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STRONG WEAK CONVERGENCE THEOREMS OF IMPLICIT
HYBRID STEEPEST-DESCENT METHODS

FOR VARIATIONAL INEQUALITIES

Lu-Chuan Ceng∗, Chinsan Lee∗∗ and Jen-Chih Yao∗∗

Abstract. Assume that F is a nonlinear operator on a real Hilbert space H
which is strongly monotone and Lipschitzian with constants η > 0 and κ > 0,
respectively on a nonempty closed convex subset C of H . Assume also that
C is the intersection of the fixed point sets of a finite number of nonexpansive
mappings on H . We develop an implicit hybrid steepest-descent method which
generates an iterative sequence {un} from an arbitrary initial point u0 ∈ H .
We characterize the weak convergence of {un} to the unique solution u∗ of
the variational inequality:

〈F (u∗), v − u∗〉 ≥ 0 ∀v ∈ C.

Applications to constrained generalized pseudoinverse are included.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H, and F : H → H be an operator.
Stampacchia [10] initially studied the classical variational inequality problem: find
u∗ ∈ C such that

(VI(F, C)) 〈F (u∗), v − u∗)〉 ≥ 0, ∀ v ∈ C.
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Variational inequalities ever since have been extensively studied because they in-
clude as special cases many diverse disciplines such as partial differential equations,
optimal control, optimization, mathematical programming, mechanics and finance,
etc.. The reader is referred to [8-10, 12, 20] and the references therein.

It is well known that if F is strong monotone and Lipschitzian on C, then
VI(F, C) has a unique solution. See, e.g., [10]. In the study of the VI(F, C), one
of the most important problems is how to find a solution of the VI(F, C) if any.
A great deal of effort has gone into the problem of finding a solution of VI(F, C);
see [8, 11].

It is also known that the VI(F, C) is equivalent to the fixed-point equation

(1) u∗ = PC(u∗ − µF (u∗))

where PC is the (nearest point) projection from H onto C; i.e., PCx = argminy∈C

‖x − y‖ for each x ∈ H and where µ > 0 is an arbitrarily fixed constant. So if
F is strongly monotone and Lipschitzian on C and µ > 0 is small enough, then
the mapping determined by the right-hand side of this equation is a contraction.
Hence the Banach contraction principle guarantees that the Picard iterates converge
in norm to the unique solution of the VI(F, C). Such a method is called the
projection method. It has been widely extended to develop various algorithms for
finding solutions of various classes of variational inequalities and complementarity
problems; see, e.g., [21-23]. It is remarkable that the fixed-point equation involves
the projection PC which may not be easy to compute due to the complexity of the
convex set C.

Recently Yamada ([18], see also [5]) introduced a hybrid steepest-descent method
for solving the VI(F, C) so as to reduce the complexity probably caused by the pro-
jection PC . His idea is stated now. Let C be the fixed-point set of a nonexpansive
mapping T : H → H ; that is, C = {x ∈ H : Tx = x}. Recall that T is nonexpan-
sive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H , and let Fix(T ) = {x ∈ H : Tx = x}
denote the fixed-point set of T. Let F be η-strongly monotone and κ-Lipschitzian
on C. Take a fixed number µ ∈ (0, 2η/κ2) and a sequence {λn} of real numbers
in (0, 1) satisfying the conditions below:

(L1) limn→∞ λn = 0,

(L2)
∑∞

n=1 λn = ∞,
(L3) limn→∞(λn − λn+1)/λ2

n+1 = 0.

Starting with an arbitrary initial guess u0 ∈ H , one can generate a sequence {un}
by the following algorithm:

(2) un+1 := Tun − λn+1µF (Tun), n ≥ 0.

Then Yamada [18] proved that {un} converges strongly to the unique solution of the
VI(F, C). An example of the sequence {λn} which satisfies conditions (L1)-(L3)
is given by λn = 1/nσ where 0 < σ < 1.
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On the other hand, if C is expressed as the intersection of the fixed-point sets
of N nonexpansive mappings Ti : H → H with N ≥ 1 an integer, Yamada [18]
proposed another algorithm,

(3) un+1 := T[n+1]un − λn+1µF (T[n+1]un), n ≥ 0,

where T[k] := TkmodN , for integer k ≥ 1, with the mod function taking values in
the set {1, 2, ..., N}; that is, if k = jN +q for some integers j ≥ 0 and 0 ≤ q < N ,
then T[k] = TN if q = 0 and T[k] = Tq if 1 ≤ q < N , where µ ∈ (0, 2η/κ2) and
where the sequence {λn} of parameters satisfies conditions (L1), (L2) and (L4),

