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CONSTRUCTION OF E(s2)-OPTIMAL SUPERSATURATED DESIGNS
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Booth and Cox proposed theE(s2) criterion for constructing two-level
supersaturated designs. Nguyen [Technometrics 38 (1996) 69–73] and Tang
and Wu [Canad. J. Statist 25 (1997) 191–201] independently derived a lower
bound for E(s2). This lower bound can be achieved only whenm is a
multiple of N − 1, wherem is the number of factors andN is the run size.
We present a method that uses difference families to construct designs that
satisfy this lower bound. We also derive better lower bounds for the case
where the Nguyen–Tang–Wu bound is not achievable. Our bounds cover
more cases than a bound recently obtained by Butler, Mead, Eskridge and
Gilmour [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 621–632]. New
E(s2)-optimal designs are obtained by using a computer to search for designs
that achieve the improved bounds.

1. Introduction. In an experiment involvingm two-level factors, at least
m + 1 runs are required to estimate all the main effects. A design is called
supersaturated if the run size is less thanm + 1. Under the assumption of effect
sparsity that only a small number of factors are active, a supersaturated design
can provide considerable cost saving in factor screening. Recently there have been
quite a few articles on the analysis and construction of such designs. In particular,
the E(s2) criterion proposed by Booth and Cox (1962) for constructing two-
level supersaturated designs was studied by, for example, Lin (1993, 1995), Wu
(1993), Nguyen (1996), Tang and Wu (1997), Cheng (1997), Li and Wu (1997),
Butler, Mead, Eskridge and Gilmour (2001), Eskridge, Gilmour, Mead, Butler and
Travnicek (2001) and Liu and Dean (2002). This article contains further results on
the construction ofE(s2)-optimal designs.

We represent anN -run supersaturated design form two-level factors by an
N × m matrix X of 1’s and−1’s. Each column corresponds to one factor and
each row defines a factor-level combination. It is essential that no two columns
of X are completely aliased, that is, there are no two columnsx andy such that
x = y or x = −y. Throughout this article, we also assume that each column ofX
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contains the same number of 1’s and−1’s. Therefore,N is even and the number of
possible factors that can be accommodated is at most1

2

(
N

N/2

)
=

(
N − 1

N/2− 1

)
. Thus

we have

N − 1 < m ≤
(

N − 1
N/2− 1

)
.(1.1)

The E(s2) criterion, in seeking a design as close to orthogonal as possible,
minimizesE(s2) = ∑

i<j s2
ij /

(
m

2

)
, wheresij is the(i, j)th entry ofXT X. Nguyen

(1996) and Tang and Wu (1997) independently derived the following lower bound
for any supersaturated design withm factors andN runs:

E(s2) ≥ m − N + 1

(m − 1)(N − 1)
N2.(1.2)

WhenN ≡ 0 (mod 4), this bound can be achieved only ifm is a multiple of
N − 1; whenN ≡ 2 (mod 4), m needs to be an even multiple ofN − 1. One
question is whether this bound can be achieved for every multiple ofN − 1 when
N ≡ 0 (mod 4) and every even multiple ofN − 1 whenN ≡ 2 (mod 4). This
appears to be very hard and the answer is yet unknown. One objective of this
article is to provide some results in this direction.

In Section 2 we present a method for constructing designs that achieve the
Nguyen–Tang–Wu bound. Section 3 contains the other main result of this article:
improved lower bounds forE(s2) when the Nguyen–Tang–Wu bound is not
achievable. It came to our attention that Butler, Mead, Eskridge and Gilmour
(2001) also derived improved lower bounds forE(s2). Unlike our bounds, Butler,
Mead, Eskridge and Gilmour’s bounds do not apply to all cases; see the discussion
in Section 3. We also report some newE(s2)-optimal designs obtained by using a
computer to search for designs that achieve the improved bounds. All the proofs
are presented in Section 4.

Throughout this article, we use GF(s) to denote a finite field withs elements.
The multiplicative group that consists of the nonzero elements of GF(s) is cyclic,
and a generator of this group is called a primitive element of the field. For each
positive integerq, we denote the set{0,1, . . . , q − 1} of nonnegative integers
less thanq by Zq . Multiplication and addition inZq are reduced moduloq
when necessary. For each subsetT = {a1, . . . , at} of Zq and b ∈ Zq , the set
{a1 + b, . . . , at + b} is denoted byT + b.

2. Construction of E(s2)-optimal supersaturated designs via balanced
incomplete block designs. Let m = q(N − 1), whereq is a positive integer.
Cheng (1997) showed that a supersaturated design that achieves the lower bound
in (1.2) is equivalent to a balanced incomplete block design withN − 1 treatments
and q(N − 1) blocks of sizeN/2 − 1, abbreviated as BIBD(N − 1, q(N − 1),

N/2 − 1). Without loss of generality, we may assume that all the entries in the
first row of a supersaturated designX are equal to 1. LetZ be obtained fromX by
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deleting the first row. ThenZ = [zij ](N−1)×m can be considered as the treatment-
block incidence matrix of a binary incomplete block design withN − 1 treatments
andm blocks of sizeN/2 − 1, where theith treatment appears in thej th block
if and only if zij = 1. ThenX attains the lower bound in (1.2) if and only ifZ is
the treatment-block incidence matrix of a balanced incomplete block design. This
equivalence of the existence of a BIBD(N − 1, q(N − 1),N/2− 1) and that of an
N ×q(N −1) X that attains the lower bound in (1.2) extends the well-known result
that the existence of a BIBD(N − 1,N − 1,N/2 − 1) is equivalent to that of an
N × N Hadamard matrix. Note that forX to have no completely aliased columns,
all the blocks of the corresponding BIBD must be distinct.

