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BOUNDS ON COVERAGE PROBABILITIES OF THE EMPIRICAL
LIKELIHOOD RATIO CONFIDENCE REGIONS1

BY MIN TSAO

University of Victoria

This paper studies the least upperbounds on coverage probabilities of the
empirical likelihood ratio confidence regions based on estimating equations.
The implications of the bounds on empirical likelihood inference are also
discussed.

1. Introduction. The fact that there is a nontrivial upper bound (less than
one) on the coverage probability of an empirical likelihood ratio confidence region
is most easily seen through that for the mean. In this case the confidence region
is nested within the convex hull of the sample. Thus, regardless of its confidence
level, a nontrivial upper bound on its coverage probability is the probability that
the convex hull covers the mean.

Several factors affect the value of the upper bound: the underlying distribution,
the sample size and the dimension of the mean. In empirical likelihood inference
the underlying distribution is not available. Thus, even for the simple case
of the mean, the upper bound on coverage probability cannot be determined.
Interestingly, however, for a large class of empirical likelihood ratio confidence
regions, including those for the mean, the least upper bound on the coverage
probability is available. This paper studies this least upper bound and its
implications for empirical likelihood inference.

2. Main results. To set up notation, consider a parameter of interestθ0 of
a continuous random vectorY . Let Y1, Y2, . . . , Yn be n i.i.d. copies ofY . Let
m(Y, θ) ∈ Rk be an estimating function forθ0 that is continuous inY . The
empirical likelihood ratio function forθ0 is

R(θ) = sup

{
n∏

i=1

nwi

∣∣∣∣
n∑

i=1

wim(Yi, θ) = 0,wi ≥ 0,

n∑
i=1

wi = 1

}
,(2.1)

where 0is the origin inRk . See Owen (2001) and Qin and Lawless (1994). The
log likelihood ratiol(θ) is given byl(θ) = −2 logR(θ). The empirical likelihood
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ratio confidence region forθ0 is given by

Cr = {θ |l(θ) < r},(2.2)

wherer is a finite quantity determined by the desired confidence level through the
method of calibration of choice. Throughout this paper the sample sizen and the
dimension of the estimating functionk are assumed fixed unless we specify them
to be otherwise.

Denote byH(m(Y1, θ0),m(Y2, θ0), . . . ,m(Yn, θ0)) the convex hull ofm(Yi, θ0).
Becausel(θ0) is finite if and only if 0is in the interior of the convex hull, event
{θ0 ∈ Cr} implies{0 ∈ H(m(Y1, θ0),m(Y2, θ0), . . . ,m(Yn, θ0))}. Thus,

P (θ0 ∈ Cr ) < P
[
0 ∈ H

(
m(Y1, θ0),m(Y2, θ0), . . . ,m(Yn, θ0)

)]
.(2.3)

Further,P (θ0 ∈ Cr ) is a monotone increasing function ofr and

lim
r→+∞P (θ0 ∈ Cr ) = P

[
0∈ H

(
m(Y1, θ0),m(Y2, θ0), . . . ,m(Yn, θ0)

)]
.(2.4)

Hence, the bound in the right-hand side of (2.3) is the least upper bound on the
coverage probability of the confidence region (2.2) associated with the particular
m(Y, θ0). This bound, however, is in general not available because the distribution
of m(Y, θ0) is not available. We consider instead the least upper boundB,

B = sup{P (θ0 ∈ Cr )}
= sup

{
P

[
0 ∈ H

(
m(Y1, θ0),m(Y2, θ0), . . . ,m(Yn, θ0)

)]}
,

where the supremum is taken over all empirical likelihood ratio confidence regions
based on estimating equations (2.1) and (2.2), or equivalently, all meaningful
m(Y, θ0) andr .

