ i < l ≤ Kn, where R−1
i (l) is the upper left i × i block of

R−1(l), and xj (i) and R−1(i), returning to their own original definitions, are an
i-dimensional vector and an i × i matrix, respectively. If we write

R(l) =
(

R(i) Ri,l−i(l)

Rl−i,i(l) R(l − i)

)
,

then

R−1
i (l) = (

R(i) − Ri,l−i(l)R
−1(l − i)Rl−i,i(l)

)−1
.(5.62)
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From (5.62),

R−1(i) − R−1
i (l) = −R−1(i)Ri,l−i(l)R

−1(l − i)Rl−i,i(l)R
−1
i (l).(5.63)

On substituting (5.63) into the right-hand side of (5.61), an upper bound for the
left-hand side of (5.61) is given by

C‖Mn(l, i)‖qE
(‖un(l, i)‖2q)

,(5.64)

where

Mn(l, i) = Rl−i,i(l)R
−1(i)R(n)∗ (i)R−1(i)Ri,l−i(l)

and

un(l, i) = R−1(l − i)Rl−i,i(l)R
−1
i (l)

1

N

n−√
n−1∑

j=Kn

xj (i)ej+1.

Observe that, for all 1 ≤ i < l ≤ Kn,

‖Mn(l, i)‖ ≤ ∥∥R−1/2(i)R(n)∗ (i)R−1/2(i)
∥∥‖Rl−i,i(l)R

−1(i)Ri,l−i(l)‖
≤ C‖Rl−i,i(l)R

−1(i)Ri,l−i(l)‖
≤ C

(‖R(l − i)‖ + ‖R(l − i) − Rl−i,i(l)R
−1(i)Ri,l−i(l)‖)

= C
(‖R(l − i)‖ + ∥∥(

R−1
(l−i)−(l)

)−1∥∥)
≤ C,

where the second inequality follows from the boundedness of max1≤i≤Kn‖R(n)∗ (i)‖,
R−1

(l−i)−(l) is the lower right (l − i)× (l− i) block of R−1(l), and the last inequality
is ensured by the fact that, for all 1 ≤ i < l ≤ Kn,∥∥(

R−1
(l−i)−(l)

)−1∥∥ ≤ λmax(R(Kn)) ≤ C,

where, for a symmetric matrix A, λmax(A) denotes its maximum eigenvalue. As
a result,

max
1≤i<l≤kn

‖Mn(l, i)‖ ≤ C.(5.65)

Moreover, by arguments similar to those used for showing (5.60) and (5.65), one
has, for all 1 ≤ i < l ≤ Kn,

E
(‖un(l, i)‖2q) ≤ C

(
l − i

N

)q

,

which, together with (5.61), (5.64) and (5.65), yields that, for all 1 ≤ i < l ≤ Kn,

E
(|(III)|2q) ≤ C

(
l − i

N

)q

.
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This completes the proof of Lemma 8. �

We are now ready to prove Theorem 2.

PROOF OF THEOREM 2. By Hölder’s inequality, one has, for 1 < r < ∞,

E

∣∣∣∣ f1(k̂
S
n ) − f1(k

∗
n)

L
1/2
n (k̂S

n )

∣∣∣∣2q

(5.66)

≤
Kn∑
k=1

(
E

∣∣∣∣ f1(k) − f1(k
∗
n)

L
1/2
n (k)

∣∣∣∣2qr)1/r

{P(k̂S
n = k)}(r−1)/r .