The largest BIBD(N − 1, q(N − 1),N/2− 1) with distinct blocks is the trivial
one consisting of all the

(
N − 1

N/2− 1

)
subsets of sizeN/2−1 of theN −1 treatments,

which corresponds to the supersaturated design with the maximum number of
factors given in (1.1). So the question raised in the Introduction about the existence
of designs that achieve the Nguyen–Tang–Wu bound is equivalent to whether there
exists a BIBD(N −1,m,N/2−1) with distinct blocks for everym satisfying (1.1)
that is a multiple ofN − 1 whenN ≡ 0 (mod 4) and an even multiple ofN − 1
when N ≡ 2 (mod 4). If there exists a Hadamard matrix of orderN , then a
BIBD(N − 1, q(N − 1),N/2 − 1) exists for everyq; a simple construction is
to piece togetherq BIBD(N − 1,N − 1,N/2 − 1)’s. The additional challenge
in the supersaturated design construction is not to use the same block more than
once. In fact, the construction of supersaturated designs by combiningq Hadamard
matrices as proposed in Tang and Wu (1997) is equivalent to piecing togetherq

BIBD(N − 1,N − 1,N/2 − 1)’s. It is not clear how one can avoid duplicated
blocks in their construction. Also, Tang and Wu’s construction is applicable only
whenN is a multiple of 4. Furthermore, what one needs is that the whole design
is a BIBD; it does not have to be the union ofq BIBD(N − 1, N − 1,N/2− 1)’s.
Thus the construction based on BIBDs is more general and flexible. In this section
we present a method of using difference families [Wilson (1972)] to construct
BIBD(N − 1, q(N − 1),N/2− 1)’s with distinct blocks. The readers are referred
to Chapter VII of Beth, Jungnickel and Lenz (1999) for a discussion of the
construction of BIBDs based on difference families.

The following is our first construction result.

THEOREM 2.1. Suppose N − 1 is an odd prime power, q is an even divisor
of N − 2, x is a primitive element of GF(N − 1) and T is a subset of Zq of
size q/2. Then the q(N − 1) sets {Sr,a : r = 0, . . . , q − 1, a ∈ GF(N − 1)}, where
Sr,a = {xjq+i + a : 0 ≤ j ≤ (N − 2)/q − 1, i ∈ T + r}, form the blocks of a
BIBD(N − 1, q(N − 1),N/2 − 1). Furthermore, if (N − 2)/q is odd and U is
a subset of Zq of size q/2 such that U∗ = U + (q/2), where U∗ is the complement
of U in Zq , then the q(N −1)/2 sets {Sr,a : r ∈ U , a ∈ GF(N −1)} form the blocks
of a BIBD(N − 1, q(N − 1)/2,N/2− 1).
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Note that in the above construction, as defined earlier, the elements ofT + r are
reduced moduloq if necessary.

The BIBDs constructed in Theorem 2.1 may not have distinct blocks. For
example, ifT + r = T , thenSr,a = S0,a. To construct BIBDs with distinct blocks,
let e be the smallest positive integer such thatT + e = T . Thene, called the order
of T , is a divisor ofq. Let Tj = {T + (j − 1)e, . . . , T + (j − 1)e + e − 1} for
1 ≤ j ≤ q/e. ThenT1 = · · · = Tq/e and all thee sets in eachTj are distinct. In
this case, it can be seen that the design constructed in Theorem 2.1 consists of
q/e replications of an identical BIBD with distinct blocks as long asq �= N − 2.
This leads to the following theorem.

THEOREM 2.2. Suppose N − 1 is an odd prime power, q is an even divisor
of N − 2 with q �= N − 2, x is a primitive element of GF(N − 1) and T is
a subset of Zq of size q/2. Let e be the smallest positive integer such that
T + e = T . Then the e(N −1) sets {Sr,a : r = 0, . . . , e −1,a ∈ GF(N −1)}, where
Sr,a = {xjq+i + a : 0 ≤ j ≤ (N − 2)/q − 1, i ∈ T + r}, are distinct and constitute
a BIBD(N − 1, e(N − 1),N/2− 1). Furthermore, if (N − 2)/q is odd and U is
a subset of size e/2 of {0, . . . , e − 1} such that U∗ = U + (q/2), where U∗ is the
complement of U in {0, . . . , e − 1} and the addition is reduced modulo q, then
the e(N − 1)/2 sets {Sr,a : r ∈ U , a ∈ GF(N − 1)} constitute a BIBD with distinct
blocks.

The first design described in Theorem 2.2 is constructed by usinge initial (base)
blocksS0,0, . . . , Se−1,0, whereSr,0 = {xjq+i : 0 ≤ j ≤ (N − 2)/q − 1, i ∈ T + r}.
The second design uses thee/2 initial blocksSr,0, wherer ∈ U . This construction
is similar to Wilson’s construction of balanced incomplete block designs as
described in Theorem 5.2 of Beth, Jungnickel and Lenz [(1999), page 489].
However, Wilson did not consider the constraint of no repeated blocks. Also, a
divisorq of N −2 was used to construct BIBDs of block sizeN/2−1 in Theorems
2.1 and 2.2, while Wilson used it to construct BIBDs of block size(N − 2)/q or
(N − 2)/q + 1.

We note that if bothT andU consist of all the integers 0≤ i ≤ q/2 − 1, then
e = q andU∗ = U + (q/2). Thus a BIBD(N −1, q(N −1),N/2−1) with distinct
blocks can be constructed for each even divisorq of N − 2 and if, in addition,
(N − 2)/q is odd, then a BIBD(N − 1, q(N − 1)/2,N/2− 1) with distinct blocks
also exists.

