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A WAY OF CONSTRUCTING SPHERICAL ZONAL TRANSLATION
NETWORK OPERATORS WITH LINEAR BOUNDED OPERATORS

Sheng Baohuai, Wang Jianli and Zhou Songping

Abstract. A kind of spherical zonal translation network operator is con-
structed with the help of the de la Vallée poussin means of the spherical
harmonic polynomial and the Riesz means of the Jacobi orthogonal polynomi-
als, and, moreover, its degree of approximation in IP(S7) spaces is deduced.
The method presented in the present paper is actually a way of constructing
spherical zonal translation network operators with spherical linear bounded
operators.

1. INTRODUCTION

In recent years there has been growing interest in the problem of neural network
and related approximation, and many important results on the quantitative estimate
of degree of approximation have been made. The concept of sigmoidal function of
order k is defined in [1] and it was proved by H. N. Mhaskar and C. A. Micchelli
(see [1]) that if ¢ is not a polynomial function defined on R and K ¢ R% is a
compact set, the function class

Np(z) ={p\(z—1t): A€ RLte R U{l},z € K

is dense in LP(K'). Moreover, a kind of neural network operator was constructed by
B-spline functions and a Jackson type theorem of approximation in C(]0, 1]) was
established. Let s > d > 1 be integers. ¢* : R* — R is a 2r—periodic function
and ¢* € LP([—7,7]%),1 < p < +oo,J = Jy is the class of all d x s matrices of
rank d with integer entries, and let

Ay(z) ={¢"(Az +t): A€ Jte [-m, 7| U {1}, z € [-m, 7]
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Then, H. N. Mhaskar and C. A. Micchelli gave the necessary and sufficient con-
ditions that A% (z) is dense in LP([—m, «]*) and constructed with the de la Vallée
Poussin means of Fourier series a very important network operator and obtained
estimates on the degree of approximation in LP([—m, 7|®) (see [2]). In a recent
paper, [3] considered the problem of approximation of non-periodic functions by
the function class

NG (x) = {g[cos(Aarccosx +t)] : A € J,t € [-1,1] U {1}, z € [-1,1]%,

and gave the necessary and sufficient condition such that A;(x) is dense in the

1

weighted space L¥, [—1,1]* (where W (z) = (1 —22) " 2(1—23)"2 - (1 —22)"2)
as well, and constructed with the de la Vallée Poussin means of the Chebyshev
polynomials of the first kind a kind of network operator and obtained an estimate
on the degree of approximation in weighted L%, [—1,1]° space. Let ¢ > 1 be an
integer which will be fixed throughout the rest of this paper, and let S? be the
unit sphere in the Euclidean space R4*!. By LP(S%) (1 < p < +o0) we denote
the function space consisting of real or complex functions defined on S7 such that
| fllp,sa < 400, where

(SgﬂmWMAm)? 1 <p < +oo,

ess sup | f(z)], p = +oo,
€S

£ 1lp,50 =

with dp, () being the usual volume element on S9. The volume of 59 is

g+1
2

/ d 2w
Wy = = .
q Sa /’Lq F( —51)

By L%,q[—l, 1] we denote the the real or complex function ¢ defined on [-1, 1]
such that ||¢||,w, < 400, where

</_11 W(x)‘pwq(x)dx)% < 400, 1<p<+oo,

ess sup |o(z)| < +oo, p = +o00,
z€[—1,1]

llpw, =

with Wy(z) = (1 — 22)3~1. Then H. N. Mhaskar, F. J. Narcowich and J. D.
Ward showed in [4] that if ¢ € L%,q[—l, 1] satisfies certain conditions, the zonal
translation network class

A3 (z) ={p(z-y):y € STHU{1},z € 57,
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(where x - y denote the inner product of vectors x and y ) is dense in LP(S?)
and gave a Jackson estimate on the degree of approximation in LP(S?). The fact
that Bernstein operators are useful in constructing neural network operators (see
[6]) inspires us to construct specific zonal translation network operators on the
unit sphere S?. We shall constructed, along the lines of [4], a kind of specific
spherical zonal translation network operator with the de la Vallée Poussin means
of the spherical harmonic polynomials, the Riesz means of the Jacobi orthogonal
algebraic polynomials and the Gauss integral formula obtained in [7]-[8], and give
its degree of approximation in LP(S?). What we shall show in the present paper
is in fact a way of constructing spherical zonal translation network linear operator
from a specific bounded operator on the unit sphere.

