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We consider the problem of approximating the moment generating
function (MGF) of a truncated random variable in terms of the MGF of the
underlying (i.e., untruncated) random variable. The purpose of approximating
the MGF is to enable the application of saddlepoint approximations to certain
distributions determined by truncated random variables. Two important
statistical applications are the following: the approximation of certain
multivariate cumulative distribution functions; and the approximation of
passage time distributions in ion channel models which incorporate time
interval omission. We derive two types of representation for the MGF
of a truncated random variable. One of these representations is obtained
by exponentialtilting. The seond type of representation, which has two
versions, is referred to as an exponential convolution representation. Each
representation motivates a different approximation. It turns out that each of
the three approximations is extremely accurate in those cases “to which it
is suited.” Moreover, there is a simple rule of thumb for deciding which
approximation to use in a given case, and if this rule is followed, then our
numerical and theoretical results indicate that the resulting approximation
will be extremely accurate.

1. Introduction.

1.1. Saddlepoint methods. Saddlepoint methods provide approximations to
densities and probabilities whiclre very accuraten a wide variety of settings.
This accuracy is seen not only in numerical work, but also in theoretical
calculations. In particular, it is often the case that relative errors of these
approximations stay bounded in the extreme tails, a desirable property which is
not shared by most other types of approximation used in statistics.

For development and discussion of saddlepoint methodology and related
methods, see Daniels (1954) for details of the density approximation; Barndorff-
Nielsen and Cox (1989, 1994) for applications to inference; Lugannani and
Rice (1980), Temme (1982) and Daniels (1987) for discussion of a tail area
approximation which has uniform relative error, and Skovgaard (1987) for a
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conditional version of this approximation; and Reid (1988) for a review of
saddlepoint techniques.

Saddlepoint approximations are constructed by performing various operations
on the moment generating function (MGF) or, equivalently, the cumulant gener-
ating function (CGF), of a random variable. LEtbe an absolutely continuous
random variable with density (x) with respect to the Lebesgue measure, moment
generating functiord (r) and CGFK (¢) = log M (¢). Then the first-order saddle-
point density approximation t@ (x) is given by

f) ={2nK" (@)} V2 expK (7) — ix},

wheret = is the (unique) solution to the saddlepoint equatiknz) = x,

and primes denote derivatives. The Lugannani and Rice (1980) saddlepoint
approximation to the cumulative distribution function (CDFjy) = P(X <)

is obtained by taking = 0, F = Fp andK = Kg in (19).

More recent developments include saddlepoint approximations for nonlinear
statistics. See Daniels and Young (1991), DiCiccio and Martin (1991) and Jing and
Robinson (1994) for further details, and see Jensen (1995) for a rigorous account
of the underlying mathematical theory of saddlepoint methods. An extensive
discussion of saddlepoint methods and their application will appear in Butler
(2004).

Unlike much of this previous work, the current paper uses saddlepoint
methods to approximate MGFs of truncated distributions with the view that these
approximate MGFs may be used for further saddlepoint inversion. The work is
therefore similar in spirit to Fraser, Reid and Wong (1991) and Butler and Wood
(2002a).

1.2. Truncation. Suppose thatX; denotes a random variable with known
MGF M; () fori =1, ..., n, and that for eachwe observe’; = X;|X; € (a;, b;),
that is,Y; is X; conditioned to lie in the intervala;, b;). In this paper we are
concerned with the following questiois there a convenient and accurate way
to approximate the CGF of Y; using only K;(0), the CGF of the untruncated
variable X;?

If we are just interested in a single random varialilesay, then the question is
probably not of much interest because the density and CDF c&n be expressed
simply in terms of the density and CDF &, with the latter approximated using
the saddlepoint approximations indicated above. However, there are situations in
which approximations to the CGFs of th&;} are potentially very useful. We
mention two such examples.

1.2.1. Computation of Dirichlet probabilities. We may wish to construct a
saddlepoint approximation for the distribution of the sgif_; ¥;. One such
application is to the approximation of certain multivariate CDFs arising in
sampling theory and extreme value theory as discussed in Butler and Sutton
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(1998). For these applications, the multivariate CDF is expressed in terms of
the density of)__,Y;, where the underlying MGFs of th&; are known.
Consider, for example, the probability that an arbitrary Dirichlet ve@ox

(D1, ..., Dy) ~ Dirichlet{y = (y1, ..., y»)} lies in a general rectangular region