EXAMPLE 2.1. Let N = 20. Then N − 2 = 18 has two even divisors
not equal to 18: 2 and 6. Since both 18/2 and 18/6 are odd, Theorem 2.2
can be used to construct BIBDs with 19, 38, 57 and 114 distinct blocks
of size 9. The construction is based on the finite field GF(19), which is
equivalent toZ19. Suppose we choose the primitive element 2. To construct a
BIBD(19,57,9), we let the integerq in Theorem 2.2 be 6,T = U = {0,1,2} and
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use the three initial blocks{20,21,22,26,27,28,212,213,214} = {1,2,4,7,14,
9,11,3,6}, {21,22,23,27,28,29,213,214,215} = {2,4,8,14, 9,18,3,6,12} and
{22,23, 24,28,29,210,214,215,216} = {4,8,16,9,18,17,6,12,5}. Adding the
integers 0,1, . . . ,18 (mod 19) to all the elements in the initial blocks produces
a BIBD with 57 distinct blocks of size 9. Write down the 19× 57 treatment-block
incidence matrix in which the(i, j)th entry is equal to 1 if theith treatment appears
in thej th block and is equal to−1 otherwise. Then by adding a row of 1’s to this
treatment-block incidence matrix, one obtains anE(s2)-optimal 20-run design for
57 factors.

Note that once the initial blocks are determined, except for the row of 1’s, the
other rows of the corresponding supersaturated design can be developed cyclically
from an initial row. Eskridge, Gilmour, Mead, Butler and Travnicek (2001) and Liu
and Dean (2002) also considered cyclic generation ofE(s2)-optimal and nearly
optimal supersaturated designs.

The following result provides more flexibility in the construction ofE(s2)-
optimal supersaturated designs.

THEOREM 2.3. Let q be an even divisor of N − 2 such that q �= N − 2. Let
T and T ′ be subsets of size q/2 of Zq such that T ′ �= T + a for all elements a

of Zq . If d1 and d2 are BIBDs constructed by applying Theorem 2.2 to T and T ′,
respectively, then d1 and d2 have no blocks in common; therefore their union is
also a BIBD with distinct blocks.

Let F be the set of all subsets of sizeq/2 of Zq . For any two such subsets
T andT ′, we writeT ∼ T ′ if there is an elementr ∈ Zq such thatT = T ′ + r .
Then clearly “∼” is an equivalence relationship. Therefore,F is partitioned
into disjoint equivalence classes. One can choose a setT from each equivalence
class to construct a BIBD according to the method of Theorem 2.2. The BIBDs
constructed by usingT ’s from different equivalence classes have no blocks in
common. Therefore, the union of these BIBDs is a BIBD with distinct blocks of
sizeN/2 − 1, and can be used to constructE(s2)-optimal supersaturated designs
that attain bound (1.2). Note that the order of each setT is equal to the size of the
equivalence class that containsT .

EXAMPLE 2.1 (continued). Again consider the caseN = 20. More designs
can be obtained by using Theorem 2.3. Takeq = 6. The

(
6
3

)
= 20 subsets of size 3

of Z6 can be partitioned into four equivalence classes:

{0,1,2}, {1,2,3}, {2,3,4}, {3,4,5}, {4,5,0}, {5,0,1};
{0,1,3}, {1,2,4}, {2,3,5}, {3,4,0}, {4,5,1}, {5,0,2};
{0,1,4}, {1,2,5}, {2,3,0}, {3,4,1}, {4,5,2}, {5,0,3};
{0,2,4}, {1,3,5}.
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Each set in one of the first three equivalence classes can be used to construct a
BIBD(19,57,9) and a BIBD(19,114,9) with distinct blocks. By using one, two
or all three of these equivalence classes, one can construct BIBD(19,19t,9)’s
with distinct blocks for t = 3,6,9,12,15 and 18. The last equivalence class
can be used to construct a BIBD(19,19,9) and a BIBD(19,38,9) with distinct
blocks. Combining these with designs constructed from the first three equivalence
classes, we obtain BIBD(19,19t,9)’s with distinct blocks andE(s2)-optimal
20-run designs with 19t factors, for 1≤ t ≤ 20.

Note that in the above example, the designs constructed by using the last
equivalence class are the same as those constructed by choosingq = 2.

EXAMPLE 2.2. LetN = 18. ThenN − 2 = 16 has three even divisors not
equal to 16: 2, 4 and 8. Letq = 8. It can be seen that the 70 subsets of size 4
of Z8 can be partitioned into 10 equivalence classes: 8 equivalence classes of
size 8, 1 equivalence class of size 4 and 1 equivalence class of size 2. By
applying Theorem 2.2, one can construct BIBD(17,34t,8)’s with no repeated
blocks for t = 1 (using the equivalence class of size 2), 2 (using the equivalence
class of size 4) and 4 (using each of the 8 equivalence classes of size 8).
Combining the BIBDs constructed from different equivalence classes, one obtains
BIBD(17,34t,8)’s with distinct blocks for allt ’s such that 1≤ t ≤ 35. Note that
since 18 is not a multiple of 4, the number of blocksb of a BIBD(17, b,8) must
be a multiple of 34.

EXAMPLE 2.3. ForN = 10, applying Theorems 2.2 and 2.3 withq = 4, one
can construct BIBD(9,18t,4)’s with no repeated blocks fort = 1,2,3. This is
because the six subsets of size 2 ofZ4 can be partitioned into two equivalence
classes of sizes 4 and 2, respectively. In this case, the trivial BIBD has

(
9
4

)
= 126

blocks. Taking the complements of BIBD(9,18t,4)’s with no repeated blocks for
t = 1,2 and 3 in the trivial BIBD, we obtain BIBD(9,18t,4)’s with distinct blocks
for t = 4,5 and 6. This provides a complete solution of all BIBD(9, b,4)’s with no
repeated blocks, and thus all 10-run supersaturated designs that attain the Nguyen–
Tang–Wu bound.