Set 0 < ξ < min{1/2, δ1/2}. [Recall that ξ is defined in (K.6) and δ1 is defined
in (K.4).] Since (K.6) is assumed, there is a nonnegative number θ = θ(ξ) such
that (3.2) is fulfilled. By (3.2) and Lemma 8, the right-hand side of (5.66) is
bounded by

C

(
Kn∑
k=1

k /∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q +
Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{P(k̂S
n = k)}(r−1)/r

)

(5.67)

≤ C

(
k∗(θ−1)q

n k∗θ

n +
Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{P(k̂S
n = k)}(r−1)/r

)
,

where An,θ is defined in (K.6). First observe that, for sufficiently large q , the
first term on the right-hand side of (5.67) converges to 0. In addition, by analogy
with (5.39) and the fact that for a, b ≥ 0, (a + b)(r−1)/r ≤ a(r−1)/r + b(r−1)/r ,

Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{P(k̂S
n = k)}(r−1)/r

(5.68)

≤
5∑

i=1

{
Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|Vin(k)| > (1/5)Vn(k)
)}(r−1)/r

}
.

By (3.2), (5.43) and (5.45), one has, for sufficiently large n and q ,
Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|V1n(k)| > (1/5)Vn(k)
)}(r−1)/r

≤ Ck∗ξq

n

Kn∑
k=1

(
kq

Nq
+ N−q/2

)
(5.69)

= o(1)
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and
Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|V2n(k)| > (1/5)Vn(k)
)}(r−1)/r

≤ Ck∗ξq

n

Kn∑
k=1

(
k∗q

n

Nq
+ N−q/2

)
(5.70)

= o(1).

According to (3.2) and (5.47), one has, for sufficiently large n and q ,

Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|V3n(k)| > (1/5)Vn(k)
)}(r−1)/r

≤ Ck∗ξq

n

Kn∑
k=1

(
kq

Nq/2 + kq/2

NqL
q
n(k)

)
(5.71)

≤ Ck∗ξq

n

(
K

q+1
n

Nq/2 +
k∗
n∑

k=1

k∗−q/2

n +
Kn∑

k=k∗
n+1

k−q/2

)

= o(1),

where the last equality is ensured by 0 < ξ < min{1/2, δ1/2}. Similarly, by (3.2)
and (5.48),

Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|V4n(k)| > (1/5)Vn(k)
)}(r−1)/r = o(1),(5.72)

provided q is sufficiently large. Finally, by (3.2) and (5.49), one has, for sufficiently
large n and q ,

Kn∑
k=1

k∈An,θ

∣∣∣∣ k − k∗
n

NLn(k)

∣∣∣∣q{
P

(|V5n(k)| > (1/5)Vn(k)
)}(r−1)/r

≤ Ck∗ξq

n

Kn∑
k=1

‖a(k) − a(k∗
n)‖q

R

Nq/2L
q
n(k)

(5.73)

≤ Ck∗ξq

n

( k∗
n∑

k=1

k∗−q/2

n +
Kn∑

k=k∗
n+1

k−q/2

)

= o(1).
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In view of (5.69)–(5.73), for sufficiently large q , the left-hand side of (5.68) con-
verges to 0. Consequently, the left-hand side of (5.67) also converges to 0 for suf-
ficiently large q . This result, Jensen’s inequality and (5.66) yield

lim
n→∞E

∣∣∣∣ f1(k̂
S
n ) − f1(k

∗
n)

L
1/2
n (k̂S

n )

∣∣∣∣2q

= 0,

for any q > 0. Moreover, by Theorem 3 and Lemma 7,

lim
n→∞E

( |f(k̂S
n ) − f(k∗

n)|2q

L
q
n(k∗

n)

)
= 0.(5.74)

On the other hand, by Wei ([29], Lemma 2) it can be shown that

E|S(k) − S(k∗
n)|2q ≤ C‖a(k) − a(k∗

n)‖2q
R .

By the definitions of Ln(k) and k∗
n , it is easy to see that

‖a(k) − a(k∗
n)‖2q

R ≤
(
Ln(k) − Ln(k

∗
n) +

∣∣∣∣k − k∗
n

N

∣∣∣∣σ 2
)q

.