(@, b) = [1'_1(a;, b;) C (0,1)". If the components oX = (Xy,...,X,) are
independent withX; ~ Gammdy;, 1), then the Dirichlet is represented in terms

of independent Gammas &= X/S, whereS = """ ; X;. By independence of

S andX/S, the distribution oD is also the conditional distribution &f given that

S = 1. These facts and Bayes’ theorem lead to

[T PHX; € (a;, b))}
fs(D '

Here fs{1|X € (a,b)} is the density ofZ = 3" ;Y; at 1, whereY; = X;|X;

(a;, b;), which we approximate using the saddlepoint density. The other terms are
standard computations: f; € (a;, b;)} is a gamma probability ands (1) is the
Gamma}_; y;, 1) density ofS at 1

1) Pr{D € (a,b)} = fs{1IX € (a, b)}

1.2.2. lon channel models with time-interval omission. First, we consider
an ion channel model which is represented as a two-state homogeneous semi-
Markov process with state spade, ¢}, where stateo (statec) corresponds
to the ion channel being open (closed). Suppose that we observe the process
To,0. Te1, Tp,1, Te 2, . .., WhereT, ; is the length of thejth sojourn in the open
state, andT, ; is the length of thekth sojourn in the closed state. We have
assumed that the process has started in stat@e could equally start in state
Homogeneity and the semi-Markov assumption imply th&f;:j > 1} and
{T..x :k > 1} are both independent and identically distributed (1ID) sequences.
Suppose that the MGFs @}, 1 and7,. 1 are, respectivelyp,.(6) andd.,(0) and
that both are convergent in open neighborhoods of zero.

In ion channel modeling, a phenomenon knowntia® interval omission is
commonly built into the model. In effect, this means that only state residences
which last for longer than a given time threshold are observed (or detected),
and those residences lasting for less than this threshold are not observed (or are
undetected); that is, we only observe those sojourns in stédstatec) which
last at leastr, (t.); otherwise, it appears to the observer that a jump has not
occurred. Time interval omission occurs because of limitations in the sensitivity
of the measuring device. Denote the observed sequenfted)ch 1,Tp1,.... AsS
a concrete example, suppose tiiag > 7., 7, 1=To and7, » > To; then TO 0=
T,.0, Tc 1=T1+Ton+ T2 The sequence{% itji=1 and{Tc .k >1}are
both 1ID. Let ®,, (¢) and d)co(e) denote the MGF of a typlcal member of each
sequence. For inferential purposes it is important to expbgsand®., in terms
of ®,. andd,.,.
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Define
) ®L.(0) = E[exp0T, )1 (To.1> 1)1,
3) DL.(0) = E[exp0T, )1 (T, 1 < )]
and

7o = P[T,1> 7,] = ®2(0),

with corresponding definitions fob2, ®Y andr.. Elementary arguments show

co? 0

that®,.(0) can be expressed in terms of a geometric series:
- 0
Doc(0) = 70, 100D (D (0) Do ()} e
n=0

= 7,202 (1— dY (6)D,e(0)) ..

C

A similar argument shows that
Do (0) =7, DL {1 — B(0) Do ()},

0

The above discussion shows that time interval omission leads directly to consider-
ation of MGFs of truncated random variables.

More interesting ion channel models have several open states and several closed
states, some of which communicate; see Ball, Milne and Yeo (1991). This leads
to a more complicated structure, due to aggregation, in wibighio) and®.., ()
now represent matrices, each component of which is essentially an MGF which can
be expressed as a rational function of the MGFs of the underlying distributions of
transition times between individual states. These rational functions are difficult
to write down explicitly, but they are straightforward to compute numerically
using matrix algebra; see Ball, Milne and Yeo [(1991), Section 3] and also Butler
(2000) for analogous calculations in a reliability context. The key point is that, in
multistate ion channel model$,,. and®,, are matrices rather than real numbers,
but have similar form to that given above, and are expressed in terms of the MGFs
of truncated random variables, as in (2) and (3); see Ball, Milne and Yeo [(1991),
Section 4]. Accurate approximation of these distributions can be performed using
the methods developed in this paper, but seems to be very difficult otherwise
(except in the Markov case).

The present paper was motivated by the ion channel application described
above. Further details of this application will be presented in Ball, Butler and Wood
(2004).

1.3. Outline of the paper. In Section 2 we consider two types of representation
for the MGF of a truncated random variable expressed in terms of the MGF
of the underlying random variable. One of these representations is obtained by
exponential tilting. A secontlype of representation, which has two versions, is
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referred to as an exponential convolution representation. In Section 3 we consider
saddlepoint approximations to the MGF of the truncated random variable which
are motivated by these representations, and indicate their performance in a number
of examples. In Section 4, results concerning the tail behavior of the various
approximations are given. Proofs of the theorems are given in the Appendix. The
research report Butler and Wood (2002b) presents extensions to the lattice and
multivariate cases, as well as additional numerical examples.