(L4)
∑∞

n=1 |λn − λn+N | is convergent.
Under these conditions, Yamada [18] proved the strong convergence of {un} to

the unique solution of the VI(F, C).
In 2003, Xu and Kim [17] further considered and studied the hybrid steepest-

descent algorithms (2) and (3). Their major contribution is that the strong conver-
gence of algorithms (2) and (3) holds with condition (L3) replaced by the condition

(L3)′ limn→∞ λn/λn+1 = 1 or equivalently limn→∞(λn − λn+1)/λn+1 = 0,
and with condition (L4) replaced by the condition

(L4)′ limn→∞ λn/λn+N = 1 or equivalently limn→∞(λn−λn+N )/λn+N = 0.
It is clear that condition (L3)’ is strictly weaker than condition (L3), coupled with

conditions (L1) and (L2). Moreover (L3)’ includes the important and natural choice
{1/n} for {λn}, while (L3) does not. It is easy to see that if limn→∞ λn/λn+N

exists then condition (L4) implies condition (L4)’. However in general conditions
(L4) and (L4)’ are not comparable: neither of them implies the other (see [16] for
details). Furthermore under conditions (L1), (L2), (L3)’, and (L4)’, they gave the
applications of algorithms (2) and (3) to the constrained generalized pseudoinverses.

Let {αn}∞n=1 ⊂ (0, 1), {λn}∞n=1 ⊂ (0, 1) and take a fixed number µ ∈
(0, 2η/κ2). Now we introduce the following implicit hybrid steepest-descent al-
gorithms (I) and (II) as follows:

Algorithm (I). For any initial guess u0 ∈ H , the sequence {un} is generated
by the following implicit iterative scheme

un := αnun−1+(1−αn)T λnun = αnun−1+(1−αn)[Tun−λnµF (Tun)], n ≥ 1.

Algorithm (II). For any initial guess u0 ∈ H , the sequence {un} is generated
by the following implicit iterative scheme

un := αnun−1+(1−αn)T λn

[n]
un =αnun−1+(1−αn)[T[n]un−λnµF (T[n]un)], n≥1,

where T[n] = TnmodN .
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For the sequence {un} generated by the above algorithms (I) and (II), we dis-
cuss and characterize the weak convergence of {un} to the unique solution of the
VI(F, C) under the suitable conditions which are more convenient and more simple
than Xu and Kim’s ones [17]. Moreover applications to constrained generalized
pseudoinverse are included.

2. PRELIMINARIES

The following lemmas will be used for the proofs of the main results of the
paper in Section 3.

Lemma 2.1. See [15, Lemma 3.1]. Let {an}∞n=0 and {bn}∞n=0 be two sequences
of nonnegative numbers satisfying the inequality

an+1 ≤ an + bn, n ≥ 0.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

Lemma 2.2. See [7]. Demiclosedness Principle. Assume that T is a non-
expansive self-mapping of a closed convex subset C of a Hilbert space H. If T
has a fixed point, then I − T is demiclosed; that is, whenever {x n} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I − T )xn} strongly
converges to some y, it follows that (I − T )x = y. Here I is the identity operator
of H.

For a nonempty closed convex subset C ⊂ H , we denote by PC the (near-
est point) projection from H onto C. In what follows, we state some well-known
properties of the projection operator which will be used in the sequel; see [19].

Lemma 2.3. Let C be a nonempty closed convex subset of H . For any
x, y ∈ H and z ∈ C, the following statements hold:

(i) 〈PCx − x, z − PCx〉 ≥ 0;
(ii) ‖PCx − PCy‖2 ≤ ‖x − y‖2 − ‖PCx − x + y − PCy‖2.

Remark 2.2. Obviously, Lemma 2.3 (i) provides also a sufficient condition
for a vector u to be the projection of the vector x; i.e., u = PCx if and only if
〈u − x, z − u〉 ≥ 0, ∀z ∈ C.

Now recall that a Banach space E is said to satisfy Opial’s condition if whenever
{xn} is a sequence in E which converges weakly to x, then

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ for all y ∈ E, y �= x.
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It is well known that every Hilbert space satisfies the Opial condition. See, e.g.,
[13].

3. IMPLICIT HYBRID STEEPEST-DESCENT ALGORITHMS

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Let F : H → H be an operator such that F is Lipschitzian and strongly
monotone with constants κ > 0 and η > 0, respectively on C; that is, F satisfies
the conditions

(4) ‖Fx − Fy‖ ≤ κ‖x − y‖, ∀x, y ∈ C,

(5) 〈Fx − Fy, x − y〉 ≥ η‖x− y‖2, ∀x, y ∈ C.