These facts and an argument similar to that used for verifying (5.74) yield

lim
n→∞E

( |S(k̂S
n ) − S(k∗

n)|2q

L
q
n(k∗

n)

)
= 0.(5.75)

As a result, (3.8) with k̂n = k̂S
n follows from (5.74), (5.75), Proposition 2 and

the Cauchy–Schwarz inequality. Moreover, by arguments similar to those used for

showing (5.74), (5.75) and Corollary 2, (3.8) also holds with k̂n = k̂A
n , k̂F

n , k̂
Sp
n

or k̂C
n . �

PROOF OF COROLLARY 1. The proof of Corollary 1 is similar to that of The-
orem 2. The details are omitted. �

6. Discussion and concluding remarks. (1) Main contributions. Due to its
success in practical applications, AIC has received considerable attention among
researchers (and practitioners) from various disciplines in the past three decades;
see [10]. However, the statistical properties of AIC are still not clear when it is
used for forecasting the future of an observed time series. In the present article
we have attempted to resolve this problem. Armed with some new technical tools,
Theorem 2 and (4.4) successfully show how well AIC (and its variants) can work
for same-realization predictions. The simulation results given in Table 1 also show
that the finite-sample performance of AIC is satisfactory in many practical situ-
ations. Corollary 1 and (3.12)–(3.14) explore the prediction efficiencies of some
other AIC-like criteria having different penalties for the number of regressors in
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the model. By the same argument used for proving Theorem 2 and the ideas of Shi-
bata ([27], Section 5), Bhansali [5] and Ing and Wei ([17], Section 4), extending
Theorem 2 and Corollary 1 to the multistep prediction case is straightforward.

On the other hand, Table 2 indicates that for same-realization predictions it
seems very difficult for AIC to be strongly asymptotically efficient. This phenom-
enon not only points out another dissimilarity between same- and independent-
realization predictions [since AIC is strongly asymptotically efficient for
independent-realization predictions; see (4.10)], it also inspires a new direction
for time series model selection, that is, selecting models (or orders) through the
second-order conditional MSPE, namely, E[(xn+1 − x̂n+1(k))2|x1, . . . , xn] − σ 2.
As suggested by Table 2, a model having the minimal second-order conditional
MSPE can be asymptotically much more efficient than the model selected by
AIC in the sense that r∗

n � 1 for all large n. [Recall that r∗
n is defined af-

ter (4.8).] Unfortunately, since E[(xn+1 − x̂n+1(k))2|x1, . . . , xn] − σ 2 is un-
observable, it cannot be used as a selection criterion in practice. However,
we conjecture that a model selection criterion based on a reliable estima-
tor of E[(xn+1 − x̂n+1(k))2|x1, . . . , xn] − σ 2 should also outperform AIC for
same-realization predictions. For a related discussion on estimating E[(xn+1 −
x̂n+1(k))2|x1, . . . , xn] − σ 2 in finite-order AR models, see [17].

(2) Moment restrictions. For independent-realization predictions, we provide
a set of sufficient conditions in Remark 6 which guarantees that AIC achieves
Shibata’s asymptotic efficiency in non-Gaussian settings. Since Remark 6 only
assumes that the error distributions have uniformly bounded (4 + δ0)th moments,
where δ0 is any (small) positive number, it notably improves the best previous
result given by Lee and Karagrigoriou ([21], Theorem 3.1), which required the
existence of the eighth moment. However, to ensure that AIC is asymptotically
efficient in the senses of (4.3) and (4.4), (K.3) is needed; see Theorems 1 and 2.
This is because (2.4) and (2.5) are required to hold for sufficiently large q in the
proofs of Theorems 1 and 2; and Proposition 1, which is the first result giving
sufficient conditions [including (K.3)] such that (2.4) and (2.5) are fulfilled for
any q > 0, is used to meet this requirement. Although (K.3) is rather stronger
than is necessary, it is convenient. Note that if (K.4) is replaced by a stronger
assumption than K

6+δ0
n = O(n) for some δ0 > 0, then the first part of Theorem 2

of [17] holds instead of Proposition 1. By applying this result to our analysis,
(K.3) in Proposition 2 and Theorem 1 can be weakened to sup−∞<t<∞ E|et |20 <