In what follows, we shall write A = O(B) if there exists a constant C' > 0
such that A < C'B, and we shall write A ~ B if A= O(B) and B = O(A).

2. SOME PRELIMINARIES OF SPHERICAL HARMONICS

For an integer I > 0, the class of all one variable algebraic polynomials of degree
< [ defined on [-1, 1] is denoted by P;, the restriction to S? of a homogeneous
harmonic polynomial of degree [ is called a spherical harmonic of degree [. The
class of all spherical harmonics of degree [ will be denoted by HY, and the class
of all spherical harmonics of degree I < n will be denoted by II}. Of course,

I} = @ H7, and it comprises the restriction to S of all algebraic polynomials in

qg+1 varlables of total degree not exceeding n. The dimension of H is given by
(see [9, P.65])

204q—1 < l+q—1 ) 1> 1
dl =dimH! =< [+q¢—1 g—1 ’ ’
1, =0,
and that of II7 is ) d]. By [10] we know
1=0
L*(8%) = closure{EP H}}.
1
Hence,if we choose an orthonormal basis {Y;; : k = 1,2,---,d]} for each H/,

then the set {Y;, : 1 =0,1,2,---;k = 1,2,---,d]} forms an orthonormal basis
for L?(S9). One has the well-known addition formula(see [11]):

dq
Z}/Zk‘ }/Zk‘ p?+1(x'y)7l:0717"'7
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where pf’“(m) is the degree-I Legendre polynomial. The Legendre polynomials are

normalized so that p?“(l) = 1, and satisfy the orthogonality relation

1
w,
| @ W) = .
1 Wq—-10y

n
From the fact that IT}, = P H,' and the addition formula, we know that for any
1=0
p € 11} and x € SY

p(w)zzd—l

o p()pi (2 - y)dug (y).
=0 4

In addition to the inner product and norms defined above on S9, we shall need
the following related norms for [—1, 1], with generalized Jacobi weight functions
Waps(z)=(1-2)%(1+2)° (a>-1,8> 1)

(/1 ‘f(x)‘pwaﬂ(w)dwy , 1< p<+oo;
-1

ess sup |f(x)], p = +o0.
z€[—1,1]

1Fllpwe s =

We also note that the Funk-Hecke formula (see [9, Chapter 3]) implies the
following useful connection between integrals over S? and integrals over [-1, 1]
with respect to the weight function 1W,(x). For any ¢ € L%Vq[—l, 1],z € 89, and
any Y; € H}' we have

Ola - 2)Yi(=)dpg(2) = HH(DYi(w),
Sa 1

where

wo dd 1
é(l) B qT;dl /—1 ¢(x)p?+1(x)Wq(x)dx.

Moreover, we have the following relation
1
[ b w)dugla) = s [ oW
q —

The orthogonal projection Y (f,z) of a function f € L*(S7) on H} is defined
by (see [10])

Yi(f,x) = % /Sq pi @ y) f(y)dpg(y).

Wq
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Correspondingly we have the following Fourier-Laplace expansion of f
o
fl@)~ ) Yi(f,2),x € 5%
k=0

Let C be a finite set of distinct points on S?. The mesh norm of C is defined to
be

o¢c = dist(z,C) = in dist
¢ = maxdisi(z, C) max min (. ),

where dist(z, y) = arccos(x - y) is the geodesic distance between x and y.

Lemma 2.1. There exist constants a,and N, with the following property. Let
1 < p < 40, C be a finite set of distinct points on S 7 and n be an integer with
N, <n < a,0;". Then there exist nonnegative weights { A¢}eccand {ag }ecc ith

s

cec ¢

such that for every p € 117,

1
— [ p(x)dpg(x) = agp(€),
Wq Jsa tec
and
plle.s ~ Ipllp,se,
where

1

( > !p(ﬁ)!pAg> , 1<p<+oo,
Iplle, = gec

sup{[p(&)|}, p = +oo.
gec

Further, |{¢ : ag # 0} ~ n? ~ dim(IT}).
Proof. See [7-8].

Let n > 1 be an integer and

n! F(n+2X+1)

0<k<mn2\=q—1.
n—kNTmtkt2rt1)y — =" 4

M\ _
wn,k - (
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Then H. Berens and Li Luoging (see [12]) introduced the following de la Vallée
Poussin operator on spherical harmonics

Zw WYi(f, ), f € LS9,

and deduced the following estimate.