It turns out that each of the three approximations is extremely accurate in
those cases “to which it is suited.” Moreover, there is a simple rule of thumb
(see Section 3.4) for deciding which approximation to use in a given case. If this
rule is followed, numerical and theoretical results indicate that the resulting hybrid
approximation will be extremely accurate.

2. Representationsof truncated M GFs.

2.1. Preliminaries. Let My(9) denote the MGF an&o(6) = log Mp(6) the
CGF of a random variabl& on R with density fp with respect to the Lebesgue
measure, and CDFy(x) = P(X < x). Assume thaMy(0) has a convergence strip
given byé € (—a, ), where O< «a, 8 < 00. Leta < b denote real numbers such
that Fo(b) — Fo(a) > 0.

Let

9% d Fo(x)

1 b
(4) Ma,p)(0) = Folb) — Fol@ —Fo(a)/a e

denote the MGF ofX truncated at: andb, and conditioned to lie ifa, b). We
shall refer toM 4,1, () as a truncated MGF which is an abbreviation for the MGF
of a truncated random variable, and similar terminology is used for other quantities
such as the CGF.

In this paper we discuss how to approximate the truncated BGf,) (0) =
log M.,5)(0) and its derivatives in terms of the original C&fp(0) = log Mo (0)
and its derivatives.

2.2. Tilted representation. Let Fy(x) denote the CDF of thé-tilted distri-
bution of X, that is,dFy(x) = fy(x)dx = ¢’ d Fo(x)/Mo(0), where fy(x) =
e% fo(x)/Mo(0) is the density corresponding to the CDIf. Then, foré e
(—a, B), elementary manipulations show that

®) Ma,p) (@) = Mo(O)[{Fo (D) — Fy(a)}/{Fo(b) — Fo(a)}].

We shall refer to (5) as the tilted representatiomhof, ;) (0).
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2.3. Exponential convolution representations. We now provide alternative
representations of (4) which are collectively valid for élin the convergence
interval of M, ). Define

1 c14ioco e@—5)y )
© B0 =5 [ M) ——ds.  —a<ci<min(p.0)
c1—ioo —

and

1 fetioco e0—9)y
(7)) E200,y)= —/ Mo(s) ds, max(—a, 0) < c2 < B.
270 Jey—ioo s—0

THEOREM 2.1 (Properties of21 and Ej). Suppose that Fp is absolutely
continuous with density fo, and assume that for some ¢ € (—a, ), there exists
av(c) € (0, co) such that

®) / |Mo(c +in[*© dr < co.
teR

Then the following results hold:

(i) Wehave
(©) 2160 = [ owdr. b€ (-a )
and
(10) 220, y) = /y T fydr, e (—o0,B).
Hence,
(11) E1(0,y) + E208, y) = Mo(9), 0 € (—a, B).

(i) Let X denote a random variable with MGF My(6) and let E denote an
exponential random variable with rate parameter |6| which is independent of X .
When 6 > 0,

(12) E1(0,y) =07 fx £ (y);
and when § < 0,
(13) E1(0,y) = Mo(®) — 10| Le? fx_£().

In the statement of this theorem f, denotesthe density of a randomvariable Z.
(i) Wheno > 0,

(14) E2(0,y) = Mo(0) — 072 fxyp(y);
and when § < 0,
(15) B20,y) = 1012 fx_p(y).
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(iv) Inthe respective domains of definition for 21 and E»,
M(~c0,y)(0) = E1(0, y)/Fo(y) and
M(y,00)(0) = E2(6, y) /{1 — Fo(y)}.

(v) For ageneral interval (a, b), M4, (0) hasthe alternative representations

(A7) Ma,p)(©) ={E1(6,b) — E1(6, a)}/{Fo(b) — Fo(a)}, 0 € (—a, 00),

(16)

and

(18)  M(a,5)(0) ={E2(0,a) — E2(0,b)}/{Fo(b) — Fo(a)}, 0 € (=00, B).

We refer to (16)—(18) as exponential convolution representations of the
corresponding truncated MGFs.

REMARK 2.1. Condition (8) is a mild smoothness requirement on the
underlying densityfy. Note that if, for some, (8) holds withv(c) € (0, 1], then
absolute continuity ofp follows; see Theorem 11.6.1 in Kawata (1972). However,
if we must takev(c) > 1 for all ¢, thenFy need not be absolutely continuous; see
Theorem 13.4.2 in Kawata (1972) for a counterexample.