∞ and sup−∞<t<∞ E|et |36 < ∞, respectively. But for Theorem 2, (K.3) needs to
be replaced by a more complicated moment restriction which may depend on the
value of θ [which is defined in (K.6)]. Consequently, while (K.3) can be slightly
relaxed at the price of reducing the number of candidate models, the disadvantages
seem to outweigh the merits. To resolve this dilemma, it is necessary to verify
(2.4) and (2.5) under milder moment conditions. However, this topic is beyond the
scope of the present article.
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(3) Extensions to the regression model. As mentioned in Section 1, the main dif-
ficulty of analyzing AIC’s (and its variants’) same-realization MSPE in time series
models lies in the fact that future observations, estimated parameters and selection
criteria are all stochastically dependent and, hence, Shibata’s approach is no longer
applicable. For the regression model, however, the (commonly used) assumption
of independent observations yields that the future observations are independent
of the estimated parameters and selection criteria even in the same-realization
case, which substantially simplifies the task of analyzing the model selection crite-
rion’s (same-realization) MSPE. This is exactly the same situation encountered in
independent-realization predictions for time series models (see Section 1). In fact,
under a Gaussian regression model with infinitely many parameters, Breiman and
Freedman [7] showed that the Sp is asymptotically efficient for “same-realization”
predictions from a conditional MSPE point of view. [Note that their asymptotic
efficiency is the same as the one discussed in (4.11).] It also can be shown that
their result still holds with Sp replaced by AIC, FPE, Cp or Sn(k). In addition, we
conjecture that their result can be extended to unconditional versions without the
Gaussian assumption, provided suitable smoothness conditions [such as (K.2)] on
the distributions of the (random) regressors and the white noise are imposed.

(4) The possibility of extensions to the multivariate case. Since for multivari-
ate time series, AR models are the most used models by far, order selection for
vector AR models has attracted growing interest among researchers from various
disciplines in recent years. For example, Findley and Wei [12] recently presented
the first mathematically complete derivation of the multivariate AIC for compar-
ing vector AR models fit to stationary series in independent-realization settings.
When the candidate vector AR models are misspecified, Schorfheide [23] also
considered order selection problems for the purpose of independent-realization
predictions. However, since these results focus on independent-realization cases, it
would be of interest to extend our same-realization results to the multivariate case.
To achieve this goal, extending Proposition 1 to stationary multivariate time series
is necessary. Taking the approaches used to verify Theorem 4.1 of [12] [which
gives a multivariate version of (2.4) but with Kn fixed with n] and Theorem 2
of [17], a multivariate extension of Proposition 1 can be easily obtained. In addi-
tion, generalizations of the moment bounds of Section 5 to the vector case are also
required for establishing the desired results. However, since these generalizations
are not straightforward, further investigation along this direction is needed.

APPENDIX

PROOF OF (3.4). We first show that, for sufficiently large n,

1

β
logN − C log2 N ≤ k∗

n ≤ 1

β
logN + C log2 N,(A.1)
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where C is some positive number and β is defined in (3.3). Let k = k∗
n − d , where

d is some positive integer. Then

Ln(k) − Ln(k
∗
n) = ‖a − a(k)‖2

R − ‖a − a(k∗
n)‖2

R − d

N
σ 2 ≥ 0.(A.2)

According to (A.2) and (3.3), one has, for some C > 0,

d

N
σ 2 ≤ Ck∗θ1

n e−β(k∗
n−d),

where θ1 is defined in (3.3). Taking the (natural) logarithm of both sides, we get

k∗
n ≤ 1

β
logN + C log2 N,(A.3)

for some C > 0. In view of (A.3) and (K.4), we have k∗
n + k∗η

n ≤ Kn for any
0 < η < 1 and for sufficiently large n. Now let k = k∗

n + k∗η

n for some 0 < η < 1.
(Here we assume without loss of generality that k∗η

n is an integer.) In this case

Ln(k) − Ln(k
∗
n) = k∗η

n

N
σ 2 − (‖a − a(k∗

n)‖2
R − ‖a − a(k)‖2

R

) ≥ 0.(A.4)

