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LATTICE OPERATIONS OF POSITIVE BILINEAR MAPPINGS
Rusen Yilmaz

Abstract. In this paper we establish extension theorems for additive mappings
p: AT x BT +— CT, where A, B are Riesz spaces (lattice ordered spaces
or vector lattices) and C' is an order complete Riesz space, to the whole of
A x B, thereby extending well-known results for additive mappings between
Riesz spaces. We prove, in particular, that when A, B and C' are order
complete Riesz spaces, the ordered vector space B,(A x B, () of all order
bounded bilinear mappings has the structure of a lattice space.

1. INTRODUCTION

The extension theory of positive operators on a Riesz space has been well-
documented; see, for example, the book by Aliprantis and Burkinshaw [1]. It
is well-known that the ordered vector space L,(E, F') of all order bounded linear
mappings of a Riesz space F into an order complete Riesz space F' has the structure
of a lattice space. This important result was first proved by Riesz [5] for the special
case F' = IR, and later extended to the general setting by Kantorovic [2, 3]. In this
paper we consider order bounded bilinear mappings ¢ : A x B — C, where A, B
and C are Riesz spaces. In §§2 and 3 we establish extension theorems for additive
mappings ¢ : AT x BT — C to the whole of A x B. In particular, we prove in §3
that (o may be extended uniquely to an order bounded bilinear mapping on A x B.
This enables us to define lattice operations on the space By(A x B,C) when A, B
and C' are order complete Riesz spaces.

For the elementary theory of Riesz space and terminology not explained here
we refer to [1, 4].

2. QUASI-BILINEAR MAPPINGS

Definition 2.1. Let A, B and C' be ordered vector spaces.
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(i) A mapping ¢ : Ax B — C is said to be positive (in notations ¢ > 0 or ¢ < 0)
whenever p(z,y) € C (ie., p(z,y) > 0) holds for all (z,y) € AT x B*.

(ii) A mapping ¢ : AT x BT +— C7 is said to be additive whenever

o +y,2) =¢(x,2) + oy, 2) and oz, w+2) = (x,w)+ p(z, 2)

hold for all z,y € AT and w, z € B™.

(iii) A mapping ¢ : AT x B+ C (respectively ¢ : A x BT — () is said to be
a right (respectively left) quasi-bilinear mapping if it is linear in the second
variable (first variable) and additive in the first (second) or, equivalently,

V(T +y, \u+v) = Mp(z,u) + Y (z,v) + My, u) + ¥ (y, v)
(p(Az +y,u+v) = Ap(z,u) + Ap(z,v) + (Y, u) + ¢(y,v))

forall N € IR, z,y € AT and u,v € B (z,y € A and u,v € B™).

The collection of all right (left) quasi-bilinear mappings of AT x B into C
(respectively A x BT into C) will be denoted by QB(A™ x B, () (respectively
OB(A x BT, (). Evidently, QB(A™ x B, C) (respectively OB(A x B*,(C)) is
an ordered vector space under the ordering, for all x € AT and y € BT, 1 > ¢
if and only if p1(z,y) > @a(z, y).

In this paper we shall concentrate on right quasi-bilinear mappings; similar
results hold for left quasi-bilinear mappings ([6]).

The following result follows almost immediately from the definition.

Lemma 2.2. Let A, B and C be ordered vector spaces. If o : AT x Bt s CF
is an additive mapping, then (z,y) < (a,b) in AT x BT implies ¢(z,y) < ¢(a,b)
in Ct.

Lemma 2.3. Let A, B and C be Riesz spaces, with C order complete. If
¢ : AT x BT+ C7 is additive, then ¢ is positive homogeneous in both variables;
that is, o(x, \y) = Ap(z,y) and p(Az,y) = Ap(x,y) for all X > 0 and (z,y) €
AT x BT,

Proof. The result is trivial for A = 0, and so we assume that A > 0. We shall
only prove that ¢(z, \y) = A\p(z,y) for all A > 0, (x,y) € AT x B*; the second
equation can be established similarly. If X is rational, then A = g for some positive
integers p, ¢ > 0. By the additivity of ¢,

¢(a,pb) =pp(a,b) and  ¢(a,b) = ¢(a, Q(g)) = qp(a, g),

which implies that p(a, Ab) = Ap(a, b) for all positive rationals \.
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If A is irrational, then choose two sequences of rational numbers {¢, } and {n,,}
such that 0 < €, T Aandn, | A. Given a € AT it follows from e,b < \b <
nnb in BT that (a,€,b) < (a,\b) < (a,npb) in AT x BT for all a € AT. By
Lemma 2.2, ¢(a, €,b) < v(a, Ab) < ¢(a,n,b), and so

enp(a,b) < p(a, Ab) < nne(a,b) forn=1,2,....