Under these conditions, it is well-known that the variational inequality problem

(VI(F, C)) 〈F (u∗), v − u∗〉 ≥ 0, ∀v ∈ C.
has a unique solution u∗ ∈ C.

Denote by PC the projection of H onto C. Namely, for each x ∈ H, PCx is
the only element in C satisfying

‖x − PCx‖ = min{‖x − y‖ : y ∈ C}.

It is known that the projection PC is characterized by the inequality

〈x − PCx, y − PCx〉 ≤ 0, ∀y ∈ C.

Thus it follows that the VI(F, C) is equivalent to the fixed-point problem

u∗ = PC(I − µF (u∗)),

where µ > 0 is a constant.
In this section, assume that T : H → H is a nonexpansive mapping with

Fix(T ) = C. Note that obviously, Fix(PC) = C. For any given numbers λ ∈
(0, 1) and µ ∈ (0, 2η/κ2), associating with T : H → H, we define the mapping
T λ : H → H by

T λx := Tx − λµF (Tx), ∀x ∈ H.

Lemma 3.1. See [18]. If 0 < λ < 1 and 0 < µ < 2η/κ2, then there holds for
T λ : H → H ,

(6) ‖T λx − T λy‖ ≤ (1 − λτ)‖x− y‖, ∀x, y ∈ H,
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where τ = 1 − √
1 − µ(2η − µκ2) ∈ (0, 1).

Proof. For completeness, we include a simple proof.
Observe that

κ ≥ η ⇔ ηµ ≥ 1−
√

1 − 2ηµ + µ2κ2

⇔ −2λ(1− λ)[1−
√

1 − 2ηµ + µ2κ2] + 2λ(1− λ)ηµ ≥ 0

⇔ (1− λ)2 + 2λ(1− λ)
√

1 − 2ηµ + µ2κ2 + λ2(1 − 2ηµ + µ2κ2)
≥ 1− 2λµη + (λµ)2κ2

⇔ 1−λ[1−√
1−µ(2η−µκ2)]≥√

1−2λµη+(λµ)2κ2.

From the strong monotonicity and Lipschitz continuity of F , we obtain

‖T λx − T λy‖2 ≤ (1 − 2λµη + (λµ)2κ2)‖Tx − Ty‖2.

Therefore, it is easy to see that the conclusion holds.

Algorithm (I). Let {αn}∞n=1 ⊂ (0, 1), {λn}∞n=1 ⊂ (0, 1) and take a fixed
number µ ∈ (0, 2η/κ2). Starting with an arbitrary initial guess u0 ∈ H , one can
generate a sequence {un} by the following implicit iterative scheme

(7)
un : = αnun−1 + (1 − αn)T λnun

= αnun−1 + (1 − αn)[Tun − λnµF (Tun)], n ≥ 1.

Observe that by Lemma 3.1, for every u ∈ H and t ∈ (0, 1), the operator
St : H → H defined by Stx = tu + (1 − t)T λx satisfies

〈Stx − Sty, x− y〉 = (1 − t)〈T λx − T λy, x− y〉
≤ (1 − t)(1 − λτ)‖x− y‖2

≤ (1 − t)‖x − y‖2, ∀x, y ∈ H.

Hence St is strongly pseudocontractive (see, e.g., [3, 14]). Since St is also Lips-
chitzian, it follows from [3-4, 14] that St has a unique fixed point xt ∈ H . Thus
there exists a unique xt ∈ H such that

xt = tu + (1 − t)T λxt = tu + (1 − t)[Txt − λµF (Txt)].

This implies that the implicit iteration scheme (7) above for generating the sequence
{un} of approximate solutions of the VI(F, C) is well defined.

Theorem 3.1. Let {αn} and {λn} be real sequences in (0, 1) such that∑∞
n=0 λn < ∞ and α ≤ αn ≤ 1− α, n ≥ 1, for some α > 0. Let {un} denote the

sequence generated by Algorithm (I). Then there hold the following statements:
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(i) {un} converges weakly to an element of Fix(T );
(ii) if F is additionally sequentially continuous from the weak topology to the

strong topology, then {un} converges weakly to the unique solution ũ of the
VI(F, C) if and only if

lim inf
n→∞ 〈F (Tun), un − ũ〉 ≤ 0.

Proof. At first, recall that the well known identity

‖tx + (1 − t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1 − t)‖x − y‖2

holds for all x, y ∈ H and for all t ∈ [0, 1].

