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Booth and Cox proposed thie(s2) criterion for constructing two-level
supersaturated designs. Nguyd@achnometrics 38 (1996) 69—-73] and Tang
and Wu [Canad. J. Satist 25 (1997) 191-201] independently derived a lower
bound fOI’E(sZ). This lower bound can be achieved only whenis a
multiple of N — 1, wherem is the number of factors andl is the run size.
We present a method that uses difference families to construct designs that
satisfy this lower bound. We also derive better lower bounds for the case
where the Nguyen—-Tang—Wu bound is not achievable. Our bounds cover
more cases than a bound recently obtained by Butler, Mead, Eskridge and
Gilmour [J. R. Sat. Soc. Ser. B Sat. Methodol. 63 (2001) 621-632]. New
E(sz)-optimal designs are obtained by using a computer to search for designs
that achieve the improved bounds.

1. Introduction. In an experiment involvingn two-level factors, at least
m + 1 runs are required to estimate all the main effects. A design is called
supersaturated if the run size is less twar- 1. Under the assumption of effect
sparsity that only a small number of factors are active, a supersaturated design
can provide considerable cost saving in factor screening. Recently there have been
quite a few articles on the analysis and construction of such designs. In particular,
the E(s?) criterion proposed by Booth and Cox (1962) for constructing two-
level supersaturated designs was studied by, for example, Lin (1993, 1995), Wu
(1993), Nguyen (1996), Tang and Wu (1997), Cheng (1997), Li and Wu (1997),
Butler, Mead, Eskridge and Gilmour (2001), Eskridge, Gilmour, Mead, Butler and
Travnicek (2001) and Liu and Dean (2002). This article contains further results on
the construction of (s?)-optimal designs.

We represent av-run supersaturated design far two-level factors by an
N x m matrix X of 1's and—1's. Each column corresponds to one factor and
each row defines a factor-level combination. It is essential that no two columns
of X are completely aliased, that is, there are no two colurmaady such that
X =y or x = —Yy. Throughout this article, we also assume that each colum of
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contains the same number of 1's andl’'s. ThereforeN is even and the number of
possible factors that can be accommodated is at r%q()]é\gg = (NA;Z*_11>. Thus
we have

(1.1) N—1<m§(N]\;2__11).

The E(s?) criterion, in seeking a design as close to orthogonal as possible,

minimizesE(s?) =Y, _; slzj/(”;) wheres;; is the(i, j)th entry ofX”X. Nguyen
(1996) and Tang and Wu (1997) independently derived the following lower bound
for any supersaturated design withfactors andV runs:

1.2) E(s%) > _m—N+1 .
(m—-—1(N -1

When N = 0 (mod 4, this bound can be achieved onlynf is a multiple of
N — 1; whenN = 2 (mod 4, m needs to be an even multiple &f — 1. One
guestion is whether this bound can be achieved for every multipi -6f1 when
N =0 (mod 4 and every even multiple oV — 1 whenN =2 (mod 4. This
appears to be very hard and the answer is yet unknown. One objective of this
article is to provide some results in this direction.

In Section 2 we present a method for constructing designs that achieve the
Nguyen—Tang—Wu bound. Section 3 contains the other main result of this article:
improved lower bounds foi (s2) when the Nguyen-Tang—Wu bound is not
achievable. It came to our attention that Butler, Mead, Eskridge and Gilmour
(2001) also derived improved lower bounds fo¢s2). Unlike our bounds, Butler,
Mead, Eskridge and Gilmour’s bounds do not apply to all cases; see the discussion
in Section 3. We also report some néigs2)-optimal designs obtained by using a
computer to search for designs that achieve the improved bounds. All the proofs
are presented in Section 4.

Throughout this article, we use @b to denote a finite field witlh elements.

The multiplicative group that consists of the nonzero elements @§)3& cyclic,

and a generator of this group is called a primitive element of the field. For each
positive integerg, we denote the sef0, 1,...,qg — 1} of nonnegative integers
less thang by Z,. Multiplication and addition inZ, are reduced modulg
when necessary. For each sub%et= {a1,...,a;} of Z, andb € Z,, the set
{a1+b,...,a; + b} is denoted byl + b.

2. Construction of E(s?)-optimal supersaturated designs via balanced
incomplete block designs. Let m = g(N — 1), wheregq is a positive integer.
Cheng (1997) showed that a supersaturated design that achieves the lower bound
in (1.2) is equivalent to a balanced incomplete block design With 1 treatments
andg(N — 1) blocks of sizeN/2 — 1, abbreviated as BIBOV — 1, g(N — 1),

N/2 — 1). Without loss of generality, we may assume that all the entries in the
first row of a supersaturated desigrare equal to 1. LeZ be obtained fronX by
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deleting the first row. Thed = [z;;](v—1)xm Can be considered as the treatment-
block incidence matrix of a binary incomplete block design with- 1 treatments
andm blocks of sizeN/2 — 1, where the'th treatment appears in theh block
if and only if z;; = 1. ThenX attains the lower bound in (1.2) if and only4fis
the treatment-block incidence matrix of a balanced incomplete block design. This
equivalence of the existence of a BIB® — 1, g(N — 1), N/2— 1) and that of an
N x g(N —1) X that attains the lower bound in (1.2) extends the well-known result
that the existence of a BIBQV — 1, N — 1, N/2 — 1) is equivalent to that of an
N x N Hadamard matrix. Note that fof to have no completely aliased columns,
all the blocks of the corresponding BIBD must be distinct.