Lemma 2.2. Let f € LP(S9). Then

[vn]

an(f) - f”p,Sq < n——|—1 kzo(k + 1)Ek(f)p,5q7

where
Eyn(f)p,se = inf [|f —pllp,sa.
pell}

Proof. See [12].

3. THE RIESZ MEANS ON JAacoBl ORTHOGONAL POLYNOMIALS

In this section, we shall give the estimate of the degree of approximation of
Riesz means of Jacobi polynomials. To define the K —functional, we first define
the Jacobi differential operator

4
dzx

d

Pog(D) = Wog(x)™! ot

Was(x)(1 - 2%)——
Its eigenfunctions are the Jacobi polynomials p(o‘ )( ) and
Pos(D)p P (@) = —k(k + a + B + 1)pl>? (),
where the Jacobi polynomials pﬁf"ﬂ)(x) are normalized by
()
| oD@ W) = G

The formal expansion of f € L, [~1,1] corresponding to p(a’ﬂ) x) IS
Wa s k

400
2) ~ S an () (@), @ € [-1,1],
k=0
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where

/ fa We () dar

The partial sum S,,(f, z) for a given n is

=S a(Hp (@) e € [-1,1],
k=0
and for an integer b > 0 the Riesz means Rﬁf"ﬂ)’b(f) are

e
0<k<n

A K-functional K (O‘ﬂ)( f,t)p(see [13]) corresponding to the differential operator
P, 3(D) is defined by

K@B)(f 1), = inf
(72} geCQ[—l,l],Pa,ﬁ(D)geL“';Vaﬁ[—1,1]

(1S = gllp.w., 5+t Pa,s(D)gllpw. 5),t > 0,
where P, 3(D)’g(z) is given in such a way that P, 3(D)° = P, g(D), P, (D) =
Po,(D)(Pas(D)y™1), and

1 } 1
[ PastDYig(ape e Waplaldo = [ gla) Pas DY (@0 Wor (o)

hold for any pﬁf"ﬂ)(x), k=0,1,2,---. Then, Z. Ditzian showed that (see [14])

IRCOLF) = Fllpwo, ~ EOO(f, n72),, f € LP[-1,1].

For the needs of constructing zonal translation operators in the next paragraph
we give here an upper estimate of convergence rate of Rff"ﬂ)’b(f) in case of (a, B) #
(0,0).

Lemma 3.1. LetfeLp ;1< p < +oo, b> maz(a+3,8+3).a,8>
—1l,and ao+ 3 > —1. Then, there is a constant C'(b, «, 3) > 0, which depends only
on b, «, and 3, such that

IR D) p Wy < OO, v, B Fllpivi s

Proof. See [13, Theorem A].
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Lemma 3.2. Suppose g € C?*[-1,1],1 < p < +o0, b > maz(a+ 3,8+
3),a, 8> —1, and o + 3 > —1. Then we have

o 1
IRE249) = gllpavs = O(=5 ) I1Pap(D)glpave

Proof.

k(k+a+pB+1)7b
REDY RN g) —g)a) = Y |1~ a
0§k<n[ n(n—l—a—i—ﬁ—i—l)}
(R (g) — g)pi (@)

k(k+a+B+1)70
2 [1_n(n+a+ﬁ+1)}

0<k<n
k(k+a+B+1)70
X<P_nm+a+ﬁ+n}_0
<ai(g)p" ()
B k(k+a+B+1)70
= 2 1_nm+a+ﬁ+1ﬂ

0<k<n

xzb:(—l)i (é)(k(k—i—a—i—ﬁ—i—l))i

nn+a+p+1)

xag(9)p\™""(x)

" /b 1 i
:Z<z )(n(n+a+ﬁ+1)>

k(k+a+B+1)7
8 Z 1_n(n+a+ﬁ+1)}

0<k<n
xa(g) ( —k(k+a+p+ 1)) pgﬁa’ﬂ)(x).
On the other hand, by

Pos(D) (@) = (= k(k+ a+ 5+ 1) i) (2),

we have
b

RDYREPIE(g) — g)(2) = Z: (lz) ) <n(n + al—i— 8+ 1)>Z

X Pa,s(D) R (g, ).