REMARK 2.2. Although (11) follows immediately from the addition of
(9) and (10), it is also interesting to note that (11) is a consequence of Cauchy’s
theorem; see Butler and Wood [(2002b), Section 2].

3. Approximations. We now present approximations to the truncated CGF
Ka.p)(0) = logM.p)(0) and its derivatives, distinguishing between the one-
sided casea = —oco0 andb =y < 00, anda = y > —oo andb = oo, and the
two-sided case > —oo andb < 0.

3.1. Lugannani and Rice approximation. Using the tilted representation of the
truncated MGF, we obtain

K(—c0.y)(0) = Ko(0) +10g{Fo(y)/ Fo()}.

We may approximate thex-tilted CDF Fy(y) by applying the Lugannani and Rice
approximation with the CGKy(s) = Ko(6 + s) — Ko(6).
If the convergence strip do(0) is 6 € (—a, B) with finite B, then K (o, y)(0)
is defined on the larger sét-«, co), but it is not clear how to extend this
approximation t@ e [8, co). A simple extension is discussed in Butler and Wood
[(2002b), Section 5.2], though it turns out that this extension is unsatisfactory.
The Lugannani and Rice approximationfg(y) is given by

(19) Fo(y) = ®(wp) + ¢ (wg)(wy * —uzh),
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where® and¢ are, respectively, the standard normal CDF and density;

(20) wg = SgNt, — O)[2{(ty —0)y — Ko(ty) + Ko@)}

andug = (1, —0){K{ (t,)}¥/?, where sgux) = —1, 0, 1 depending on whetheris
negative, zero or positive; and= ¢, is the unique solution to the saddlepoint
equationky(1) =y.

The approximatiorFy (y) is quite simple to use since it is an explicit function
qf\@ oncet,, the saddlepoint foé = 0, has been determined; thus, the function
K(—0,y)(0) is available in explicit form once the single saddlepoint solution
has been obtained. To see this, note that the saddlepoint for the tilted distribution
sy solves

Ky(S9) = K80 +0) = y = Kqp(1y).
By uniqueness of the saddlepoigt+- 6 = t,, so that only the computation of is
required in order to determinéy : 6 € (—a, B)}. Thus, the CGF approximation
(21) Koo (®) =Ko(®) +I0g{Fs(y)/Fo(»)}, 6 € (—a,pB),
is explicitiné.
The first two derivatives of the approximation are given by
K (o) 0) = K@) + (Fo ()} H 9 Fy (1) /00
and

K ooy ©) = K5 (0) + (Fo () 02Fp(y)/06% — [{Fy (1)) 9 Fp () /067,
where

0Fs(y)/00 = ¢ (we)l{y — Ko@)} wy® —ug ™) — (1, — 0)4{Kg (1)} 2,

and the second partial derivati\@zﬁg(y)/ae2 is most easily obtained by
numerical differentiation.
In the case ofK(,,~)(0), for 6 € (—a, B), we have the approximations

(22) K(y.00) = Ko(0) +logl[{1 — Fg(»)}/{1— Fo)}l,
K, .00)0) = K§©®) — {1~ Fo(y)) 2 Fy(v)/36

and X/ _,(0) =K{(@®) —T(,y), where

(y,00)
T(0.y) ={1- Fao(y»)) 1 9°Fp(3)/00% + [{1 - Fy(»)} 0 Fp(y) /007,
with the partial derivatives ofg(y) the same as before.
For general < b, we may approximate, ;) (0) = l0g M ») (@) by

Ka.p)(0) = Ko(0) + log[{Fy (b) — Fp(a)}/{Fo(b) — Fo(a)}],

0 € (—a, B).
This is an explicit expression #honce two saddlepoints have been determined by
solving K(t,) = a and K (1) = b.
The Lugannani and Rice approximation is exact when applied to the CDF of an
arbitrary normal distribution. Therefore, (23) is exact in this case.

(23)
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3.2. The exponential convolution approximations. These approximations are
obtained by applying saddlepoint approximations to the integrals def&itg y)
andZ,(6, y). Denote these saddlepoint approximations&hys, y) andE2(6, y).
Then in this approach the CGB§_«,y)(0) and Xy, «)(f) are approximated by

(24) K(—o0,y)(0) =10g{E1(0, y)/E1(0, )}, 6> —a,
and
(25) K(y.00)(0) =10g{E2(0,y)/E20,y)}, 6 <p.

To reduce the number of formulae in this section, we shall use the subscripts
1 and 2 to indicate the intervals-oco, y) and(y, co), respectively.