The largest BIBRN — 1, g(N — 1), N/2 — 1) with distinct blocks is the trivial

one consisting of all théNA;;fl) subsets of siz&/ /2 — 1 of theN — 1 treatments,
which corresponds to the supersaturated design with the maximum number of
factors given in (1.1). So the question raised in the Introduction about the existence
of designs that achieve the Nguyen—Tang—Wu bound is equivalent to whether there
existsa BIBON — 1, m, N/2— 1) with distinct blocks for every: satisfying (1.1)
that is a multiple ofN — 1 whenN = 0 (mod 4 and an even multiple av — 1
when N = 2 (mod 4. If there exists a Hadamard matrix of ordaft, then a
BIBD(N — 1,g(N — 1), N/2 — 1) exists for everyg; a simple construction is
to piece togethey BIBD(N — 1, N — 1, N/2 — 1)’s. The additional challenge
in the supersaturated design construction is not to use the same block more than
once. In fact, the construction of supersaturated designs by combitiagamard
matrices as proposed in Tang and Wu (1997) is equivalent to piecing together
BIBD(N —1,N — 1, N/2— 1)’s. It is not clear how one can avoid duplicated
blocks in their construction. Also, Tang and Wu’s construction is applicable only
when N is a multiple of 4. Furthermore, what one needs is that the whole design
is a BIBD; it does not have to be the uniongBIBD(N —1, N —1,N/2—1)’s.
Thus the construction based on BIBDs is more general and flexible. In this section
we present a method of using difference families [Wilson (1972)] to construct
BIBD(N —1,¢9g(N — 1), N/2— 1)’s with distinct blocks. The readers are referred
to Chapter VII of Beth, Jungnickel and Lenz (1999) for a discussion of the
construction of BIBDs based on difference families.

The following is our first construction result.

THEOREM 2.1. Suppose N — 1 isan odd prime power, g is an even divisor
of N — 2, x is a primitive element of GR(N — 1) and T is a subset of Z, of
Sizeq/2. Thentheg(N — 1) sets{S,,:r =0,...,9 —1,a € GKN — 1)}, where
Sra={x/1"" +a:0<j<(N—-2/q—1,ieT+r}, form the blocks of a
BIBD(N —1,g(N — 1), N/2 —1). Furthermore, if (N —2)/q isodd and U is
asubset of Z, of sizeg/2 suchthat U* = U + (¢/2), where U* isthe complement
of U inZy,thentheq(N —1)/2sets{S, ,:r € U,a € GK(N — 1)} formthe blocks
ofaBIBD(N —1,¢(N —1)/2, N/2—1).
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Note that in the above construction, as defined earlier, the elemefits ofare
reduced modulq if necessary.

The BIBDs constructed in Theorem 2.1 may not have distinct blocks. For
example, ifT +r =T, thensS, , = So .. To construct BIBDs with distinct blocks,
let e be the smallest positive integer such tiiat e = T. Thene, called the order
of T, is a divisor ofq. Let Tj ={T' + (j — De, ..., T + (j — De + e — 1} for
1<j<gq/e. ThenTy=--- =7, and all thee sets in eacly; are distinct. In
this case, it can be seen that the design constructed in Theorem 2.1 consists of
q /e replications of an identical BIBD with distinct blocks as longeag N — 2.
This leads to the following theorem.

THEOREM 2.2. Suppose N — 1 isan odd prime power, g is an even divisor
of N — 2 with g #N — 2, x is a primitive element of GR(N — 1) and T is
a subset of Z, of size q/2. Let e be the smallest positive integer such that
T+e=T.Thenthee(N — 1) sets{S,,:r=0,...,e—1,a € GR(N — 1)}, where
Spa=1{x/1""44a:0<j<(N—-2)/q—1,ieT+r},aredistinct and constitute
aBIBD(N —1,e(N — 1), N/2—1). Furthermore, if (N —2)/qg isodd and U is
asubset of sizee/2 of {0, ...,e — 1} suchthat U* = U + (g /2), where U* isthe
complement of U in {0, ...,e — 1} and the addition is reduced modulo ¢, then
thee(N —1)/2 sets{S,,:r € U,a € GR(N — 1)} constitute a BIBD with distinct
blocks.

The first design described in Theorem 2.2 is constructed by usiitial (base)

blocksSo.0, ..., Se—1.0, WwhereS, o= {x/4":0<j < (N—-2)/qg—1,i €T +r}.

The second design uses #)& initial blocks S, o, wherer € U. This construction

is similar to Wilson’s construction of balanced incomplete block designs as
described in Theorem 5.2 of Beth, Jungnickel and Lenz [(1999), page 489].
However, Wilson did not consider the constraint of no repeated blocks. Also, a
divisorg of N —2 was used to construct BIBDs of block si¥¢2 — 1 in Theorems

2.1 and 2.2, while Wilson used it to construct BIBDs of block gixe— 2)/q or
(N—-2)/q +1.