(i) Let u∗ be an arbitrary element in Fix(T ). Observe that

(8)

‖un − u∗‖2 = ‖αnun−1 + (1 − αn)T λnun − u∗‖2

= αn‖un−1 − u∗‖2 + (1 − αn)‖T λnun − u∗‖2

−αn(1− αn)‖un−1 − T λnun‖2.

Utilizing Lemma 3.1 we have

‖T λnun − u∗‖ = ‖T λnun − T λnu∗ + T λnu∗ − u∗‖
≤ ‖T λnun − T λnu∗‖ + ‖T λnu∗ − u∗‖
≤ (1 − λnτ)‖un − u∗‖ + λnµ‖F (u∗)‖,

which hence implies that

‖T λnun − u∗‖2 ≤ (1− λnτ)‖un − u∗‖2 + λn · µ2‖F (u∗)‖2

τ
.

This together with (8) yields

‖un − u∗‖2 ≤ αn‖un−1 − u∗‖2 + (1− αn)[(1− λnτ)‖un − u∗‖2

+λn · µ2‖F (u∗)‖2

τ
]− αn(1 − αn)‖un−1 − T λnun‖2

≤ αn‖un−1 − u∗‖2 + (1− αn)‖un − u∗‖2

+(1− αn)λn · µ2‖F (u∗)‖2

τ
− αn(1− αn)‖un−1 − T λnun‖2,

and so
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‖un − u∗‖2 ≤ ‖un−1 − u∗‖2 + (1− αn)
λn

αn
· µ2‖F (u∗)‖2

τ

−(1 − αn)‖un−1 − T λnun‖2

≤ ‖un−1 − u∗‖2 + λn · µ2‖F (u∗)‖2

τα
− ‖un − un−1‖2.

Since
∑∞

n=0 λn·µ
2‖F (u∗)‖2

τα converges, from Lemma 2.1 we know that limn→∞ ‖un−
u∗‖ exists. Hence we deduce that

‖un−un−1‖2 ≤ ‖un−1 −u∗‖2−‖un −u∗‖2 +λn · µ
2‖F (u∗)‖2

τα
→ 0 as n → ∞,

that is, limn→∞ ‖un − un−1‖ = 0. Now, observe that

α‖un−1 −T λnun‖ ≤ (1−αn)‖un−1 −T λnun‖ = ‖un −un−1‖ → 0 as n → ∞.

Also note that it follows from the boundedness of {un} that {Tun} and {F (Tun)}
are bounded. Thus we infer that

‖un−1 − Tun‖ ≤ ‖un−1 − T λnun‖ + ‖T λnun − Tun‖
≤ ‖un−1 − T λnun‖ + λnµ‖F (Tun)‖ → 0 as n → ∞.

This together with (7) implies that

‖un − Tun‖ ≤ ‖αn(un−1 − Tun) − (1− αn)λnµF (Tun)‖
≤ ‖un−1 − Tun‖ + λnµ‖F (Tun)‖ → 0 as n → ∞.

Furthermore since {un} is bounded, it has a subsequence {unj}∞j=1 which converges
weakly to some û ∈ H , and hence we have limj→∞ ‖unj − Tunj‖ = 0. Note that
from Lemma 2.2 it follows that I − T is demiclosed at zero. Thus û ∈ Fix(T ).
If there exists another subsequence {unk

}∞k=1 of {un} which converges weakly to
ū, then we must have ū ∈ Fix(T ). Since limn→∞ ‖un − ū‖ exists and H is an
Opial space, it follows from a standard argument that û = ū. Consequently {un}
converges weakly to û ∈ Fix(T ).

(ii) Suppose additionally that F is sequentially continuous from the weak topol-
ogy to the strong topology. Moreover let ũ denote the unique solution of the
VI(F, C). We observe the following facts: limn→∞ ‖un − Tun‖ = 0, and weak-
limn→∞ un = û ∈ Fix(T ) =: C. Now let {un} be weakly convergent to the
unique solution ũ of the VI(F, C). Then ‖F (un) − F (ũ)‖ → 0 as n → ∞. Since
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limn→∞ ‖un − Tun‖ = 0, we have limn→∞ ‖F (Tun) − F (ũ)‖ = 0. Hence that

lim inf
n→∞ 〈F (Tun), un − ũ〉 = lim inf

n→∞ 〈F (Tun), un − ũ〉 − lim
n→∞〈F (ũ), un − ũ〉

= lim inf
n→∞ 〈F (Tun)− F (ũ), un − ũ〉

≤ lim inf
n→∞ ‖F (Tun) − F (ũ)‖‖un − ũ‖

= 0

which implies that

(9) lim inf
n→∞ 〈F (Tun), un − ũ〉 ≤ 0.