The saddlepoint approximations B (0, y) (j =1, 2) are given by
(26) E;(0,y) =[27{1+ (0 —s,0)°Kg(s;.0)1" /2 expiKo(sj ) — (sj.0 — O)¥},
wheres o is the unique solution to

(27) Ki(s)+16 —s) 1=
in (—a, B) which satisfies19 <6 (j =1) andsz g >0 (j =2).
After some simplifications, we obtain
(28) J?/ (0) =0y + D;(®) — D;(0)+ Ko(sj,g) — Ko(sj0) — (sj.0 — 5.0,
where, using implicit differentiation, we have
D;(6) = 3109(3s)/06) = —310g{1+ (6 — 5 9)°K{ (5j,6)}-

Note that the approximations are calibrated so m§1(0) K;j(0)=0,j=12
The first derivative of7{ ) (j =1, 2) is given by

ij(Q) =y+ Dj(9) —{y — Ko(sj.0)} 9s;,6/09,
where
D;(0) = 3(8%5,,0/00%)/(357,6/30),  35j,0/00 = {1+ (0 —5;.0)°K((5j.0)}
and
825,',9 _ (0 —sj0) [K”/(S, 0) +2(0 —s5;0){K (s, 9)}2]
062 {1+ —sj, 9)21( (s}, 0)}3
The second patrtial derivz:l'[i\@szj(9)/892 can be determined using numerical
differentiation.

In some examples we considered the second-order saddlepoint approximation
to E; given by E;(0, y) = E;(0, y)R(9, y), whereR(0, y) is the usual second-
order term given in this case by

RO, y) =14 LK Gi0) +60 s 0" 5{Ky'(sj0) +206 —5j0)%>
’ 8{K§(sj.0) + (0 —sj0)"22 24 {K{(sj0) + (O —s5;0) 23
The resulting approximations &, »(0) based on (17) and (18) are

(29)  Ki(an(®) =l0g[{E1(8,b) — E1(0,a)}/{E1(0, b) — E1(0, a)}]
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for 6 € (—a, 00), and foré € (—o0, B),

(30)  K2.(a.p) () =l0g[{E2(0, a) — E2(0, b)}/{E2(0, a) — E2(0, b)}].

3.3. Summary of numerical results. We now discuss several examples which
have been chosen to illustrate some general points. A more extensive set of
examples is given in Butler and Wood (2002b). As before, the truncation occurs at
—00 < a < b < oo and the convergence strip of the underlying CK&fHs (—a, 8),
where O< «, 8 < o0.

1. In cases where truncation leads to an extension of the convergence strip of
the MGF (i.e., if eithera > —oco0 anda < 0o, or b < oo and g < oo, or both)
the most obvious way to extend the LR-based approximation of Section 3.1 is
described in Butler and Wood [(2002b), Section 5.2]. However, this extended
approximation is poor, as can be seen in Figure 1. The discussion in Butler and
Wood [(2002b), Section 5.2] indicates that this is a general problem and not
specific to this example.

2. Theoretical results (see Theorem 4.2 and Section 5.3) indicate that when
an exponential convolution approximation is used it is appropriate to use (24)
or (29) in the right tail and (25) or (30) in the left tail. These findings are strongly
supported by our numerical examples; see Figure 2 for a typical case.

3. In our numerical examples, we have found that the first-order saddlepoint
approximation tcg ; works better in the case of one-sided truncation (i.e., if either
a = —o0 or b = 00), while the second-order approximation works better in the
case of two-sided truncation (i.e. df> —oo andb < c0).

0.6 0.8 1 1.2 1.4

FiG. 1. Right truncation of an Exponential(1) distribution. Plot of X g 2)(6) (solid) and its
approximation X g, 2)(6) (dashed) for 6 < 1 and its continuation (dotted) for 6 > 1.
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-4 2 0 2 4 6

FiG. 2. Two-sided truncation of Normal(0,1). Plot of K7 (_1.2(#) (dotted), K7 (_1.2)(6)
(dashed), and K (_1,2(8) (solid) for 6 € (-5, 6).

4. In those cases where the convergence strip does not need to be extended, the
LR-based approximation has generally proved more accurate than the appropriate
exponential convolution approximation, though the latter performs respectably.
Figures 3 and 4 present a typical example of this finding.

FIG. 3. Two-sided truncation of the Gumbel distribution. Plot of K (_1 2)(6) (solid) and the “rule
of thumb” approximation (centers of circles) that uses the Lugannani and Rice approximation (23)
for 6 < 0 and the exponentially convoluted approximation (29) for 6 > 0.
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-6 4 2 0 2 4

FIG. 4. Plot of 100x absolute error for the “rule of thumb” approximation (solid) in Figure 3. If
the exponentially convoluted approximation (30) replaces (23) for 6 < 0, then the error is shown as
the dashed line.