We note that if botil" andU consist of all the integers8i <¢/2— 1, then
e=qandU*=U +(q/2). ThusaBIBON —1, g(N — 1), N/2— 1) with distinct
blocks can be constructed for each even divigaf N — 2 and if, in addition,

(N —2)/qgisodd,thenaBIBDN — 1, q(N —1)/2, N/2— 1) with distinct blocks
also exists.

EXAMPLE 2.1. Let N =20. ThenN — 2 = 18 has two even divisors
not equal to 18: 2 and 6. Since both /28and 186 are odd, Theorem 2.2
can be used to construct BIBDs with 19, 38, 57 and 114 distinct blocks
of size 9. The construction is based on the finite field(T®, which is
equivalent toZ,9. Suppose we choose the primitive element 2. To construct a
BIBD (19, 57, 9), we let the integey in Theorem 2.2 be 6 = U = {0, 1, 2} and
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use the three initial block$20, 21,22 26 27 28 212 213 214y — (1 2 4,7 14,
9,11, 3,6}, {21,22,23 27 28 29 213 214 215 — (24 8 14, 9,18, 3,6,12} and
(22,28, 24 28 29 210 14 215 216, — 14 8 16,9,18,17,6, 12, 5}. Adding the
integers 01,...,18 (mod 19 to all the elements in the initial blocks produces
a BIBD with 57 distinct blocks of size 9. Write down the ¥%7 treatment-block
incidence matrix in which th€, j)th entry is equal to 1 if théth treatment appears
in the jth block and is equal te-1 otherwise. Then by adding a row of 1's to this
treatment-block incidence matrix, one obtainsi@?)-optimal 20-run design for
57 factors.

Note that once the initial blocks are determined, except for the row of 1's, the
other rows of the corresponding supersaturated design can be developed cyclically
from an initial row. Eskridge, Gilmour, Kad, Butler and Travnicek (2001) and Liu
and Dean (2002) also considered cyclic generatioft 6£)-optimal and nearly
optimal supersaturated designs.

The following result provides more flexibility in the construction Bfs?)-
optimal supersaturated designs.

THEOREM 2.3. Let g bean evendivisor of N — 2 suchthat g 2 N — 2. Let
T and T’ be subsets of size g /2 of Z, such that T’ # T + a for all elements a
of Z4. If d1 and d» are BIBDs constructed by applying Theorem2.2to T and 7”,
respectively, then d, and d» have no blocks in common; therefore their union is
also a BIBD with distinct blocks.

Let ¥ be the set of all subsets of sizg?2 of Z,. For any two such subsets
T andT’, we write T ~ T if there is an element € Z, such thatl' = 7" +r.
Then clearly " is an equivalence relationship. Thereforg, is partitioned
into disjoint equivalence classes. One can choose & $eim each equivalence
class to construct a BIBD according to the method of Theorem 2.2. The BIBDs
constructed by using’s from different equivalence classes have no blocks in
common. Therefore, the union of these BIBDs is a BIBD with distinct blocks of
sizeN/2 — 1, and can be used to construfts?)-optimal supersaturated designs
that attain bound (1.2). Note that the order of eactlsistequal to the size of the
equivalence class that contaifis

ExAMPLE 2.1 (continued). Again consider the caSe= 20. More designs
can be obtained by using Theorem 2.3. Take 6. The(i) = 20 subsets of size 3
of Zg can be partitioned into four equivalence classes:

{0,1,2},{1,2, 3},1{2,3,4},{3,4,5},{4,5, 0}, {5,0, 1}
{0,1,3},{1,2,4},{2,3,5},{3,4,0},{4,5, 1}, {5, 0, 2};
{0,1,4},{1,2,5},{2,3,0}, {3,4,1},{4,5, 2}, {5,0, 3}
{0, 2,4}, {1, 3,5}.

’ ’

s My ’
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Each set in one of the first three equivalence classes can be used to construct a
BIBD(19, 57, 9) and a BIBD(19114, 9) with distinct blocks. By using one, two

or all three of these equivalence classes, one can construct BIBTH19)’s

with distinct blocks forr = 3,6,9,12, 15 and 18. The last equivalence class
can be used to construct a BIBD(1%, 9) and a BIBD(1938, 9) with distinct
blocks. Combining these with designs constructed from the first three equivalence
classes, we obtain BIBD(129%, 9)'s with distinct blocks andE(sz)—optimaI

20-run designs with XSactors, for 1< ¢ < 20.

Note that in the above example, the designs constructed by using the last
equivalence class are the same as those constructed by chgesiag

EXAMPLE 2.2. LetN = 18. ThenN — 2 = 16 has three even divisors not
equal to 16: 2, 4 and 8. Let = 8. It can be seen that the 70 subsets of size 4
of Zg can be partitioned into 10 equivalence classes: 8 equivalence classes of
size 8, 1 equivalence class of size 4 and 1 equivalence class of size 2. By
applying Theorem 2.2, one can construct BIBID, 34z, 8)'s with no repeated
blocks fort =1 (using the equivalence class of size 2), 2 (using the equivalence
class of size 4) and 4 (using each of the 8 equivalence classes of size 8).
Combining the BIBDs constructed from different equivalence classes, one obtains
BIBD(17, 34z, 8)'s with distinct blocks for allk’s such that ¥ r < 35. Note that
since 18 is not a multiple of 4, the number of blodksef a BIBD(17, b, 8) must
be a multiple of 34.