Sometimes one can also produce designs with distinct blocks by combining
those constructed by using different even divisors ofN − 2. LetTi be a subset of
sizeqi/2 of Zqi

, i = 1,2, whereq1 andq2 are even divisors ofN − 2. Then by
the same argument as in the proof of Theorem 2.2, one can show that the designs
obtained by applying Theorem 2.2 toT1 andT2 have no blocks in common as long
as all of the initial blocks of the two designs are different.

EXAMPLE 2.4. LetN = 14. ThenN − 2 = 12 has three even divisors not
equal to 12: 2, 4 and 6. As in Example 2.1, by choosingq = 6, one can construct
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BIBD(13,26t,6)’s with distinct blocks fort = 1,3,4,6,7,9,10. Note that since
12/6 is even, fewer designs can be constructed here than in Example 2.1. For
q = 4, since 12/4 is odd, a BIBD(13,26,6) and a BIBD(13,52,6) with distinct
blocks can be constructed by applying Theorem 2.2 to the subsetT = {0,1} of Z4.
It can be seen that these two designs have no blocks in common with any of those
constructed by usingq = 6. It follows that one can construct BIBD(13,26t,6)’s
with distinct blocks for 1≤ t ≤ 12. As in Example 2.1, choosingq = 2 does not
produce new designs.

3. Improved lower bounds for E(s2). The following theorem presents some
improved lower bounds forE(s2).

THEOREM 3.1. Suppose m is a positive integer such that m > N − 1. Then
there is a unique q such that −2N + 2< m−q(N −1) < 2N − 2 and (m+q) ≡ 2
(mod 4). Let g(q) = (m + q)2N − q2N2 − mN2.

1. If N ≡ 0 (mod 4), then

E(s2) ≥



g(q) + 2N2 − 4N

m(m − 1)
, when |m − q(N − 1)| < N − 1,

g(q) − 2N2 + 4N + 4N |m − q(N − 1)|
m(m − 1)

,

when N − 1 < |m − q(N − 1)| ≤ 3

2
N − 2,

g(q) + 4N2 − 4N

m(m − 1)
, when |m − q(N − 1)| > 3

2
N − 2.

2. If N ≡ 2 (mod 4) and q is even, then E(s2) ≥ max(h(q),4), where

h(q) =



g(q) + 2N2 − 4N + 8

m(m − 1)
, when |m − q(N − 1)| < N − 1,

g(q) − 2N2 + 20N + (4N − 8)|m − q(N − 1)| − 24

m(m − 1)
,

when N − 1 < |m − q(N − 1)| ≤ 3

2
N − 3,

g(q) + 4N2 − 4N

m(m − 1)
, when |m − q(N − 1)| > 3

2
N − 3.



OPTIMAL SUPERSATURATED DESIGNS 1669

3. If N ≡ 2 (mod 4) and q is odd, then E(s2) ≥ max(h(q),4), where

h(q) =



g(q) + 2N2 − 4N

m(m − 1)
, when |m − q(N − 1)| < N − 1,

g(q) − 2N2 + 4N + 4N |m − q(N − 1)|
m(m − 1)

,

when N − 1 < |m − q(N − 1)| ≤ 3

2
N − 1,

g(q) + 4N2 − 12N + 8|m − q(N − 1)| + 8

m(m − 1)
,

when |m − q(N − 1)| > 3

2
N − 1.

Butler, Mead, Eskridge and Gilmour (2001) also derived some lower bounds
for E(s2). Write m asm = q ′(N − 1) + r , where|r| < N/2. Their result does
not apply to the case whereN ≡ 2 (mod 4) and q ′ is odd, while our bounds
apply to all cases. A numerical comparison suggests that their bounds agree with
ours in the cases where they are applicable. Table 1 shows values of the Nguyen–
Tang–Wu bound and our improved bound for the rangeN ≤ m ≤ 2(N −1), where
N = 10,12,14 and 16.

We have used the computer software Gendex developed by Nguyen (1996) to
search forE(s2)-optimal designs. In many cases, we were able to find designs
which achieve the improved bounds. Since Butler, Mead, Eskridge and Gilmour

TABLE 1
Nguyen–Tang–Wu bound and the bound of Theorem 3.1

for N ≤ m ≤ 2(N − 1), N = 10,12,14 and 16

Bound of Nguyen–Tang–Wu
N m Theorem 3.1 bound

10 10 4 1.23456
11 4 2.22222
12 4 3.03030
13 4.61538 3.70370
14 5.05494 4.27350
15 5.52381 4.76190
16 5.86666 5.18518
17 5.88235 5.55555
18 5.88235 5.88235
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TABLE 1
Continued

Bound of Nguyen–Tang–Wu
N m Theorem 3.1 bound

12 12 2.18181 1.19008
13 3.69230 2.18181
14 4.21978 3.02097
15 4.57142 3.74026
16 5.20000 4.36363
17 5.64705 4.90909
18 5.96078 5.39037
19 6.45614 5.81818
20 6.82105 6.20957
21 6.85714 6.54545
22 6.85714 6.85714

14 14 4 1.15976
15 4 2.15384
16 4 3.01538
17 4.94117 3.76923
18 5.67320 4.43438
19 6.05848 5.02564
20 6.35789 5.55465
21 6.66666 6.03076
22 6.90909 6.46153
23 7.41502 6.85314
24 7.82608 7.21070
25 7.84000 7.53846
26 7.84000 7.84000
27 8.38746 7.87692
28 8.80423 8.21728
29 8.82758 8.53333
30 8.82758 8.82758

16 16 2.13333 1.13777
17 3.76470 2.13333
18 4.18300 3.01176
19 4.49122 3.79259
20 5.38947 4.49122
21 6.09523 5.12000
22 6.64935 5.68888
23 7.08300 6.20606
24 7.42029 6.78261
25 7.68000 7.11111
26 7.87692 7.50933