Conversely suppose that (9) holds. Then by using the strong monotonicity of F and
the weak lower semicontinuity of ‖ · ‖, we conclude that

η‖û− ũ‖2 ≤ η lim inf
n→∞ ‖un − ũ‖2

≤ η lim inf
n→∞ [‖Tun − ũ‖ + ‖un − Tun‖]2

= η lim inf
n→∞ ‖Tun − ũ‖2

≤ lim inf
n→∞ 〈F (Tun) − F (ũ), Tun − ũ〉

= lim inf
n→∞ [〈F (Tun) − F (ũ), un − ũ〉 + 〈F (Tun) − F (ũ), Tun − un〉]

= lim inf
n→∞ 〈F (Tun) − F (ũ), un − ũ〉

= lim inf
n→∞ 〈F (Tun), un − ũ〉 − lim

n→∞〈F (ũ), un − ũ〉
≤ −〈F (ũ), û− ũ〉
≤ 0.

This shows that ‖û− ũ‖2 = 0 and hence û = ũ. Therefore, {un} converges weakly
to the unique solution ũ of the VI(F, C). This completes the proof.

Next we consider a more general case where

C =
N⋂

i=1

Fix(Ti),

with N ≥ 1 an integer and Ti : H → H being nonexpansive for each 1 ≤ i ≤ N.
We propose the following implicit hybrid steepest-descent algorithm for solving

the VI(F, C).
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Algorithm (II). Let {αn}∞n=1 ⊂ (0, 1), {λn}∞n=1 ⊂ (0, 1) and take a fixed
number µ ∈ (0, 2η/κ2). Starting with an arbitrary initial guess u0 ∈ H , one can
generate a sequence {un} by the following implicit iterative scheme

(10)
un : = αnun−1 + (1 − αn)T λn

[n]
un

= αnun−1 + (1 − αn)[T[n]un − λnµF (T[n]un)], n ≥ 1,

where T[n] = TnmodN .

We remark that as in Algorithm (I), the implicit iteration scheme (10) above
for generating the sequence {un} of approximate solutions of the VI(F, C) is well
defined.

We are now in a position to prove the main result of this paper.

Theorem 3.2. Let {αn} and {λn} be real sequences in (0, 1) such that∑∞
n=0 λn < ∞ and α ≤ αn ≤ 1 − α, n ≥ 1, for some α > 0. Assume that

(11) C =
N⋂

i=1

Fix(Ti) = Fix(T1T2...TN) = Fix(TNT1...TN−1)

= · · · = Fix(T2T3...TNT1).

Let {un} denote the sequence generated by Algorithm (II). Then there hold the
following statements:

(i) {un} converges weakly to an element of
⋂N

i=1 Fix(Ti);
(ii) if F is additionally sequentially continuous from the weak topology to the

strong topology, then {un} converges weakly to the unique solution ũ of the
VI(F, C) if and only if

lim inf
n→∞ 〈F (T[n]un), un − ũ〉 ≤ 0.

Proof.
(i) Let u∗ be an arbitrary element in

⋂N
i=1 Fix(Ti). Observe that

(12)

‖un − u∗‖2 = ‖αnun−1 + (1 − αn)T λn

[n]
un − u∗‖2

= αn‖un−1 − u∗‖2 + (1− αn)‖T λn

[n] un − u∗‖2

−αn(1 − αn)‖un−1 − T λn

[n]
un‖2.

Utilizing Lemma 3.1, we have

‖T λn

[n] un − u∗‖ = ‖T λn

[n] un − T λn

[n] u
∗ + T λn

[n] u
∗ − u∗‖

≤ ‖T λn

[n]
un − T λn

[n]
u∗‖ + ‖T λn

[n]
u∗ − u∗‖

≤ (1 − λnτ)‖un − u∗‖ + λnµ‖F (u∗)‖
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which implies that

‖T λn

[n] un − u∗‖2 ≤ (1− λnτ)‖un − u∗‖2 + λn · µ2‖F (u∗)‖2

τ
.