EXAMPLE 2.3. ForN = 10, applying Theorems 2.2 and 2.3 with= 4, one
can construct BIBID9, 18¢, 4)’s with no repeated blocks far= 1, 2, 3. This is
because the six subsets of size 2Zaf can be partitioned into two equivalence
classes of sizes 4 and 2, respectively. In this case, the trivial BIBII@)&&— 126
blocks. Taking the complements of BIB® 18, 4)'s with no repeated blocks for
t =1, 2 and 3in the trivial BIBD, we obtain BIB[®, 18, 4)’s with distinct blocks
fort = 4,5 and 6. This provides a complete solution of all BI&Db, 4)’s with no
repeated blocks, and thus all 10-run supersaturated designs that attain the Nguyen—
Tang—Wu bound.

Sometimes one can also produce designs with distinct blocks by combining
those constructed by using different even divisor&/of 2. LetT; be a subset of
sizeq; /2 of Z,,, i = 1,2, whereq; andg, are even divisors oN — 2. Then by
the same argument as in the proof of Theorem 2.2, one can show that the designs
obtained by applying Theorem 2.2 T and7> have no blocks in common as long
as all of the initial blocks of the two designs are different.

EXAMPLE 2.4. LetN = 14. ThenN — 2 = 12 has three even divisors not
equal to 12: 2, 4 and 6. As in Example 2.1, by choosjng 6, one can construct
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BIBD (13, 26¢, 6)’s with distinct blocks forr =1, 3, 4, 6, 7, 9, 10. Note that since

12/6 is even, fewer designs can be constructed here than in Example 2.1. For
g =4, since 124 is odd, a BIBO13, 26, 6) and a BIBIX13, 52, 6) with distinct
blocks can be constructed by applying Theorem 2.2 to the s@bs€f0, 1} of Z4.

It can be seen that these two designs have no blocks in common with any of those
constructed by using = 6. It follows that one can construct BIBD3, 26¢, 6)'s

with distinct blocks for k ¢ < 12. As in Example 2.1, choosing= 2 does not
produce new designs.

3. Improved lower boundsfor E(s?). The following theorem presents some
improved lower bounds foE (s2).

THEOREM 3.1. Suppose m is a positive integer such that m > N — 1. Then
thereisauniqueqg suchthat —2N+2<m—g(N—-1) <2N—-2and (m+¢q) =2
(mod 4. Let g(q) = (m + q)°N — g2N? — mN?2.

1. If N =0 (mod 4, then
2(q) +2N? — 4N
m(m — 1)

2(q) —2N2 4+ 4N +4N|m — qg(N — 1)|
m(m — 1) ’

, when|m —g(N — 1| <N —1,

E(s? >
3
WhenN—l<|m—q(N—l)|§§N—2,

g(q) +4N2 — 4N
m(m — 1)

3
, When|m—q(N—l)|>§N—2.

2. If N =2 (mod 4 and g iseven, then E(s%) > max(h(q), 4), where

g(q) +2N2— 4N +8
m(m — 1)

g(q) —2N2 420N + (4N — 8)|m — g(N — 1)| — 24

h(g) = mim —1) o

when N —1 < |m—q(N—1)|§§N—3,

, when|m —g(N —1)| <N —1,

g(q) +4N2 — 4N
m(m — 1)

3
, When|m—q(N—l)|>§N—3.
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3. If N =2 (mod 4 and ¢ isodd, then E (s2) > max(h(q), 4), where

g(q) +2N2 — 4N
m(m — 1) ’

when|m —g(N —1)| <N —1,

g(q) —2N%2+ 4N +4N|m — g(N — 1)|
m(m — 1)

’

hig) = WhenN—1<|m—q(N—1)|§§N—1,

g(q) +4N%2 — 12N +8/m —g(N —1)| + 8
m(@m — 1) ’

3
when |m —g(N — 1)| > EN_:L

Butler, Mead, Eskridge and Gilmour (2001) also derived some lower bounds
for E(s2). Write m asm = ¢/(N — 1) + r, where|r| < N /2. Their result does
not apply to the case whe® = 2 (mod 4 and ¢’ is odd, while our bounds
apply to all cases. A numerical comparison suggests that their bounds agree with
ours in the cases where they are applicable. Table 1 shows values of the Nguyen—
Tang—Wu bound and our improved bound for the raNge m < 2(N — 1), where
N =10,12,14 and 16.