(2001) have reportedE(s2)-optimal 12- and 16-run designs, we list in Table 2 the
new 10- and 14-runE(s2)-optimal designs we have found.
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TABLE 2
New 10- and 14-run E(s2)-optimal designs

N = 10, m = 14,E(s2) = 5.0549

−1 1 1 1−1 1−1 −1 −1 −1 1−1 1−1

1 1−1 1 1 −1 −1 −1 1 1 1−1 −1 1

−1 −1 −1 1 1 −1 −1 1−1 −1 −1 1 1 1

−1 −1 1−1 −1 −1 1−1 −1 1−1 −1 −1 1

1 1−1 −1 −1 −1 1 1−1 1−1 −1 1−1

1 −1 1−1 1 1−1 1−1 −1 1−1 −1 −1

−1 1−1 −1 −1 1 1 1 1−1 1 1−1 1

1 1 1 1 1−1 1−1 1−1 −1 1−1 −1

1 −1 1 1−1 1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 1 1−1 −1 1 1−1 1 1−1

N = 10,m = 15,E(s2) = 5.5238

−1 −1 −1 1 1 1 1 1−1 1−1 −1 −1 −1 −1

−1 −1 −1 −1 1−1 −1 −1 1−1 −1 −1 1 1 1

1 1−1 1−1 1 1−1 −1 1−1 1 1 1 1

−1 1−1 1−1 −1 1 1 1−1 1 1 1−1 1

1 1 1 1 1−1 −1 1−1 −1 −1 −1 −1 1 1

−1 −1 1−1 −1 1−1 1−1 1 1−1 1−1 1

1 −1 −1 −1 −1 −1 −1 1 1 1 1 1−1 1−1

1 1 1−1 −1 1 1−1 1−1 −1 −1 −1 −1 −1

−1 1 1 1 1 1−1 −1 1 1 1 1−1 1−1

1 −1 1−1 1 −1 1−1 −1 −1 1 1 1−1 −1

N = 14,m = 17,E(s2) = 4.9412

−1 1 1−1 −1 −1 1 1 1−1 −1 1−1 −1 −1 −1 1

1 −1 −1 1 1 −1 1−1 1−1 1 1−1 −1 1 1−1

−1 −1 1 1 1 1 1 1 1−1 −1 −1 1 1 1 1 1

1 −1 −1 −1 1 −1 1 1−1 1 1−1 1 1−1 −1 1

1 −1 −1 −1 −1 1−1 1 1 1−1 −1 −1 −1 −1 1−1

1 1−1 −1 1 −1 −1 −1 1 1−1 1 1 1 1 1 1

−1 −1 1 1−1 −1 −1 −1 −1 1 1 1−1 1−1 1 1

−1 1−1 −1 −1 1 1 1−1 −1 1 1 1 1 1 1−1

−1 1−1 1 1 1−1 1 1 1 1−1 −1 −1 1−1 1

−1 1 1−1 1 −1 −1 −1 −1 −1 1−1 1−1 −1 1−1

−1 −1 1−1 1 1 1−1 −1 1−1 1−1 −1 1−1 −1

1 1 1 1−1 −1 −1 1−1 −1 −1 −1 −1 1 1−1 −1

1 1 1 1−1 1 1−1 1 1 1−1 1 1−1 −1 −1

1 −1 −1 1−1 1−1 −1 −1 −1 −1 1 1−1 −1 −1 1
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TABLE 2
Continued

N = 14,m = 18,E(s2) = 5.6732
−1 1−1 1 1−1 1 1 1 1 1 1 1−1 −1 1 1−1

1 1−1 −1 1 1−1 −1 −1 −1 −1 1−1 −1 −1 1−1 −1
1 1−1 −1 −1 −1 1 1 1−1 −1 1−1 1 1 1 1 1
1 1 1 1 1 1−1 −1 1 1−1 −1 −1 1−1 −1 1 1
1 −1 1 1−1 1−1 −1 1 1 1 1 1 1 1 1 1−1

−1 −1 −1 1−1 1−1 1 1−1 −1 −1 1−1 −1 1−1 1
−1 −1 1−1 1−1 −1 1 1−1 1−1 −1 −1 1−1 1−1
−1 −1 −1 1 1−1 −1 −1 −1 −1 −1 1 1 1 1−1 −1 1
−1 −1 1−1 −1 1 1 1−1 −1 −1 1 1 1−1 −1 1−1
−1 −1 −1 −1 1 1 1−1 −1 1 1−1 −1 1 1 1 1 1

1 1 1 1 1 1 1 1−1 −1 1−1 1−1 1−1 −1 1
1 −1 1−1 −1 −1 1−1 1 1 1 1−1 −1 −1 −1 −1 1
1 1−1 −1 −1 −1 −1 1−1 1 1−1 1 1−1 −1 −1 −1

−1 1 1 1−1 −1 1−1 −1 1−1 −1 −1 −1 1 1−1 −1

N = 14,m = 19,E(s2) = 6.0585
−1 −1 1 −1 −1 −1 −1 −1 −1 1−1 1−1 1 1 1 1 1 1

1 1−1 −1 −1 −1 −1 1 1 1−1 1 1−1 1−1 1 1−1
1 1 1 1 1 1−1 −1 1 1−1 −1 −1 −1 −1 −1 −1 1 1

−1 −1 −1 1 1−1 1−1 1 1−1 1 1−1 −1 1−1 −1 −1
−1 −1 1−1 −1 1−1 1−1 −1 1 1−1 −1 −1 1−1 −1 −1
−1 1 1 1 1−1 1 1−1 −1 −1 1−1 1−1 −1 1 1−1

1 1 1−1 −1 −1 1 1 1 1 1−1 1 1−1 1−1 −1 1
−1 −1 1 1 1−1 −1 1−1 1 1−1 1−1 1−1 1−1 1
−1 1 1−1 1 1 1−1 1−1 1−1 1−1 1 1 1 1−1