This together with (12) yields

‖un − u∗‖2 ≤ αn‖un−1 − u∗‖2 + (1 − αn)[(1− λnτ)‖un − u∗‖2

+λn · µ2‖F (u∗)‖2

τ
] − αn(1− αn)‖un−1 − T λn

[n]
un‖2

≤ αn‖un−1 − u∗‖2 + (1 − αn)‖un − u∗‖2

+(1 − αn)λn · µ2‖F (u∗)‖2

τ
− αn(1 − αn)‖un−1 − T λn

[n] un‖2

and so

‖un − u∗‖2 ≤ ‖un−1 − u∗‖2 + (1− αn)
λn

αn
· µ2‖F (u∗)‖2

τ

−(1 − αn)‖un−1 − T λn

[n] un‖2

≤ ‖un−1 − u∗‖2 + λn · µ2‖F (u∗)‖2

τα
− ‖un − un−1‖2.

Since
∑∞

n=0 λn·µ
2‖F (u∗)‖2

τα converges, from Lemma 2.1 we know that limn→∞ ‖un−
u∗‖ exists. Hence we deduce that

‖un −un−1‖2 ≤ ‖un−1−u∗‖2−‖un−u∗‖2 +λn · µ
2‖F (u∗)‖2

τα
→ 0 as n → ∞,

that is, limn→∞ ‖un−un−1‖ = 0. Obviously it is easy to see that ‖un−un+i‖ → 0
as n → ∞, ∀i = 1, 2, ..., N . Now observe that

α‖un−1 −T λn

[n]
un‖ ≤ (1−αn)‖un−1 −T λn

[n]
un‖ = ‖un −un−1‖ → 0 as n → ∞.

Also, note that it follows from the boundedness of {un} that {T[n]un} and {F (T[n]

un)} are bounded. Thus we infer that

‖un−1 − T[n]un‖ ≤ ‖un−1 − T λn

[n] un‖ + ‖T λn

[n] un − T[n]un‖
≤ ‖un−1 − T λn

[n]
un‖ + λnµ‖F (T[n]un)‖ → 0 as n → ∞.

This together with (10) implies that

‖un − T[n]un‖ ≤ ‖αn(un−1 − T[n]un) − (1 − αn)λnµF (T[n]un)‖
≤ ‖un−1 − T[n]un‖ + λnµ‖F (T[n]un)‖ → 0 as n → ∞.
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Consequently, we have for each i = 1, 2, ..., N

‖un − T[n+i]un‖ ≤ ‖un − un+i‖
+‖un+i − T[n+i]un+i‖+ ‖T[n+i]un+i − T[n+i]un‖

≤ 2‖un − un+i‖ + ‖un+i − T[n+i]un+i‖ → 0 as n → ∞

and so

(13) lim
n→∞ ‖un − T[n+i]un‖ = 0, ∀i = 1, 2, ..., N.

It follows from (13) (see also [7, 21]) that limn→∞ ‖un − Tlun‖ = 0, ∀l =
1, 2, ..., N . Furthermore since {un} is bounded, it has a subsequence {unj}∞j=1

which converges weakly to some û ∈ H and hence we have limj→∞ ‖unj −
Tlunj‖ = 0. Note that from Lemma 2.2 it follows that I −Tl is demiclosed at zero.
Thus û ∈ Fix(Tl). Since l is an arbitrary element in the finite set {1, 2, ..., N}, we
get û ∈ ⋂N

i=1 Fix(Ti). If there exists another subsequence {unk
}∞k=1 of {un}

which converges weakly to ū, then we must have ū ∈ ⋂N
i=1 Fix(Ti). Since

limn→∞ ‖un − ū‖ exists and H is an Opial space, it follows from a standard
argument that û = ū. Therefore {un} converges weakly to û ∈⋂N

i=1 Fix(Ti).

(ii) Suppose additionally that F is sequentially continuous from the weak topol-
ogy to the strong topology. Moreover let ũ denote the unique solution of the
VI(F, C). Again we observe limn→∞ ‖un − T[n]un‖ = 0 and weak-limn→∞ un =
û ∈ ⋂N

i=1 Fix(Ti) =: C. Now let {un} be weakly convergent to the unique
solution ũ of the VI(F, C). Then ‖F (un) − F (ũ)‖ → 0 as n → ∞. Since
limn→∞ ‖un − T[n]un‖ = 0, we have limn→∞ ‖F (T[n]un)− F (ũ)‖ = 0. Hence

lim inf
n→∞ 〈F (T[n]un), un − ũ〉 = lim inf

n→∞ 〈F (T[n]un), un − ũ〉 − lim
n→∞〈F (ũ), un − ũ〉

= lim inf
n→∞ 〈F (T[n]un) − F (ũ), un − ũ〉

≤ lim inf
n→∞ ‖F (T[n]un) − F (ũ)‖‖un − ũ‖

= 0

which implies that

(14) lim inf
n→∞ 〈F (T[n]un), un − ũ〉 ≤ 0.