5. Finally, we return to Example 1.1. The question of interest here is how accu-
rately we can approximate rectangular Dirichlet probabilities using the truncated
MGF approximations described above, thereby avoiding the exact computation of
the truncated CGF, which is difficult. Table 1 presents results for particular exam-
ples. The exponential convolution approximations show consistent accuracy when
the saddlepoint is positive; and the Lugannani and Rice approximations are con-
sistently accurate when the saddlepoints are negative. Inaccuracy only arises when
either approximation is used in the inappropriate tail.

3.4. Rule of thumb. The results of Section 3.3 suggest the following rule of
thumb for choosing the approximations, which has worked very well in all the
examples we have looked at. In the rule, left and right tail refér+o0 andé > 0,
respectively.

Approximation for right truncation (—oo,y). Use the Lugannani and Rice
approximation (21) in both tails with one exceptiongli oo, so the convergence
strip is extended in the right tail, then use (24) in the right tail.

Approximation for left truncation (y,oc). Use the Lugannani and Rice
approximation (22) in both tails if there is no extension in the left tail. With
extension due ta > —oo, use (25) in the left tail instead.

Approximation for two-sided truncation (a, b). Use the Lugannani and Rice
approximation (23) in those tails in which there are no extensions. Where
extensions occur in the left and/or right tails, use (30) and/or (29), respectively.
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TABLE 1

Dirichlet probability computations; see Example 1.1. For the various values of n, y and (a, b), the

“Exact” probability as listed was computed using symbolic computation in Maple V. The mean of Z
islisted in the cell “Mean” and its value relative to value 1 deter mines whether the listed
saddlepoints for methods K ; and K are negative or positive. Category “SA, K using 21"
approximates the CGF of each Y; by using the appropriate (one-sided or two-sided) second-order
exponential convolution approximation based on 21 given in (24) and (29), respectively. Upon

determination of Kz, the results of its first-order saddlepoint density inversions are listed. The final

column “SA, Kz using L&R" shows comparable computations using the LR-based approximation

K7 given by (21) or (23), as appropriate

n Y a Exact SA, KzusingZ; SA, Kz usingL&R
M ean b Saddlept. Saddlept.
3 (10,88 (0)3 0.9527 08877 09756
1.454 U8 ~236 -235
3 (108,98 (0)3 0.02400 002479 000141
0.9435 045, (0.3)2 36.3 0.9667
3 13 0.2)3 0.04000 003869 00117
0.9080 (0.4)3 11.50 1026
3 13 0)3 0.04000 004059 002831
0.5707 0.4)3 15.59 09203
5 1)° (0)® 0.3680 03540 02535
0.9268 0.4)° 1.00 01335
5 (L2,...,5 (0)® 0.5526 05469 05439
1.389 (0.4)° ~10.14 —9.93
5 (L2,...,5 (0)® 0.0%2288 0092336 0075733
0.7221 05,0.4, (0.1)3 12.65 09140
5 (1,2....5 0.1)° 0.03220 003217 003183
1.125 0.3)° —10.02 -9.15
10 (110 (1/15)° 0.0*5080 003175 00%4969
1.776 0.3)° —29.56 —2856

Since all the approximations to the truncated CGF are calibrated to be zero
at # = 0, it follows that the approximation obtained by following the rule of
thumb will be continuous but, in general, not continuously differentiabfe-a0.
However, we have not found the lack of smoothnesg at0 to be an issue in
practice.

4. Theoretical accuracy in thetails. We now investigate the behavior of the
approximations toM , »)(6) and JC((Z?b)(Q), r=1,2, as|f| - co. We make the
following assumptions throughout this section:

(A1) The exponential familyfFy:0 € (—a, B)} is steep, that is,|Ky(0)| — oo as
6| —aandas 1 8.
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(A2) The densityfy has one-sided limits at the truncation poiatandb, that is,
the limits lim o fo(a + €) = fo(a+) and lim. o fo(b — €) = fo(b—) both
exist.

Note that under (A1) and (A2) and regardless of the value®f—oco we have,
asf — oo,

Mooy (@) ~ | 071" fob=)/[Fo®) = Fo@)],  if b < oo,
(a,b) Mo(@)/[l — Fo(a)], if b= 00,

and regardless of the value bk oo we have, a¥ — —oo,

01 fo(a+) /[ Fo(b) — Fo(a)l, if a > —o0,

M.y ()~ { Mo(6)/ Fo(b), if 4 = —oo.