1 −1 −1 1−1 −1 −1 −1 1−1 1−1 −1 1−1 −1 1−1 −1
1 1−1 1−1 1 1 1−1 −1 −1 −1 −1 −1 1 1 1−1 1
1 1−1 −1 1 1 1−1 −1 1 1 1−1 1 1−1 −1 −1 −1
1 −1 −1 1 1 1−1 1 1−1 1 1 1 1 1 1−1 1 1

−1 −1 −1 −1 −1 1 1−1 −1 −1 −1 −1 1 1−1 −1 −1 1 1

4. Proofs.

PROOF OFTHEOREM 2.1. Sincex is a primitive element of GF(N − 1), we
havexN−2 = 1, x(N−2)/2 = −1 and 1,x, x2, . . . , xN−3 are all distinct, where 1 is
the multiplicative identity. The multiset

⋃q−1
r=0

⋃
u,v∈Sr,0, u�=v{u − v} also can be

expressed as

⋃
i1, i2∈T

0≤j1≤(N−2)/q−1
i1 �=i2 if j1=0

q−1⋃
r=0

(N−2)/q−1⋃
j2=0

{
xj2q+i2+r − x(j1+j2)q+i1+r},
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wherei1 + r and i2 + r are reduced moduloq if necessary. For any fixed triple
(i1, i2, j1), wherei1, i2 ∈ T , 0≤ j1 ≤ (N − 2)/q − 1 andi1 �= i2 if j1 = 0,

q−1⋃
r=0

(N−2)/q−1⋃
j2=0

{
xj2q+i2+r − x(j1+j2)q+i1+r}

=
q−1⋃
r=0

(N−2)/q−1⋃
j2=0

{
xj2q+i2+r (1− xj1q+[(i1+r)−(i2+r)])},

where againi1 + r andi2 + r are reduced moduloq if necessary.

Now
⋃q−1

r=0
⋃(N−2)/q−1

j2=0 {xj2q+i2+r} covers every power ofx and hence every

nonzero element of GF(N −1) exactly once. Since 1−xj1q+[(i1+r)−(i2+r)] �= 0 and
there areq2(N−2

2 −1) triples(i1, i2, j1) such thati1, i2 ∈ T , 0≤ j1 ≤ (N −2)/q −1
andi1 �= i2 if j1 = 0, it follows that

⋃q−1
r=0

⋃
u,v∈Sr,0, u�=v{u−v} covers each nonzero

element of GF(N − 1)
q
2(N−2

2 − 1) times. Thus theq sets in {Sr,0 : 0 ≤ r ≤
q − 1} are a difference family and theq(N − 1) sets in{Sr,a : 0 ≤ r ≤ q − 1,
a ∈ GF(N − 1)} constitute the blocks of a BIBD.

If (N −2)/q is odd, then(q +N −2)/2 = αq for some positive integerα. Then
sincex(N−2)/2 = −1 andU∗ = U + (q/2),

⋃
r∈U

(N−2)/q−1⋃
j2=0

{
xj2q+i2+r − x(j1+j2)q+i1+r

}

= ⋃
r∈U∗

(N−2)/q−1⋃
j2=0

{
xq/2x(N−2)/2(x(j1+j2)q+i1+r − xj2q+i2+r

)}

= ⋃
r∈U∗

(N−2)/q−1⋃
j2=0

xαq · {
x(j1+j2)q+i1+r − xj2q+i2+r

}

= ⋃
r∈U∗

(N−2)/q−1⋃
j2=0

{
x(j1+j2+α)q+i1+r − x(j2+α)q+i2+r}

= ⋃
r∈U∗

(N−2)/q−1⋃
j2=0

{
x(j1+j2)q+i1+r − xj2q+i2+r}.

This implies that
⋃

r∈U

⋃
u,v∈Sr,0, u�=v{u− v} = ⋃

r∈U∗
⋃

u,v∈Sr,0, u�=v{u− v}. Since⋃q−1
r=0

⋃
u,v∈Sr,0, u�=v{u−v} covers each nonzero element of GF(N −1)

q
2(N−2

2 −1)

times, each of
⋃

r∈U

⋃
u,v∈Sr,0, u�=v{u − v} and

⋃
r∈U∗

⋃
u,v∈Sr,0, u�=v{u − v} covers

every nonzero element of GF(N −1)
q
4(N−2

2 −1) times. Thus theq(N −1)/2 sets
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in {Sr,a : r ∈ U , a ∈ GF(N − 1)} constitute the blocks of a BIBD(N − 1, q(N −
1)/2,N/2− 1). �

PROOF OFTHEOREM 2.2. SinceT1 = · · · = Tq/e and all thee sets in eachTj

are distinct, whereTj = {T + (j − 1)e, . . . , T + (j − 1)e + e − 1}, 1≤ j ≤ q/e,
the e blocks {Sr,0 : r = 0, . . . , e − 1} are themselves a difference family and are
all distinct. Assume that certain two blocks of the design{Sr,a : r = 0, . . . , e − 1,
a ∈ GF(N − 1)} are the same. Then there exist an integer 0≤ r ≤ e − 1 and
a ∈ GF(N − 1), eitherr �= 0 ora �= 0, such that the two setsK1 = {xjq+i + a : i ∈
T,0 ≤ j ≤ (N − 2)/q − 1} andK2 = {xjq+i : i ∈ T + r,0 ≤ j ≤ (N − 2)/q − 1}
are the same. Then the sum of the elements ofK1 is equal to that of the elements
of K2. Sinceq �= N − 2, 1− xq �= 0; thus we have

(N−2)/q−1∑
j=0

∑
i∈T

xjq+i =
[ (N−2)/q−1∑

j=0

xjq

][ ∑
i∈T

xi

]

=
[

1− xN−2

1− xq

][ ∑
i∈T

xi

]
= 0.