We have used the computer software Gendex developed by Nguyen (1996) to
search forE (s?)-optimal designs. In many cases, we were able to find designs
which achieve the improved bounds. Since Butler, Mead, Eskridge and Gilmour

TABLE 1
Nguyen—Tang—\Wu bound and the bound of Theorem 3.1
for N<m<2(N-1),N=1012 14and 16

Bound of Nguyen—Tang—Wu

N m Theorem 3.1 bound
10 10 4 1.23456

11 4 2.22222

12 4 3.03030

13 4.61538 3.70370

14 5.05494 4.27350

15 5.52381 4.76190

16 5.86666 5.18518

17 5.88235 5.55555

18 5.88235 5.88235
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TABLE 1
Continued
Bound of Nguyen-Tang-Wu
N m Theorem 3.1 bound
12 12 2.18181 1.19008
13 3.69230 2.18181
14 4.21978 3.02097
15 4.57142 3.74026
16 5.20000 4.36363
17 5.64705 4.90909
18 5.96078 5.39037
19 6.45614 5.81818
20 6.82105 6.20957
21 6.85714 6.54545
22 6.85714 6.85714
14 14 4 1.15976
15 4 2.15384
16 4 3.01538
17 4.94117 3.76923
18 5.67320 4.43438
19 6.05848 5.02564
20 6.35789 5.55465
21 6.66666 6.03076
22 6.90909 6.46153
23 7.41502 6.85314
24 7.82608 7.21070
25 7.84000 7.53846
26 7.84000 7.84000
27 8.38746 7.87692
28 8.80423 8.21728
29 8.82758 8.53333
30 8.82758 8.82758
16 16 2.13333 1.13777
17 3.76470 2.13333
18 4.18300 3.01176
19 4.49122 3.79259
20 5.38947 4.49122
21 6.09523 5.12000
22 6.64935 5.68888
23 7.08300 6.20606
24 7.42029 6.78261
25 7.68000 7.11111
26 7.87692 7.50933

(2001) have reported (s2)-optimal 12- and 16-run designs, we list in Table 2 the
new 10- and 14-rutk (s2)-optimal designs we have found.
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TABLE 2
New 10- and 14-run E (s2)-optimal designs

10, m = 14, E(s2) = 5.0549
11 1 1-1 1-1-1-1-1 1-1 1-1

N =

11-111-1-1-1 1 1 1-1-1 1
-1-1-17 17 1-1-1 1-1-1-1 1 1 1

-1-17 1-1-1-1 1-1-1 1-1-1-1 1

11-1-1-1-1 1 1-1 1-1-1 1-1
1-1 1-1 1 1-1 1-1-1 1-1-1-1

-1 1-1-1-17 1.1 1 1-1 1 1-1 1

11111-1 1-1 1-1-1 1-1-1

1-1 1 1-1 111111111
-1-1-1-17 1 1-1-1 1 1-1 1 1-1

N =10, m = 15, E(s?) = 5.5238
1-1-1 11 1 1 1-1 1-1-1-1-1-1
1-1-1-1 1-1-1-1 1-1-1-11 1 1

11-11-1 1 1-1-1 1-1 1 1 1 1
-1 1-1 1-1-12 11 1-1 1 1 1-1 1

11111-1-1 1-1-1-1-1-1 1 1
-1-17 1-1-17 1-1 1-1 1 1-1 1-1 1

1-1-1-1-1-1-1 1 1 1 1 1-1 1-1
111-1-17 1 1-1 1-1-1-1-1-1-1
-11111 11-1 111 1-1 1-1

1-11-11-1 1-1-1-1 1 1 1-1-1

14,m = 17, E(s2) = 4.9412
11 1-1-1-1 1 1 1-1-1 1-1-1-1-1 1

N =

1-1-17 1 1-1 1-1 1-1 1 1-1-1 1 1-1

-1-1 111 1 11

-1-1-1 1 1 1 1 1

1-1-1-17 1-12 1 1-1 1 1-1 1 1-1-1 1
1-1-1-1-17 1-17 11 1-1-1-1-1-1 1-1

11-1-1 1-1-1-1 1 1-1 1 1 1 1 1 1
-1-1711-1-1-1-1-1 1 1 1-1 1-1 1 1
-1 1-1-1-17 11 1-1-1 1 1 1 1 1 1-1
-11-17 11 1-12 111 1-1-1-1 1-1 1
-111-11-1-1-1-1-1 1-1 1-1-1 1-1
-1-171-171 1 1-1-1 1-1 1-1-1 1-1-1

1111-1-1-11-1-1-1-1-1 1 1-1-1
1111-1 1 1-1 11 1-1 1 1-1-1-1
1-1-171-17 1-1-1-1-1-1 1 1-1-1-1 1
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TABLE 2

Continued

18, E(s%) = 5.6732

-1 1-11 1-1 111111

14,m =

N =

-1-1 1 1-1

11-1-171 1-1-1-1-1-1 1-1-1-1 1-1-1

11-1-1-1-17 11 1-1-1 1-1 1 1 1 1 1

11111 1-1-111-1-1-1 1-1-1 1 1
1-17 1 1-1 1-1-1 1 11 1 1 11 1 %1

-1-17-17 1-17 1-17 1 1-1-1-1 1-1-1 1-1 1

-1-171-171-1-17 1 1-1 1-1-1-1 1-1 1-1
-1-17-17 1 1-1-1-1-1-1-1 1 1 1 1-1-1 1

-1-17 1-17-17 11 1-1-1-1 1 1 1-1-1 1-1

-1-1-17-17 171 1-1-1 1 1-1-1 1 1 1 1 1

-1-1 1-1 1-1 1-1-1 1

1111111

1-11-1-1-17 1-17 1 11 1-1-1-1-1-1 1

1 1-1-1-1-1-1 1-1 1 1-1 1 1-1-1-1-1
-17111-1-11-1-1 1-1-1-1-1 1 1-1-1

14,m = 19, E(s%) = 6.0585
-1-11-1-1-1-1-1-1 1-1 1-1 1 1 1 1 1 1

N =

1 1-1-1-17-17-17 1 1 1-12 1 1-1 1-1 1 1-1
111111-1-111-1-1-1-1-1-1-1 1 1
-1-17-17 1 1-11-12 1 1-1 1 1-1-1 1-1-1-1
-1-17 1-17-17 1-17 1-1-12 1 1-1-1-1 1-1-1-1
-11111-111-1-1-1 1-1 1-1-1 1 1-1