In order to findB without having to characterize the set of all meaningful
m(Y, θ0), let X1,X2, . . . ,Xn be i.i.d. copies of an arbitrary continuous random
vectorX in Rk and denote byH(X1,X2, . . . ,Xn) their convex hull. Consider
b(k,n) given by

b(k,n) = sup
X

{
P [0 ∈ H(X1,X2, . . . ,Xn)]},(2.5)

where the supremum is taken over all possible continuous random vectors inRk .
We claim that (i)b(k,n) is attained at anX if and only if the distribution of its
projection on the unit sphereXp is symmetric with respect to 0and (ii) b(k,n) is
the least upper boundB. Once (i) is established, (ii) then follows from the fact that
anym(Y, θ0) is a special case ofX and thatb(k,n) is attained at a specialm(Y, θ0)

for, say, the empirical likelihood inference for the mean of the uniform distribution
on the unit sphere inRk . To see the latter point, sinceY is uniform on the unit
sphere,θ0 = E(Y ) = 0 andm(Y, θ0) = Y − θ0 = Y . Hence, thism(Y, θ0) and its
projection are both symmetric with respect to 0. To prove claim (i), we need the
following lemma.
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LEMMA 1. For any continuous X in Rk , let vi = ‖Xi‖2 and without loss of
generality assume vi > 0. Let X

p
i = v−1

i Xi be the projection of Xi on the unit
sphere. Then

P {0∈ H(X1,X2, . . . ,Xn)} = P {0∈ H(X
p
1 ,X

p
2 , . . . ,Xp

n )}.

PROOF. It suffices to show that 0/∈ H(X1,X2, . . . ,Xn) if and only if 0 /∈
H(X

p
1 ,X

p
2 , . . . ,X

p
n ). The convex hullH(X1,X2, . . . ,Xn) does not contain 0if

and only if allXi are on one side of a hyperplane through 0. All Xi are on one side
of a hyperplane through 0if and only if their projectionsXp

i are on one side of a
hyperplane through 0. All X

p
i are on one side of a hyperplane if and only if their

convex hullH(X
p
1 ,X

p
2 . . . ,X

p
n ) does not contain 0. Thus the lemma. �

Claim (i) implies thatb(k,n) = P {0 ∈ H(U1,U2, . . . ,Un)}, whereU1,U2,

. . . ,Un are i.i.d. copies of a uniform random vectorU supported on the unit sphere
in Rk . We now prove this claim fork = 1,2.

THEOREM 1. Let k = 1,2 and n > k. For any continuous X in Rk , we have

P {0∈ H(X1,X2, . . . ,Xn)} ≤ P {0∈ H(U1,U2, . . . ,Un)}.(2.6)

Further, equality holds if and only if the distribution of the projection of X on the
unit sphere Xp is symmetric with respect to 0.

PROOF. By Lemma 1 we only need to show that (2.6) holds for all continuous
X supported on the unit sphere. Thus, we assume without loss of generality that
X is supported on the unit sphere. Under this assumption, the symmetry condition
onXp in Theorem 1 is equivalent to the symmetry condition onX itself.

For k = 1, the unit sphere and, thus, the support ofX degenerates into{−1,1}.
Let p = P {X = 1}. Then

P {0∈ H(X1,X2, . . . ,Xn)} = 1− pn − (1− p)n.

Theorem 1 amounts to the simple observation that function 1− pn − (1 − p)n

attains its unique maximum atp = 1/2 which corresponds to the uniform
distribution on{−1,1}, the only symmetric distribution on{−1,1}.

For k = 2, let X be a continuous random variable on the unit circle(0 ≤ X <

2π) and for simplicity assume that its densityf (x) is continuous on the circle.
Define

G(x) =
∫ x+π

x
f (y) dy,

where f (x) = f (2π + x). For X1, . . . ,Xj−1,Xj+1, . . . ,Xn, denote the event
that they are in the half-circle(Xj ,Xj + π) by Aj . If Xj > π , this half-circle
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represents the union of(Xj ,2π) and[0,Xj − π). SinceXi are i.i.d., we have for
j = 1,2, . . . , n

P {Aj } =
∫ 2π

0
f (x)[G(x)]n−1 dx.