By (3.3), (A.4) and the fact that k∗
n → ∞, one has, for sufficiently large n and some

C > 0,

k∗η

n

N
σ 2 ≥ Ck∗−θ1

n e−βk∗
n

and, hence,

k∗
n ≥ 1

β
logN − C log2 N.(A.5)

Consequently, (A.1) follows from (A.3) and (A.5).
To show (3.4), first assume that k < k∗

n − k∗η

n for some 0 < η < 1. By (3.3) one
has, for sufficiently large n and some C > 0,

Ln(k) − Ln(k
∗
n)

(k∗
n − k)/N

= ‖a − a(k)‖2
R − ‖a − a(k∗

n)‖2
R − ((k∗

n − k)/N)σ 2

(k∗
n − k)/N

(A.6)

≥ Ck∗−θ1
n e−β(k∗

n−k∗η

n )

k∗
n/N

− σ 2.

In view of (A.1), the right-hand side of (A.6) diverges to infinity and, hence,
(3.4) holds for k < k∗

n − k∗η

n .
For k > k∗

n + k∗η

n ,0 < η < 1, one has

Ln(k) − Ln(k
∗
n)

(k − k∗
n)/N

≥ Ln(k) − Ln(k
∗
n + (1/2)k∗η

n )

(k − k∗
n)/N

(A.7)

≥ σ 2

2
− ‖a − a(k∗

n + (1/2)k∗η

n )‖2
R

k∗η

n /N
.
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By (3.3) and (A.1), the second term on the right-hand side of (A.7) converges to 0.
Therefore, (3.4) holds for k > k∗

n + k∗η

n . �

PROOF OF (3.7). Let k = k∗
n − d , where d is some positive integer. By

(3.5) and (A.2),

dσ 2

N
≤ (

C4 + M1(k
∗
n − d)−ξ1

)
(k∗

n − d)−β − (
C4 − M1k

∗−ξ1
n

)
k∗−β

n .(A.8)

By Taylor’s theorem, (A.8) can be further expressed as

dσ 2

N
≤ C4βdk∗−1−β

n + O
(
k∗−2−β

n

)
.

Therefore, for sufficiently large n and some C > 0,(
σ 2

NC4β

)−1/(β+1)

≥ k∗
n − C.

Since β > 1+ δ1, we can choose a positive integer, d , such that k∗
n +d ≤ Kn for all

large n. By letting k = k∗
n + d and by an argument analogous to that used in (A.8),

we have, for sufficiently large n and some C > 0,(
σ 2

NC4β

)−1/(β+1)

≤ k∗
n + C.

As a result,

k∗
n =

(
σ 2

NC4β

)−1/(β+1)

+ O(1).(A.9)

Armed with (A.9), the proof of (3.7) is divided into four cases.

Case 1. 1 ≤ k ≤ θ2k
∗
n , where 0 < θ2 < 1 is chosen to satisfy θ

−β
2 − 1 > β .

By (3.5) and (A.9), one has

Ln(k) − Ln(k
∗
n) = ‖a − a(k)‖2

R − ‖a − a(k∗
n)‖2

R − k∗
n − k

N
σ 2

≥ ‖a − a(θ2k
∗
n)‖2

R − ‖a − a(k∗
n)‖2

R − k∗
n

N
σ 2

= k∗
n

Nβ
σ 2(

θ
−β
2 − 1 − β + o(1)

)
.