111-1-1-17 1111 11 1 1-1 1-1-1 1
-1-17111-1-17 1-1 1 1-1 1-1 1-1 1-1 1
-1711-17111-1 1-1 1-1 1-1 1 1 1 1-1

1-1-1 1-1-1-17-17 1-12 1-1-1 1-1-1 1-1-1

11-11-17111-1-1-1-1-1-1 1 1 1-1 1
1 1-1-17111-1-12 11 1-1 1 1-1-1-1-1

1-1-17111-12 1112111111111
-1-17-17-7-17 17 1-1-1-1-1-1 1 1-1-1-1 1 1

4. Proofs.

.,xN=3 are all distinct, where 1 is

1
0 Uu,ves,,o,u#{u — v} also can be

Sincex is a primitive element of G&V — 1), we

qur
x..l
D)
3=
S
2 E
T @
- C
- I F
oIS
8
& O
x| o
mN.I
= o
==
=
MRS
o ll £
w e
=
wNm
¥ g E
o>
z o
oS

expressed as

{x1'261+i2+r _ x(jl+j2)£1+i1+r}’

=0

J2

g—1(N-2)/q—1
0

U U

r

i1,i2eT

0=j1=(N-2)/q-1

=0

i1#izif j1
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wherei1 + r andis + r are reduced modulg if necessary. For any fixed triple
(i1,12, j1), Whereiy, i € T,0< j1 < (N —2)/q — 1 andiy #iz if j1 =0,

g—1(N-2)/q—-1

U U {x41'211+i2+r _ x(j1+jz)4+i1+r}

r=0  jy=0

q—1(N-2)/q-1
= U U {xj261+i2+r(1 _ xj1q+[(i1+r)—(i2+r)])}’
J2=0

where agairi; + r andis + r are reduced modulg if necessary.

Now UZ;& UEIZV:_OZ)/ 9=Yy pa+iztry covers every power of and hence every

nonzero eIement of GA — 1) exactly once. Since & x/19+(1+1)=G2+1] £ 0 gnd
there ar%( —1) triples (i1, i2, j1) such thaiy,ioe T,0< j1i<(N-2)/g—1
andi; # iz if j; =0, itfollows thatU" —0 Uu,ves, o, uzo { — v} COVErs each nonzero
element of GFEN — 1) ‘12( 2 — 1) times. Thus they sets in{S,0:0<r <
g — 1} are a difference family and the(N — 1) sets in{S,,:0<r <gq — 1,
a € GF(N — 1)} constitute the blocks of a BIBD.

If (N—2)/qisodd,theng + N —2)/2 = aq for some positive integer. Then
sincex(N=2/2 = _1 andU* = U + (¢/2),

(N-2)/q-1
U U {x]'211+i2+r _ x(j1+j2)q+i1+r}
rel j2=0
(N-2)/q—-1
— U U {XQ/ZX(N—2)/2(X(j1+jz)4+i1+r _ x]211+i2+r)}
reU* Jj2=0
(N=-2)/q-1
— U U x%4 . {x(j1+j2)q+i1+r _ szq+i2+r}
reU* Jj2=0
(N-2)/q—-1
— U U {x(j1+j2+0t)q+i1+r _ x(j2+06)61+i2+r}
reU* j2=0
(N=-2)/q-1
— U U {x(j1+jz)q+i1+r _ szq+i2+r}.
reU* Jj2=0
This implies that J,cy UL, veS;.o, u;év{u v} =Urev+ U, veS;.0, u;év{u U} Since
Uf 0 Uu,ves, o, uzv {t — v} covers each nonzero element of G 13 -1

times, each of J,.; Uu,ves,.o, uzvftt — v} andU,eU* Uu,ves,.o, uztoftt — v} covers
every nonzero element of GN — 1) 4( — 1) times. Thustheg (N —1)/2 sets
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in {S,,:r e U, a e GRN — 1)} constitute the blocks of a BIBQV — 1,g(N —
1)/2,N/2—1). O

PROOF OFTHEOREM2.2. Sincefy = --- = 7/, and all thee sets in eaclT;
are distinct, wherd; ={T' + (j — De, ..., T+ (j —De+e—1},1<j <q/e
the e blocks{S,0:r =0,...,e — 1} are themselves a difference family and are
all distinct. Assume that certain two blocks of the desi§p,:r =0,...,e — 1,
a € GF(N — 1)} are the same. Then there exist an integer < e¢ — 1 and
a € GF(N — 1), eitherr # 0 ora # 0, such that the two sef§; = {x/9t +a:i €
T,0<j<(N-2/q—1}andKy={x/9"":ieT+r,0<j<(N-2)/q—1}
are the same. Then the sum of the element&pis equal to that of the elements
of K. Sinceq # N — 2, 1— x? # 0; thus we have