Further,Ai ∩ Aj = φ for i �= j , whereφ denotes the empty set, and

{0 /∈ H(X1,X2, . . . ,Xn)} =
n⋃

i=1

Ai.

It follows that for anyn ≥ 1,

P {0 /∈ H(X1,X2, . . . ,Xn)} =
n∑

i=1

P {Ai}
(2.7)

= n

∫ 2π

0
f (x)[G(x)]n−1 dx.

Noting thatP {Aj } equals the probability thatX1, . . . ,Xj−1,Xj+1, . . . ,Xn are
in the half-circle(Xj − π,Xj ), an equivalent expression forP {0 /∈ H(X1,X2,

. . . ,Xn)} is

P {0 /∈ H(X1,X2, . . . ,Xn)} =
n∑

i=1

P {Ai}
(2.8)

= n

∫ 2π

0
f (x)[G(x − π)]n−1 dx.

Adding up (2.7) and (2.8) gives another expression forP {0 /∈ H(X1,X2, . . . ,Xn)},
P {0 /∈ H(X1,X2, . . . ,Xn)}

(2.9)
= n

2

∫ 2π

0
f (x)

{[G(x)]n−1 + [G(x − π)]n−1}dx.

To see that the equality in (2.6) holds if the distribution ofX is symmetric with
respect to 0, note that the distribution is symmetric if and only ifG(x) = 1/2 for
all x ∈ [0,2π). This and (2.7) imply that for all symmetricX, includingU ,

P {0∈ H(X1,X2, . . . ,Xn)} = 1− n(1/2)n−1.(2.10)

To show that the inequality in (2.6) holds strictly if the distribution ofX is not
symmetric and, thus, it also must be symmetric if the equality holds, first note that
for any n ≥ 1 andp ∈ [0,1], the functionh(p) = pn−1 + (1 − p)n−1 achieves
its unique minimum atp = 1/2 and this minimum ish(1/2) = (1/2)n−2. Since
G(x),G(x − π) ≥ 0 andG(x) + G(x − π) = 1, for anyn ≥ 1,

(1/2)n−2 ≤ [G(x)]n−1 + [G(x − π)]n−1.(2.11)
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If the distribution ofX is not symmetric,G(x) cannot be 1/2 for all x ∈ [0,2π).
Further,G(x) is continuously differentiable. There exists an open subinterval of
[0,2π) in which G(x) �= 1/2 andG′(x) < 0. Over this subintervalf (x) > 0 and
the inequality in (2.11) holds strictly. Multiply both sides of (2.11) byf (x) and
then integrate from 0 to 2π . We have

(1
2

)n−1
< 1

2

∫ 2π

0
f (x)

{[G(x)]n−1 + [G(x − π)]n−1}dx,(2.12)

where the left-hand side is strictly smaller than the right-hand side because of
the subinterval. It follows from (2.9), (2.12) and (2.10) that for anX that is not
symmetric,

P {0∈ H(X1,X2, . . . ,Xn)} < 1− n(1/2)n−1

= P {0∈ H(U1,U2, . . . ,Un)}. �

For k ≥ 3, a proof of (2.6) has eluded us so far due to difficulties in finding
an analytic expression forP {0 /∈ H(X1,X2, . . . ,Xn)} for a generalX in high
dimensions. Thus, claim (i) has been proved for onlyk ≤ 2. We conjecture that
claim (i) holds for allk. The rest of our discussion assumes this conjecture holds
so thatb(k,n) = P {0 ∈ H(U1,U2, . . . ,Un)} for all k. Wendel (1962) gives a
formula for P {0 /∈ H(U1,U2, . . . ,Un)} which leads to the following expression
for b(k,n) = P {0∈ H(U1,U2, . . . ,Un)}: for anyn > k,

b(k,n) = 1−
{(

n − 1
0

)
+

(
n − 1

1

)
+ · · · +

(
n − 1
k − 1

)}
2−(n−1).(2.13)

It is interesting to note that, by (2.13), when the sample size is twice as much as
the dimension, the value of the least upper boundb(k,2k) equals 0.5. Theorem 2
further explores the implications of (2.13).