This implies that the sum of the elements ofK1 is equal to1
2(N − 2)a and the

sum of the elements ofK2 is equal to 0. Therefore,12(N − 2)a = 0 in GF(N − 1),
and hencea = 0. Now sinceK1 = K2, the two setŝK1 = {jq + i : i ∈ T,0 ≤ j ≤
(N − 2)/q − 1} andK̂2 = {jq + i : i ∈ T + r,0 ≤ j ≤ (N − 2)/q − 1}, with the
elements being integers moduloN − 2, must be equal. By the definition ofe, this
can happen only ifr = 0, which is a contradiction.�

Theorem 2.3 can be proved in the same way as Theorem 2.2.

PROOF OFTHEOREM 3.1. First we state and prove a lemma.

LEMMA 1. Let y be a 1 × (N − 1) vector with integer entries such that
the first p − 1 entries are congruent to 2 (mod 4), and the last N − p entries
are multiples of 4. Suppose p ≤ N/2 and m′ is the sum of the entries of y.
If N − 1 < |m′| < 2(N − 1) and θ = (|m′| − 2p + 2)/4 is an integer, then
0 < θ < N − p, and the sum of squares of the entries of y is minimized if and
only if y has p − 1 entries equal to −2, θ entries equal to −4 and N − p − θ

entries equal to 0 when m′ < 0, or p − 1 entries equal to 2, θ entries equal to 4
and N − p − θ entries equal to 0 when m′ > 0.

PROOF. It is enough to prove the casem′ < 0. The other case follows by
reversing the signs.

If m′ < 0, thenθ = (−m′ − 2p + 2)/4< (2N − 2− 2p + 2)/4< N − p. Also,
|m′| > N − 1 ⇒ θ > [N − 1− 2p + 2]/4 ≥ [N − 1− N + 2]/4 > 0. Therefore,
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θ is a positive integer less thanN − p. If a vector hasp − 1 entries equal to−2,
θ entries equal to−4 andN − p − θ entries equal to 0, then the sum of all the
entries is−4θ − 2(p − 1) = m′. We shall show that a vectory∗ with the smallest
sum of squares of the entries among all vectors satisfying the conditions in the
lemma must be of this form.

First we show thaty∗ cannot have positive entries. If not, lety∗
i be a positive

entry of y∗. We claim thaty∗ has at least one entry, sayy∗
j , such thaty∗

j ≤ −4.
For otherwise, all the negative entries ofy∗ are greater than or equal to−2. Then
sincep ≤ N/2, at mostN/2 entries ofy∗ can be−2. It follows thatm′ − y∗

i ≥
(−2)N/2 = −N , but m′ < −N + 1 andy∗

i ≥ 2 imply thatm′ − y∗
i < −N − 1,

a contradiction. Therefore, there is at least oney∗
j such thaty∗

j ≤ −4. Now
replacingy∗

i and y∗
j with y∗

i − 4 and y∗
j + 4, respectively, keeps the sum of

the entries of the vector unchanged, but(y∗
i − 4)2 + (y∗

j + 4)2 < (y∗
i )2 + (y∗

j )2

since|y∗
i − 4| ≤ |y∗

i | and |y∗
j + 4| < |y∗

j |. This means thaty∗ can be improved,
contradicting the fact thaty∗is optimal. Therefore,y∗ cannot have positive entries.

Finally we show thaty∗ can have only entries from the set{−4,−2,0}. Let
y∗

1, . . . , y∗
N−1 be the entries ofy∗. From the previous paragraph we know that

all the entries ofy∗ are nonpositive. Thusy∗
i ≤ −2 for all 1 ≤ i ≤ p − 1 and

y∗
j ≤ 0 for all p ≤ j ≤ N − 1. We first show thaty∗

i = −2 for all 1≤ i ≤ p − 1.
Comparey∗ with the vector that hasp − 1 entries equal to−2, θ entries equal
to −4 and N − p − θ entries equal to 0. Since the sum of all the entries is
a constant, we see that if there is ay∗

i < −2, 1≤ i ≤ p − 1, then there must
be at least oney∗

j = 0, wherep ≤ j ≤ N − 1. Then(y∗
i + 4)2 + (y∗

j − 4)2 =
(y∗

i )2 + 8y∗
i + 32 < (y∗

i )2 + (y∗
j )2. The last inequality follows fromy∗

i ≤ −6.
This again shows thaty∗ can be improved, which is not possible. Thus we must
havey∗

1 = · · · = y∗
p−1 = −2. Then the minimum of

∑N−1
i=p (y∗

i )2 subject to the
constraint that all they∗

i ’s are multiples of 4 is attained when eachy∗
i is 0 or−4,

p ≤ i ≤ N −1. Since
∑N−1

i=1 y∗
i = m′, θ = (−m′ −2p+2)/4 entries must be equal

to −4. �

Now we are ready to prove the theorem. We denote the sum of squares of all the
entries of a matrixM by SS(M). Then for a supersaturated designX with m factors
andN runs,E(s2) = [SS(XT X) − mN2]/[m(m − 1)]. A key fact used in Nguyen
(1996) and Cheng (1997) is that SS(XT X) = tr[XT XXT X] = tr[XXT XXT ] =
SS(XXT ), and since each column ofX has the same number of 1’s and−1’s,
XXT has zero row sums.