N-2/g-1 _ r(N-2/g-1 |
DL D SR o]

j=0 ieT j=0 ieT

el

This implies that the sum of the elementsKf is equal to%(N — 2)a and the
sum of the elements &> is equal to 0. Therefor%(N —2)a=0inGHN - 1),

and hence: = 0. Now sinceK1 = K>, the two setsl?l ={jg+i:ieT,0<j<

(N—-2)/g—1andKs={jqg+iiieT +r,0<j<(N—2)/q — 1}, with the
elements being integers modulo— 2, must be equal. By the definition ef this
can happen only if = 0, which is a contradiction. [

Theorem 2.3 can be proved in the same way as Theorem 2.2.
PROOF OFTHEOREM 3.1. First we state and prove a lemma.

LEMMA 1. Lety bea lx (N — 1) vector with integer entries such that
the first p — 1 entries are congruent to 2 (mod 4, and the last N — p entries
are multiples of 4. Suppose p < N/2 and m’ is the sum of the entries of y.
If N—-—1<|m'|<2(N—-1) and 0 = (|m’'| — 2p + 2)/4 is an integer, then
0 <6 < N — p, and the sum of squares of the entries of y is minimized if and
only if y has p — 1 entries equal to —2, 6 entriesequal to —4and N — p — 0
entries equal to O when m’ < 0, or p — 1 entries equal to 2, 6 entries equal to 4
and N — p — 6 entriesequal to O when m’ > 0.

PROOFE It is enough to prove the case’ < 0. The other case follows by
reversing the signs.

If m" <0, thend = (—m' —2p+2)/4< (2N —-2—-2p+2)/4< N — p. Also,
m'|>N—-1= 60>[N—-1-2p+2]/4>[N—-1— N +2]/4> 0. Therefore,
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6 is a positive integer less thavi — p. If a vector hagp — 1 entries equal te-2,
6 entries equal te-4 andN — p — 6 entries equal to 0, then the sum of all the
entries is—40 — 2(p — 1) = m’. We shall show that a vectgr with the smallest
sum of squares of the entries among all vectors satisfying the conditions in the
lemma must be of this form.
First we show thay* cannot have positive entries. If not, lgt be a positive
entry ofy*. We claim thaty* has at least one entry, say, such thaty;‘ < —4.
For otherwise, all the negative entriesydfare greater than or equal te2. Then
sincep < N /2, at mostN /2 entries ofy* can be—2. It follows thatm’ — y* >
(-2)N/2=—N, butm’ < —N + 1 andy; > 2imply thatm’ — y} < —N —1,
a contradiction. Therefore, there is at least g:jesuch thaty;f < —4. Now
replacing y’ and y;‘-‘ with y* — 4 and y;‘ + 4, respectively, keeps the sum of
the entries of the vector unchanged, byt — 42 + (v + 4% < ()2 + ()2
since|y’ — 4| < |yf| and lyi + 4l <Iyil This means thay* can be improved,
contradicting the fact that*is optimal. Thereforey* cannot have positive entries.
Finally we show thaty* can have only entries from the sgt4, —2, 0}. Let
yi»---, Yy_q be the entries of*. From the previous paragraph we know that
all the entries ofy* are nonpositive. Thus* < -2 forall 1<i < p -1 and
y"/‘-‘ <Oforall p <j <N — 1. We first show thay = -2 forall 1<i < p—1.
Comparey* with the vector that hag — 1 entries equal te-2, 6 entries equal
to —4 and N — p — 6 entries equal to 0. Since the sum of all the entries is
a constant, we see that if there isyaA< —2, 1<i < p — 1, then there must
be at least ong’; =0, wherep < j < N — 1. Then(y; + 4)2 + OF = 4)2 =
()2 +8yf +32< (37)? + (y)2. The last inequality follows frony? < —6.
This again shows that* can be improved, which is not possible. Thus we must
havey; = --- = y%_; = —2. Then the minimum of}_(y#)? subject to the
constraint that all the’s are multiples of 4 is attained when eaghis 0 or —4,
p<i<N-1 Sincezf\':_l1 yi=m' 0 =(—m'—2p+2)/4 entries must be equal
to—-4. O

Now we are ready to prove the theorem. We denote the sum of squares of all the
entries of amatriM by SSM). Then for a supersaturated deskmvith m factors
andN runs, E (s2) = [SSXTX) — mN?]/[m(m — 1)]. A key fact used in Nguyen
(1996) and Cheng (1997) is that 88 X) = tr[X? XXTX] = tr]XXTXXT] =
SSXXT), and since each column &f has the same number of 1's ard’s,
XXT has zero row sums.