THEOREM2. Denote by [x] the largest integer smaller than x. For any n > k,

(a) b(k,n + 1) > b(k,n) and b(k,n) > b(k + 1, n), and
(b) for any ε ∈ (0,0.5), b([εn], n) → 1 and b([(1− ε)n], n) → 0 as n → ∞.

PROOF. The inequalities in (a) follow easily from (2.13). To see (b) is true,
consider the binomial random variableX ∼ Bin(1/2, n − 1). Denote byZ the
standard normal random variable. By (2.13) we have

b([εn], n) = 1− P {X ≤ [εn] − 1}
∼ 1− P

{
Z ≤ [εn] − 1− (n − 1)/2√

n − 1/2

}
.

The right-hand side and, thus,b([εn], n) go to one whenn goes to infinity.
Similarly, b([(1− ε)n], n) goes to zero asn goes to infinity. �
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3. Concluding remarks. The least upper boundb(k,n) may be surprisingly
small when the ration/k is small. Table 1 shows values of the bound at various
combinations ofk and n. When this ratio is small and an empirical likelihood
ratio confidence region of a high confidence level is desired, it is essential that
the bound be computed to see if such a high confidence level is impossible. We
have come across examples in the literature where regions of impossibly high
confidence levels were computed. Practitioners need to be aware of the bound.

For any fixedn, the boundb(k,n) is a strictly decreasing function ofk. When
the sample sizen is not large, practitioners need to be aware of the negative
impact of incorporating extra information about the parameter that will increase
the dimension of the estimating equationk: (i) high confidence levels may become
unachievable and (ii) continuous approximations to the finite sample distribution
of the empirical log likelihood ratio may also become less accurate. The latter
may diminish the benefit of incorporating the extra information and may, for some
cases wheren is not large, result in a loss in coverage accuracy for the empirical
likelihood ratio confidence region [Tsao (2004)].

The method of empirical likelihood has been applied to some very high-
dimensional problems and there is increasing interest in the asymptotic behavior
of the empirical log likelihood ratio when the sample sizen and the dimension of
the estimating equationk both tend to infinity. By Theorem 2, whenn ≤ γ k for
some constantγ ∈ (1,2) andn goes to infinity, the distribution of the empirical
log likelihood ratiol(θ0) will degenerate into a point mass at infinity. There are no
meaningful confidence regions of the form (2.2) in this case.

On related future research problems, we note that in light of the lack of
awareness of the bounds, a method of calibration which automatically respects
the bounds may be helpful. Tsao (2004) contains some preliminary results on one
such method. It may be possible to derive similar bounds for certain classes of
empirical likelihood ratio confidence regions outside of the estimating equation
framework (2.1) and (2.2). The conjecture that claim (i) holds for allk is another
interesting question that we are still working on.

To conclude, while trying to determine the value of the bound, based on
derivations fork = 1,2 and some asymptotic observations we had communicated

TABLE 1
Bounds for some combinations of n and k, r = n/k

k r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

1 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 0.9922
2 0.5000 0.8125 0.9375 0.9805 0.9941 0.9983 0.9995
5 0.5000 0.9102 0.9904 0.9992 0.9999 1.0000 1.0000
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to several colleagues the conjecture that for anyk andn > k,

P {0 /∈ H(U1,U2, . . . ,Un)}
=

{(
n − 1

0

)
+

(
n − 1

1

)
+ · · · +

(
n − 1
k − 1

)}
2−(n−1).

We are indebted to Professor Qi-Man Shao who brought to our attention related
work by J. G. Wendel, B. Efron and others. Efron (1965) appears to be the first
to give formulae (2.7) and (2.8). Wendel (1962) has already noted and proved the
conjecture. Citing connections to L. J. Savage, R. E. Machol and D. A. Darling,
Wendel (1962) also gives an interesting historical note on the origin of the
conjecture.
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