Zonal Translation Approximation 97
By the definition of P, (D)’ one has

Py s(D)' R (g, 2) = RIOP(P, 5(D)'g, ).
Since

RisDNREDNg), 2) = REOYRGDg), ),
we have

R RGO g), o) — RS (R g), 2)
= (RED RN g), )~ RigD Mg, )

+ (R g,0) = R (RGO g), )

b

= (i’ ) Pas(D) RSP (g, ) ( 1

— (m(m+a+8+1)

_ 1 )
(m+1)(m+a+5+2)

-3 (4R 10 )

Recalling that for p,, € P, there exists the Bernstein type inequality (see [15])

1Pas(D)pnllpwe s < Clov, B0 [pallp.w, s

where C(«, 3) > 0 is a constant depending only on « and 3. Hence, by Lemma
3.1 we have

1 Pas (DY RGP (9) p iy = || Pa,g(D)RS D (P (D)~ 9)lpav
= O(m?)||R P (Pas(D) " 9) s
= O(m* )| R (Pa,(D)g) lpw. s

= O(m*")||Pas(D)gllpw.s-

Therefore,

IRV REDY(g)) — REPREA ) I,

_o( )HPM( )9llpWe s
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In a similar way, one has

a, o (e ,b
IRV R (g)) — REDYREL (9) I

—0( )HPag( )9llp,We 5

Hence,

ZHR(“‘ Y(R&D(g)) — REEVRE (9)lpwv

:NETOOZHRW "R g) = R R @) v,

N

1
_ Ii § —) P, 3(D
O(N_lgloom nm3 |Pas (D)9l

_0( )HPag( )9llp, W5

Consequently,

IR (g) = gllpw., , < |REDRD(g)) — RED (g, w.
| REDPRED(g)) — gllpw,
< HR(O"ﬂ)’b(R(a’ﬂ)’b(g)) — R (),

+HZ ROV REDYg)) — REVRE (9)))

+(R§$‘;3’ (RED9) = ) lpw s
< rrR<aﬂ>”’<R<aﬂ> (9)) = R b(g) [l s

+ZHR(°“ PR (g)) — RSB (9))

+HR§§“’+1’ (BYL(9) = gllpav.
Lemma 3.1 and the density of polynomials in L{jva 5 immediately yield
a,3),b a,3),b a,3),b a,3),b a,
IR RN (9) = glpws < 1RGN REE(9) = BYE(9)llpav

,8),b
HIRGD(9) = gllpw s — 0 (N — +o00).
Which allows

B
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IR D (g) = gllpw,s < IREPHUREDHg) = REDg) w4
+ Z 1RGP (RDg))

—Rﬁg<M$3<mumﬁ

O( | Po,a( n)Zg”p Wa,6>

Lemma 3.3. Let f € Ly, .1 < p< 400, b> maz(a + 18+4),a,8>
—l,and o + 8 > —1. Then there exists a constant C' > 0 such that

o C
HR% ﬂ)’b(f) - f”p7WQ,5 < n2 E : kEk(f)pvwa,ﬁ"
0<k<n

where E,,(f)pw, ;= pigﬂ 17 = ullp.we, o
n n

Proof. By Lemma 3.1 and Lemma 3.2 we know that for any P, g(D)g € L%/a ;

IRSDVf) = Flpwas < MRS = 9)llpawi s
IR (9) = gllpwe s + 11 = gllpw, s

HPocﬂ( )QHP Wa,@‘)
n2

O(I1f = gllpwe. s +

Which allows

IRCADE(f) = fllpwa s = O(K P (f,n72),).

Since (see [13, Theorem 5.4])

K(avﬂ)(f7 n_2)p S Cn_2 Z kEk‘(f)vaa,ﬁ’
0<k<n

Lemma 3.3 is therefore deduced.

4, CONSTRUCTING OF ZONAL TRANSLATION OPERATORS

Choosing an orthonormal basis {Yl gik=1,2--- d]} for each H}, then we
know that for any =z € [—1,1],¢ € LW 1] and any given integer N > 0
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d? (4-1,2-1)0
Yik(z) = (%_1’%1_1)’b(¢)(l) /S RN+1 (¢, - &)Y (&) dpg(§),

wgR N1

k=1,2--,d% 1=0,1,2,--

. 4-1,4-1)b
Taking Ry (¢,z) = B¢y 2 (6, 2) and f(1, k) = [o0 Fu)Vip(u)dptg(w),
then for z € S4, f € L'(S9), one has