Conversely, suppose that (14) holds. Then by using the strong monotonicity of F
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and the weak lower semicontinuity of ‖ · ‖, we conclude that

η‖û− ũ‖2 ≤ η lim inf
n→∞ ‖un − ũ‖2

≤ η lim inf
n→∞ [‖T[n]un − ũ‖ + ‖un − T[n]un‖]2

= η lim inf
n→∞ ‖T[n]un − ũ‖2

≤ lim inf
n→∞ 〈F (T[n]un) − F (ũ), T[n]un − ũ〉

=lim inf
n→∞ [〈F (T[n]un)−F (ũ), un−ũ〉+〈F (T[n]un)−F (ũ), T[n]un−un〉]

= lim inf
n→∞ 〈F (T[n]un) − F (ũ), un − ũ〉

= lim inf
n→∞ 〈F (T[n]un), un − ũ〉 − lim

n→∞〈F (ũ), un − ũ〉
≤ −〈F (ũ), û− ũ〉
≤ 0.

This shows that ‖û− ũ‖2 = 0 and hence û = ũ. Therefore {un} converges weakly
to the unique solution ũ of the VI(F, C). This completes the proof.

Remark 3.1. Recall that a self-mapping of a nonempty closed convex subset K

of a Hilbert space H is said to be attracting nonexpansive [1-2] if T is nonexpansive
and if ‖Tx− p‖ < ‖x− p‖ for x, p ∈ K with x /∈ Fix(T ) and p ∈ Fix(T ). Recall
also that T is firmly nonexpansive [1-2] if 〈x− y, Tx−Ty〉 ≥ ‖Tx−Ty‖2 for all
x, y ∈ K. It is known that assumption (11) in Theorem 3.2 is automatically satisfied
if each Ti is attracting nonexpansive. Since a projection is firmly nonexpansive, we
have the following consequence of Theorem 3.2.

Corollary 3.1. Let µ ∈ (0, 2η/κ2) and let {αn} and {λn} be real sequences
in (0, 1) such that

∑∞
n=0 λn < ∞ and α ≤ αn ≤ 1−α, n ≥ 1, for some α > 0. Let

u0 ∈ H and let the sequence {un} be generated by the implicit iterative algorithm

un := αnun−1 + (1− αn)[P[n]un − λnµF (P[n]un)], n ≥ 1,

where Pk = PCk
, 1 ≤ k ≤ N. Then there hold the following statements:

(i) {un} converges weakly to an element of C :=
⋂N

k=1 Ck;
(ii) if F is additionally sequentially continuous from the weak topology to the

strong topology, then {un} converges weakly to the unique solution ũ of the
VI(F, C) if and only if

lim inf
n→∞ 〈F (P[n]un), un − ũ〉 ≤ 0.
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4. APPLICATIONS TO CONSTRAINED GENERALIZED PSEUDOINVERSE

Let K be a nonempty closed convex subset of a real Hilbert space H. Let A be a
bounded linear operator on H. Given an element b ∈ H, consider the minimization
problem

(15) min
x∈K

‖Ax − b‖2.

Let Sb denote the solution set. Then, Sb is closed convex. It is known that Sb is
nonempty if and only if PA(K)(b) ∈ A(K). In this case, Sb has a unique element
with minimum norm; that is, there exists a unique point x̂ ∈ Sb satisfying

(16) ‖x̂‖2 = min{‖x‖2 : x ∈ Sb}.

Definition 4.1. See [6]. The K-constrained pseudoinverse of A (symbol ÂK)
is defined as

D(ÂK) = {b ∈ H : PA(K)(b) ∈ A(K)}, ÂK(b) = x̂, and b ∈ D(ÂK),

where x̂ ∈ Sb is the unique solution to (16).

Now we recall the K-constrained generalized pseudoinverse of A; [17-18].
Let θ : H → R be a differentiable convex function such that θ′ is a κ-

Lipschitzian and η-strongly monotone operator for some κ > 0 and η > 0. Under
these assumptions, there exists a unique point x̂0 ∈ Sb for b ∈ D(ÂK) such that

(17) θ(x̂0) = min{θ(x) : x ∈ Sb}.

Definition 4.2. See [17]. The K-constrained generalized pseudoinverse of A
associated with θ (symbol ÂK,θ) is defined as

D(ÂK,θ) = D(ÂK), ÂK,θ(b) = x̂0, and b ∈ D(ÂK,θ),

where x̂0 ∈ Sb is the unique solution to (17). Note that if θ(x) = ‖x‖2/2, then the
K-constrained generalized pseudoinverse ÂK,θ of A associated with θ reduces to
the K-constrained pseudoinverse ÂK of A in Definition 4.1.