If N =2 (mod 4, then all the entries okX” X are congruent to 2Zmod 4. In
particular, all the off-diagonal entries have absolute values at least 2. Therefore,
we have the simple lower bound

(4.1) N=2(mod4 = E(? >4
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Letg1 be the integer suchthat — 1 <m — g1 (N — 1) < 2N — 2. Since exactly
one ofm+q1, m+qg1+1, m+ g1+ 2 andm + g1 + 3 is congruent to 2mod 4,
there is a uniqueg suchthat-2N +2<m —g(N — 1) <2N —2andm +¢g =2
(mod 4. Let X* be obtained by adding columns of 1's toX and letJ be the
N x N matrix of 1's. Then

(4.2) X*(XHT = XXT 4¢3,

and so S&*(X*)T) =SIXXT) +¢%S]J) + 2g - (the sum of all entries of
XXTy =SSXXT) + ¢2N2. The last equality follows from the fact th¥tX” has
zero row sums. Thus

(4.3) E(s%) =[SIX* (X)) — ¢2N? — mN?)/[m(m — D)].

A lower bound forE (s2) can be obtained by bounding 88 (X*)7).

Without loss of generality, assume that each of the firsbws of X* has an
even number of entries equal to 1 and each of the Mast p rows of X* has
an odd number of entries equal to 1. We can also assumethaV /2, since if
needed we can change the signs of all the entries in a certain coluXin dhen
X*(X*)T has the form

(4.4 & 5]

whereA is p x p, all the entries ofC are multiples of 4 and all the entries of
A andB are congruent to 2mod 4. This follows from the fact that: + ¢, the
number of columns oK*(X*)T, is congruent to Zmod 4.

SinceXXT has zero row sums and its diagonal entries are equa) the sum of
the off-diagonal entries in each of its rows-sn. Therefore, by (4.2) the sum
of the off-diagonal entries in each row ¥f(X*)7 is —m + ¢(N — 1), which is a
multiple of 4 if and only ifg is odd andV = 2 (mod 4, sincem + g =2 (mod 4.
Then since all the entries & in (4.4) are multiples of 4, @ — 1) is a multiple
of 4 if and only ifg is odd andV = 2 (mod 4. It follows that

(4.5) pis oddifg is odd andV = 2 (mod 4; otherwisep is even.

Now we first consider the case where — g(N — 1)| < N — 1. Since all the
entries ofA andB are congruent to 2nod 4, whereA andB are as in (4.4), they
all have absolute values at least 2. S@8$X*)7) is at leas(m + ¢)°N + F(p),
where

F(p)=4p(p—1)+4(N — p)(N — p— 1) =8p%> —8Np + 4N% — 4N.

SinceF’(p) = 16p — 8N has a zero ap = N/2 andF(p) is a convex function
of p, by (4.5),F(p) is minimized atp = N/2 if N is a multiple of 4 or ifN =2
(mod 4 andgq is odd, and ap = N/2— 1 whenN = 2 (mod 4 andgq is even.
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From these observations we can calculate a lower bound fo¢'$%*)7):

(m +q)°N +2N? — 4N + 8,
(4.6) SSX* (XM > if N =2 (mod 4 andg is even,

(m +q)2N + 2N2 — 4N,
otherwise.

The various lower bounds for the cage — g(N — 1)| < N — 1 as stated in the
theorem can be obtained by combining (4.6) with (4.1) and (4.3).

Next we consider the cage: — g(N — 1)| > N — 1. By the discussion in
the paragraph preceding (4.5), the sum of the off-diagonal entries in each row of
X*X*Tis —m+g(N —1) and(|—-m 4+ q(N — 1)| — 2p + 2) /4 is an integer. By
Lemma 4.1, withm’ = —m + g(N — 1), the sum of squares of the off-diagonal
entries of the firstp rows of X*(X*)T is minimized if in each of these rows,
p — 1 entries have absolute values equal tg2m + g (N —1)| —2p+2) /4 entries
have absolute values equal to 4, and the rest are equal to 0. TIE&S)T) is
at least(m + ¢)?N + F(p), where

F(p)=4p(p—1)+4N —-p)(N—-p-—-1)
+2- (=2 p(l-m+q(N —1)| —2p+2)/4
= —8p? —8Np +4N? — 4N + 8p(|—m + q(N — 1)|) + 16p.

SinceF'(p) =-82p+ N — |-m +g(N —1)| — 2) has a zero ap = [|—m +
g(N — 1| — N + 2]/2 and F is a concave function op, by (4.5), F(p) is
minimized at 0 otV /2 [whenN =0 (mod 4], 0or N/2—1 [whenN =2 (mod 9
andg is even], and 1 oV /2 [whenN = 2 (mod 4 andg is odd]. Here we have
used the factthat @ (|—m +g¢(N —1)| — N +2)/2< N /2.

When N = 0 (mod 4),F(p) is minimized at O if(]l—m + g(N — 1)| — N +
2)/2> N/4, thatis, if|—m +q(N — 1)| > %N — 2; otherwise, it is minimized at
p = N/2. Similarly, whenN = 2 (mod 4 andgq is even,F(p) is minimized at O
if |-m+q(N—1)|> %N — 3; otherwise, it is minimized gt = N/2 — 1. When
N =2 (mod 4 andg is odd,F (p) is minimized at 1 il —m +q (N —1)| > 3N - 1;
otherwise, it is minimized ap = N /2. Lower bounds for S&X*(X*)T) based on
these observations together with (4.1) and (4.3) establish the various lower bounds
for the casém — g(N — 1)| > N — 1 as stated in the theorem(
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