N df
ZZVN (I, k)Y k()
=0 k=1
N df £
Vn (), k) ——==—— [ Ry(¢,2-&)Yir(&)duy(€)
Z;kz VIR Js HeS

T Z/quNfum W)

« / RN<¢,x-f>m<f>duq<£>

N

-y L Z/Squ,x&

1=0 WqRN

<[ vt umk(fs)w Jag (1)) (€

= — Rn(¢,z-&
2 a0 fu oo

< [ vt 4 € g () g€

S o Vi (Ve () E)d()
DT /s )

Since Ry (¢, z - §)Yi(Vn(f), &) isin 112, for a given & € S7, Lemma 2.1 makes

N

dq
Vn(f, z) = . aeRN (0, 2 - )Y (VN (f), E).
(f,) ;RN(¢)(Z)§Z€;6 (6,2 - Yi(VN(f).€)

The above equation reminds us to define the following zonal translation operators
N

Myg(f,2) =) ==L Zagqﬁ OYi(Va(f),€), f € LP(89), € S9.

=0 BN ( ) eec
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Theorem 2.2. Let f € LP(89),¢ € L, ,1 < p < +oo. If é(1) # 0 holds
for any nonnegative integer [, and there exist constant number N 4, oy, such that
N, < 2N < ag6;". Then there exists a constant C' > 0 such that

1 [VN]
1My5(F) = Fllpse < (55 2 (b + DB pusr
k=0
é,q

oy w1 fllp,sa
= qN2 P E kEk(¢)p,Wq>v
0<k<N+1

N (q9)2 p g+1
b @20 Pl s,
where ay? = 3 <

1 -1
I(14+q—1) sy P )
=0 (1- i) 40

1
+

Proof. By Holder inequality we have
My olf.2) = Vw(h )| < 3 a Z (Vi (), €)|
gec
x| R ( ¢,w-£) - ¢(w-£)|

< (ZadRN((Z%UUf) —¢(x- f)|p>

el

S =

'B\l._.

dl v
Yi(Var(£). ) )
lzg Rn@)

By Lemma 2.1 we know 3¢ < C. Therefore, using Lemma 2.1 again, one has
y A; 9

Ay = (Zag

el

(o

el

N
p>p/
/

p)i

q

Y
Zo: (l)

q

C(ZAg S = L), 9)

cec R (6)(1)

N
d}
< C /\71}/ V; , L p’,59-
< ;0 o0 1(VN () 2)llprs

IN

1
Since p;q V) = <M> *pi*™ (), we have

Wq

_ B I(l+qg—1) \b- ot
Bagn= 3o (- rDveg) COr @),




102 Sheng Baohuai, Wang Jianli and Zhou Songping

Which allows

= I(l+qg—1) \b-
Ev@OO= (- mrparga) 0O

Thus, there exists constant number C > 0 such that

N dq
Ay <C l 1YV (), @)l 50-
Z;(l_ IRV )

(N+1)(N +q)

Furthermore,

ViV ().a) = (Vi) 5@
- ff_i VN (fompf ™ (@ - ) dpg(n).

The Holder inequality yields

d? q+1
< — VN ()lp,sa !p
Wq
1

<c dl HprSq<wq 1/ |pq+1 )|p/Wq(x)dx>p

Wq

Yi(Vn(f), @)

q

d g+1
< Cw—l(wq— D 1 v, | s
q

Thus,

2 1

17 w 17 p ,
AN<CZ Dopn W lowi_yp
)’ 16|
N+ 1)(N +q)
1
= Cw;_la?vqufup,sq,

and

1My .6(f) =V (F)llp.sa

<CZa§</

el

S =

1

7€)~ ¢<x-5>1pduq<w>> o1 s

<O a ( [ st - ¢<w>1”wq<w>dx> “g-108 s

el
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By Lemma 2.1 we know }_ a¢ = 1. Hence, Lemma 3.3 makes
gec

®,q

A Wo—1
M o(f) = Vi (Dllp.se < CG= Y 0 BER(S)pw, | fllp,se-
0<k<N+1

It follows that

IMn6(f) = fllp.sa < IVN(F) = fllp.sa + [1Muo(f) = VN (F)llp.se

| VA
< C(N—+1 % (k+ 1) Ex(f)p,s9
é,q
[0 Wg—
+ T Y Bl )-

0<k<N+1
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