If N ≡ 2 (mod 4), then all the entries ofXT X are congruent to 2(mod 4). In
particular, all the off-diagonal entries have absolute values at least 2. Therefore,
we have the simple lower bound

N ≡ 2 (mod 4) 
⇒ E(s2) ≥ 4.(4.1)
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Let q1 be the integer such thatN −1 < m− q1(N −1) < 2N −2. Since exactly
one ofm + q1, m+ q1 + 1, m + q1 + 2 andm+ q1 + 3 is congruent to 2(mod 4),
there is a uniqueq such that−2N + 2 < m − q(N − 1) < 2N − 2 andm + q ≡ 2
(mod 4). Let X∗ be obtained by addingq columns of 1’s toX and letJ be the
N × N matrix of 1’s. Then

X∗(X∗)T = XXT + qJ,(4.2)

and so SS(X∗(X∗)T ) = SS(XXT ) + q2SS(J) + 2q · (the sum of all entries of
XXT ) = SS(XXT ) + q2N2. The last equality follows from the fact thatXXT has
zero row sums. Thus

E(s2) = [
SS

(
X∗(X∗)T

) − q2N2 − mN2]/[m(m − 1)].(4.3)

A lower bound forE(s2) can be obtained by bounding SS(X∗(X∗)T ).
Without loss of generality, assume that each of the firstp rows of X∗ has an

even number of entries equal to 1 and each of the lastN − p rows of X∗ has
an odd number of entries equal to 1. We can also assume thatp ≤ N/2, since if
needed we can change the signs of all the entries in a certain column ofX∗. Then
X∗(X∗)T has the form [

A C
CT B

]
,(4.4)

whereA is p × p, all the entries ofC are multiples of 4 and all the entries of
A andB are congruent to 2(mod 4). This follows from the fact thatm + q, the
number of columns ofX∗(X∗)T , is congruent to 2(mod 4).

SinceXXT has zero row sums and its diagonal entries are equal tom, the sum of
the off-diagonal entries in each of its rows is−m. Therefore, by (4.2) the sum
of the off-diagonal entries in each row ofX∗(X∗)T is −m + q(N − 1), which is a
multiple of 4 if and only ifq is odd andN ≡ 2 (mod 4), sincem+ q ≡ 2 (mod 4).
Then since all the entries ofC in (4.4) are multiples of 4, 2(p − 1) is a multiple
of 4 if and only if q is odd andN ≡ 2 (mod 4). It follows that

p is odd ifq is odd andN ≡ 2 (mod 4); otherwise,p is even.(4.5)

Now we first consider the case where|m − q(N − 1)| < N − 1. Since all the
entries ofA andB are congruent to 2(mod 4), whereA andB are as in (4.4), they
all have absolute values at least 2. So SS(X∗(X∗)T ) is at least(m + q)2N + F(p),
where

F(p) ≡ 4p(p − 1) + 4(N − p)(N − p − 1) = 8p2 − 8Np + 4N2 − 4N.

SinceF ′(p) = 16p − 8N has a zero atp = N/2 andF(p) is a convex function
of p, by (4.5),F(p) is minimized atp = N/2 if N is a multiple of 4 or ifN ≡ 2
(mod 4) andq is odd, and atp = N/2 − 1 whenN ≡ 2 (mod 4) andq is even.
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From these observations we can calculate a lower bound for SS(X∗(X∗)T ):

SS
(
X∗(X∗)T

) ≥


(m + q)2N + 2N2 − 4N + 8,

if N ≡ 2 (mod 4) andq is even,

(m + q)2N + 2N2 − 4N,

otherwise.

(4.6)

The various lower bounds for the case|m − q(N − 1)| < N − 1 as stated in the
theorem can be obtained by combining (4.6) with (4.1) and (4.3).

Next we consider the case|m − q(N − 1)| > N − 1. By the discussion in
the paragraph preceding (4.5), the sum of the off-diagonal entries in each row of
X∗(X∗)T is −m+ q(N − 1) and(|−m+ q(N − 1)| − 2p + 2)/4 is an integer. By
Lemma 4.1, withm′ = −m + q(N − 1), the sum of squares of the off-diagonal
entries of the firstp rows of X∗(X∗)T is minimized if in each of these rows,
p−1 entries have absolute values equal to 2,(|−m+q(N −1)|−2p+2)/4 entries
have absolute values equal to 4, and the rest are equal to 0. Thus SS(X∗(X∗)T ) is
at least(m + q)2N + F(p), where

F(p) ≡ 4p(p − 1) + 4(N − p)(N − p − 1)

+ 2 · (−4)2 · p(|−m + q(N − 1)| − 2p + 2
)
/4

= −8p2 − 8Np + 4N2 − 4N + 8p
(|−m + q(N − 1)|) + 16p.

SinceF ′(p) = −8(2p + N − |−m + q(N − 1)| − 2) has a zero atp = [|−m +
q(N − 1)| − N + 2]/2 and F is a concave function ofp, by (4.5), F(p) is
minimized at 0 orN/2 [whenN ≡ 0 (mod 4)], 0 orN/2−1 [whenN ≡ 2 (mod 4)
andq is even], and 1 orN/2 [whenN ≡ 2 (mod 4) andq is odd]. Here we have
used the fact that 0< (|−m + q(N − 1)| − N + 2)/2 < N/2.

WhenN ≡ 0 (mod 4),F(p) is minimized at 0 if(|−m + q(N − 1)| − N +
2)/2 > N/4, that is, if|−m + q(N − 1)| > 3

2N − 2; otherwise, it is minimized at
p = N/2. Similarly, whenN ≡ 2 (mod 4) andq is even,F(p) is minimized at 0
if |−m + q(N − 1)| > 3

2N − 3; otherwise, it is minimized atp = N/2− 1. When
N ≡ 2 (mod 4) andq is odd,F(p) is minimized at 1 if|−m+q(N −1)| > 3

2N −1;

otherwise, it is minimized atp = N/2. Lower bounds for SS(X∗(X∗)T ) based on
these observations together with (4.1) and (4.3) establish the various lower bounds
for the case|m − q(N − 1)| > N − 1 as stated in the theorem.�
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