Therefore,

Ln(k) − Ln(k
∗
n)

(k∗
n − k)/N

> C(A.10)

holds for sufficiently large n, 1 ≤ k ≤ θ2k
∗
n , and some C > 0.
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Case 2. θ2k
∗
n < k < k∗

n , where θ2 is defined as in case 1.
By Taylor’s theorem, (3.5) and the assumption that ξ1 ≥ 2,

Ln(k) − Ln(k
∗
n)

(k∗
n − k)/N

=
(

d

N

)−1{[
k∗−β

n

(
C4 + O

(
k∗−ξ1
n

))
×

(
1 + βd

k∗
n

+ β(β + 1)d2

2k∗2
n

(A.11)

+ β(β + 1)(β + 2)d3

6k∗3
n

(1 − αn)
−β−3

)

− k∗−β

n

(
C4 + O

(
k∗−ξ1

n

))] − d

N
σ 2

}

=
(

d

N

)−1[
C4βd

k∗β+1
n

+ C4d
2βγβ,θ2

k∗2+β

n

− d

N
σ 2 + O

(
k∗−2−β

n

)]
,

where d = k∗
n − k, 0 < αn < dk∗−1

n ≤ 1 − θ2 and

γβ,θ2 = β + 1

2
+ (β + 1)(β + 2)d

6k∗
n(1 − αn)β+3 .

In view of (A.9) and (A.11), we have

Ln(k) − Ln(k
∗
n)

(k∗
n − k)/N

= σ 2

k∗
n

(
dγβ,θ2 + O(1)

)
(A.12)

≥ C
d

k∗
n

for sufficiently large n and some C > 0, provided d > C6 with some C6 > 0.

Case 3. (1 + θ2)k
∗
n < k < Kn,0 < θ2 < 1.

By (3.5) and (A.9),

Ln(k) − Ln(k
∗
n) = d

N
σ 2 − C4k

∗−β

n

(
1 − (

1 + (d/k∗
n)

)−β)
+ O

(
k∗−ξ1−β

n

)
(A.13)

= d

N
σ 2 − k∗

n

βN
σ 2(

1 − (
1 + (d/k∗

n)
)−β)(

1 + o(1)
)

+ O
(
k∗−ξ1−β

n

)
,
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where d = k − k∗
n . By (A.13) one has, for sufficiently large n,

Ln(k) − Ln(k
∗
n)

(k − k∗
n)/N

= σ 2
(

1 − 1

β(d/k∗
n)

(
1 − (

1 + (d/k∗
n)

)−β)(
1 + o(1)

))

+ O

(
N

d
k∗−ξ1−β

n

)
(A.14)

> C > 0,

where the last inequality follows from

O

(
N

d
k∗−ξ1−β

n

)
= o(1)

and

g(x) = 1 − 1

βx

(
1 − (1 + x)−β)

> 0,

for x > 0.

Case 4. k∗
n < k ≤ (1 + θ2)k

∗
n with 0 < θ2 < 3/(β + 2).

By Taylor’s theorem, (3.5), (A.9) and the assumption that ξ1 ≥ 2, one has, for
sufficiently large n and some C > 0,

Ln(k) − Ln(k
∗
n)

(k − k∗
n)/N

=
(

d

N

)−1

×
{

d

N
σ 2 − σ 2k∗

n

Nβ

(
1 + O

(
N−1/(β+1)))

×
(

βd

k∗
n

− β(β + 1)d2

2k∗2
n

(A.15)

+ β(β + 1)(β + 2)d3

6k∗3
n

(1 + αn)
−β−3

)
+ O

(
k∗−2−β

n

)}

= σ 2
[
(β + 1)d

2k∗
n

− (β + 1)(β + 2)d2

6k∗2
n

(1 + αn)
−3−β + O

(
k∗−1

n

)]

> C
d

k∗
n

,

provided d = k − k∗
n > C6 for some C6 > 0. Here αn is some positive number

which satisfies 0 < αn < d/k∗
n , and the last inequality follows from the condition

on θ2.
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Consequently, the desired property (3.7) is ensured by (A.10), (A.12), (A.14)
and (A.15). �
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