4.1. Accuracy of the Lugannani and Rice approximation. - We first consider the
accuracy in the tails of the Lugannani and Rice (LR) approxmaMQg\b) and its
logarithmic derlvatlvesK b andJ{( b Theorem 4.1 below is proved in the
Appendix.

REMARK 4.1. Comparison of the results in Theorem 4.1 with the limiting
results forM 5 (€) above shows that the relative error stays bounded in all cases.
With JC( »©@) andJC( » @), the errors actually go to zero #§ — oo.

THEOREM 4.1. Consider the LR approximation @a,b)(e) specified in Sec-
tion 3.1.Assumethat (A1) and (A2) both hold. Suppose also that (i) « = oo inall
statements concerning the left tail and 8 = oo in all results concerning the right
tail; and (ii) as |8 — oo, ug/wg’ — 0, where wg and uy are given in (20) and
below (20), respectively, with y = a or b as appropriate.

(i) As6 — oo,

W0y~ [0 Jo0)/1Fo®) = Fo@),  ifb <o,
(a,b) Mo(0)/[1— Fo(a)l, if b = oo,

and asf — —oo,

0~ 1% fo(a+)/[Fo(b) — Fo(a)l,  ifa> —oo,

Ma.p)(6) ~ 0
@@ {Mo<9)/Fo(b), if a = —o0,

where fp is the saddlepoint density approximation to fp and Fg is the Lugannani
and Rice approximation to the CDF Fp.
(i) AsO — oo,
AT L 071 +o0007Y),  ifb<oo,
@b K@) (14 0(D), if b= o0,
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andasf — —oo,
=, a—0"14006D), if a > —o0,
@n) @ =1 g/ it
0@ (1+0(1)), if a = —o0.
(i) As® — oo,
_ 92 if b < oo
JC// 9 ~ ’ ’
(@) (©) {Kg(e), if b= o0,

andasf — —oo,

02, ifa > —o0,

J’C\// 0) ~ .
(@) (©) [Kg(e), ifa = —o0.

4.2. Accuracy of the exponential convolution approximation. For j =1, 2,
let ﬁj(e, y) and J?E’)(G), r=0,1,2, be as in Section 3.2 and defirﬁg,-(@) =
E;(6,y)/8;(0, ). Also, for —oo < a < b < oo, define

M1 (a,p)(0) ={E1(6, b) — E1(0, @)}/{E1(0, b) — E1(0, @)},

K1,(a,5)(0) =109 M1, (a,)(6), With corresponding definitions fab(2, 4,5 (6) and
K2, (a,p)(0).

REMARK 4.2. Comparison of the results in Theorem 4.2 with the limiting
results forM, »)(6) shows that the relative error stays bounded in all cases. With
J?; ) andJ?;/(e), the errors actually go to zero 8s-> +oc in the cases covered
by the theorem.

THEOREM4.2. Assumethat (A1) and (A2) both hold.
(i) As6 — oo,
M1(0) ~ 071 fo(y—)/E1(0,y),  Ki@)=y—6"1+0(07Y

and X7 (6) ~ 072, o _

(if) The limiting behavior of M3, X5 and X5 in the lower tail is the same as
that of M1(6), K7(9) and K7 (0) in the upper tail, as givenin part (i).

(ii) If —oo<a <b < oo, thenasfd — oo,

M1, 0,y (0) ~ 071 fo(b—)/{E1(0, b) — E1(0, @)},
Kiapn®=b—-6"+o@ Hand X7, ,@)~672
(iv) 1f & — —oo, then M2 (4,1 (6) and the derivatives of K> ) obey results
corresponding to thosein part (iii), but with a replacing b.

PrROOF.  In part (i), the key point to note is that ¢ — ¢, asé — oo, and then
the proof follows easily. The proof is essentially the same in the other calsks.
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4.3. Behavior in the other tail. In Theorem 4.2 we described the limiting
behgvior of M1(0) and its logarithmic derivatives as— oo, and the behavior
of M>(0) and its logarithmic de[ivvatives #s— —oo. In this section we indicate,
without proof, what happens t#(1(¢) and its derivatives wheét — —oco. The
results forM»(9) are similar and are therefore omitted.

Iflim ) —o K§(s)/[K{(s)12 — 0, then
(31) M1(0) ~ Mo(0)(e/~2)/E1(0,y)  asf — —o0.

Under the stronger conditions
lim K{(s)/Ky(s)—0 and lim K$"(s)/[K{(s)1° — 0,
s{—a s)—a

we have

(32) K10) ~ Ko(6);

and still stronger conditions are needed to ensure that
(33) K} (©) ~ K§(6).