We now apply the results in Section 3 to construct the K-constrained generalized
pseudoinverse ÂK,θ of A. But first, observe that x̃ ∈ K solves the minimization
problem (15) if and only if there holds the following optimality condition:

〈A∗(Ax̃ − b), x− x̃〉 ≥ 0, x ∈ K,
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where A∗ is the adjoint of A. This is equivalent to, for each λ > 0,

〈[λA∗b + (I − λA∗A)x̃] − x̃, x− x̃〉 ≥ 0, x ∈ K,

or

(18) PK(λA∗b + (I − λA∗A)x̃) = x̃.

Define a mapping T : H → H by

(19) Tx = PK(A∗b + (I − λA∗A)x), x ∈ H.

Lemma 4.1. See [17]. If λ ∈ (0, 2‖A‖−2) and if b ∈ D(ÂK), then T is
attracting nonexpansive and Fix(T ) = S b.

Theorem 4.1. Let µ ∈ (0, 2η/κ2) and let {αn} and {λn} be real sequences
in (0, 1) such that

∑∞
n=0 λn < ∞ and α ≤ αn ≤ 1 − α, n ≥ 1, for some α > 0.

Given an initial guess u0 ∈ H , let un be the sequence generated by the implicit
iterative algorithm

(20) un = αnun−1 + (1− αn)[Tun − λnµθ′(Tun)], n ≥ 1,

where T is given in (19). Then there hold the following statements:

(i) {un} converges weakly to an element of Sb;
(ii) if θ′ is additionally sequentially continuous from the weak topology to the

strong topology, then {un} converges weakly to ÂK,θ(b) if and only if

lim inf
n→∞ 〈θ′(Tun), un − ÂK,θ(b)〉 ≤ 0.

Proof. The minimization problem (17) is equivalent to the following variational
inequality problem:

(21) 〈θ′(x̂0), x− x̂0〉 ≥ 0, ∀x ∈ Sb,

where x̂0 = ÂK,θ(b). Since Fix(T ) = Sb and θ′ is Lipschitzian and strongly
monotone with constants κ > 0 and η > 0, respectively, the statements follow
immediately from Theorem 3.1 with F := θ′ .

Lemma 4.2. See [1-2]. Assume that N is a positive integer and assume that
{Ti}N

i=1 are N attracting nonexpansive mappings on H having a common fixed
point. Then

N⋂
i=1

Fix(Ti) = Fix(T1T2...TN).
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Now assume that {S1
b , ..., SN

b } is a family of N closed convex subsets of K

such that Sb =
⋂N

i=1 Si
b. For each 1 ≤ i ≤ N, we define Ti : H → H by

Tix = PSi
b
(A∗b + (I − λA∗A)x), x ∈ H,

where PSi
b

is the projection from H onto S i
b.

Theorem 4.2. Let µ ∈ (0, 2η/κ2) and let {αn} and {λn} be real sequences
in (0, 1) such that

∑∞
n=0 λn < ∞ and α ≤ αn ≤ 1 − α, n ≥ 1, for some α > 0.

Given an initial guess u0 ∈ H , let un be the sequence generated by the implicit
iterative algorithm

(22) un = αnun−1 + (1− αn)T λn

[n] un, n ≥ 1,

where T λn

[n]
un = T[n]un − λnµθ′(T[n]un), n ≥ 1. Then there hold the following

statements:

(i) {un} converges weakly to an element of Sb;
(ii) if θ′ is additionally sequentially continuous from the weak topology to the

strong topology, then {un} converges weakly to ÂK,θ(b) if and only if

lim inf
n→∞ 〈θ′(T[n]un), un − ÂK,θ(b)〉 ≤ 0.

Proof. The minimization problem (17) is equivalent to the following variational
inequality problem:

〈θ′(x̂0), x− x̂0〉 ≥ 0, ∀x ∈ Sb,

where x̂0 = ÂK,θ(b). In the proof of [17, Theorem 4.2], Xu and Kim have proved
that

(23) Sb = Fix(T ) =
N⋂

i=1

Fix(Ti).

By Lemmas 4.1 and 4.2, we see that assumption (11) in Theorem 3.2 holds. Since⋂N
i=1 Fix(Ti) = Sb and θ′ is Lipschitzian and strongly monotone with constants

κ > 0 and η > 0, respectively, the statements follow immediately from Theorem
3.2 with F := θ′.
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