A sufficient condition for (31)—(33) to hold is the following:

(34) for eachj > 2 lim K(‘j)(s) stays bounded.
0 0
Sy—o

Note that condition (34) holds for the normal distribution, gamma distribution
(in the left tail) and any other distribution which has bounded support on the
left. However, in the case of X, where X has a gamma or inverse Gaussian
distribution, or if X has a logistic distribution, the#(; (9) and X/ (¢) do not stay
bounded ag | —«, and (31)—(33) fail to hold.

APPENDIX

PrROOF OFTHEOREM 2.1. Using the convolution formula for densities [see,
e.g., Theorem 6.1.2 in Chung (1974), for a precise statement], we have;for

y 0y poo Oy
0x _¢€ —6(y—u) _¢€
e’ fox)dx = — Oe I(w=y)fou)du=— fx+e(y),
—00 6 J- 6

where E is an exponential random variable with rate paramétewhich is
independent ok . Define

Heg(1) = [Mo(c + i) /{1 — (c +i1)/0}]/[Mo(c) /{1 —c/0}],

so thatHpg(t) is the characteristic function (CF) ofyg(y), and H. ¢(¢) is
the CF of thec-tilted density fx. g (y)e” /{Mo(c)/(1 — c/6)}. Note that if (8)
holds for some: € (—«, ), then (8) holds for alt € (—«, 8). For a proof of this
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result, which involves two applications of the Hausdorff—=Young inequality, see
Lemma 2.3.4 of Jensen (1995). Using Hélder’s inequality,

)1/(l+V(c‘))

/ |H,, o(H)]dt < 1M E'/)Q (/ |M0(C+lf)|1+v(c) dt

o0 1 v(e)/(L4v(e))
. (/_oo 11— (c+ir)/0|dFv©)/vie) dt) <>

for eachc € (—a, min(B, 6)). Therefore we may apply the Fourier inversion
theorem [see, e.g., Chung (1974), page 155, for a precise statemét (o)
to obtain

1 [ .
@) o f_ " Hea0e™ Y di = fip (e /Mofe)/ (L= ¢/6)).

After some rearrangement, we find that (35) gives (9) for Gl 0 and
c € (—a, min(B, 8)). This shows also that(#, y) does not depend on the choice
of ¢1 in (6). An analytic continuation argument extends (9pta (—«, 0], thus
(9) is established for al > —«.

Identical reasoning gives (10) and (15), and (11) follows immediately after
adding (9) and (10). The statements (16), (17) and (18) follow directly from the
definitions. O

PROOF OFTHEOREM4.1. The LR approximation td(, »)(¢) is given by
Mia.)(0) = Mo(0)[{ Fy (b) — Fy(a)}/{Fo(b) — Fo(a)}].

(i) Case & — oo, b = co. Note thatFy(b) = 1 for all & and Fy(a) — O as
6 — 00, SOM a1 () ~ Mo(6)/[1 — Fo(a)] as required.
Case — 00, b < 0. Herng(a)/Fg(b) — 0, so

Ma.5)(0) ~ Mo(0) Fy (b) /[ Fo(b) — Fo(a)].

By assumptiomg/we — 0 asf — oo. Moreover elementary calculations show
that aswg — —o0, ® (wy) ~ —¢(w9)[w9 +w, 3], and it then follows easily that

Fo(b) ~ —¢(wp) /ug ~ 071 fo(b—)/Mo(0)  asf — oo,

where fo(b) = (2m) Y2 | K (1)|~Y/? expl Ko() — 1b} is the saddlepoint approx-
imation to fo(b). The proofs fol® — —oo with a > —oco are similar.

(i) We have
K (0.0)(©) = Ko(0) + {Fy(b) — Fo(a)} [0 Fp(b)/96 — 8 Fy(a)/96].

Case 6 — oo, b = co. Since Fy(b) — Fg(a) — 1, aFy(b)/30 = 0,
dFp(a)/30 — 0 andK () — oo, the result follows.
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Cased — o0, b < 00. Here
Fo(a)/Fg(b) -0 and (dFs(a)/d6)/(dFy(b)/86) — O.
Therefore,
K (0 (©) = K§(©0) + {Fo ()Y L0 Fy(0)/6 + (67
= K{O) +b—KyO)+6"1+007h
=b+0" o007,

as required. The cas@s—~> —oo with a = —oo anda > —oo are proved in similar
fashion.
(iii) The results here follow from similar but more extensive calculatioris.
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