Moreover, €,p(a,b) T Ap(a,b) and n,p(a,b) | Ap(a,b) in Ct. Tt follows that
Ao(a,b) < p(a, Ab). Since p(a,b) > 0 in C and C is Archimedean (note that
every order complete Riesz space is Archimedean), it follows from (7, —€,) | 0
and the inequalities

0< ‘P(au )‘b) - )“‘P(av b) < ‘P(av )‘b) - en@(av b) < (nn - en)(p(a, b)

that ¢(a, A\b) = A¢(a, b), as required.

Similarly we can show that p(Aa,b) = A¢(a,b), for all A > 0 and (a,b) €
A* x BT. This proves that an additive mapping ¢ is positive homogeneous from
AT x BT into CT.

Theorem 2.4. Let A, B and C be Riesz spaces, with C order complete. If
¢ : AT x BT — OV is an additive mapping, then o extends uniquely to a positive
right quasi-bilinear mapping, for all v € AT and y € B,

@: A" x B C suchthat @(z,y) = p(z,y") — oz, y7).
Proof. We first observe that if y = u — v with u,v € BT, then

oz, y") — e(z,y7) = ¢(z,u) — p(z,v)

for x € AT, Indeed, it follows from y = y* —y~ =u—v that y™ +v =u+y~,
and so, by the additivity of ¢ on AT x BT,

o(x,y") + oz, v) = oz, y" +v) = p(z,u+y~) = p(z,u) + o(z,y7),

from which it follows that (z,y*) — o(z,y7) = p(z,u) — ¢(z,v). Therefore,
since every y € A has at least one decomposition by the properties of Riesz spaces,
if we define

G(x,y) = p(x,u) — p(x,v) ((z,y) € AT x B),

where y = u—v (u,v € BT), then @(x,y) depends only on (z,y) in AT x B and
not on the particular decomposition of (z,y). Thus ¢ is well-defined on AT x B.
Moreover, ¢(x,y) = ¢(x,y) holds for every (z,y) € A" x BT, and so ¢ :
AT x B+ C is a positive mapping.
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We now show that ¢ is additive on AT x B. To see this, let 71,70 € AT and
y € B. Then (z1 + z2,y) = (1 + 22,47 —y~) in AT x B, and so, it follows
from the additivity of ¢ on AT x BT in the first variable that

@(‘%‘1 + x9, y) - @(‘%‘17 y) + @(‘%‘27 y)

Similarly we see that ¢(z,y + 2) = ¢(z,y) + ¢(z, 2) as (z,y+ 2) = (z, (y" +
2= (y"+27))in AT x Bforallz € A" and y, 2 € B.

For the homogeneity of @ on A" x B, let A € IR, v € AT and y € B. Then
(x, \y) = (z, (A\y) T — (\y)~) holds in AT x B. If X > 0, then we have (x, \y) =
(z,\y™ — Ay~) in AT x B. Since ¢ is positive homogeneous by Lemma 2.3,

Gz, My) = oz, ™) — oz, Ay™) = dp(z,y™) — Ap(z,y7) = Ap(x, y).

If A <0, then =\ >0, and so (A\y)™ = (=\)y~ and (\y)~ = (=A\)y". Hence
(z,\y) = (z,(=N)y~ — (=A)y™"), and so since ¢ is positive homogeneous by
Lemma 2.3,

Gz, Xy) = o(z, (=N)y ™) — oz, (=N)y") = Me(z,y") — oz, y7)) = A@(z,y).

This proves that ¢ is homogeneous on A™ x B in the second variable.

Similarly it can be seen that ¢ is positive homogeneous on A* x B in the first
variable.

So far, we have proved that ¢ is a positive right quasi-bilinear mapping from
AT x B into C. Finally, it remains to show that ¢ is unique. Assume that v is
another right quasi-bilinear mapping from A* x B into C' which extends ¢; that
is, ¥(z,y) = ¢(z,y) for all (x,y) € AT x BT. By the decomposition property of
Riesz spaces, given y € B, there exist u and v in BT such that y = v — v. Hence
Y(x,y) = P(z,u) =z, v) = p(z,u) —p(x,v) = §(z,y) for all (z,y) € AT x B,
as required.

Remark 2.5. Let A, B and C be Riesz spaces, with C' order complete. If
@ : AT x BT +— C7 is an additive mapping in both variables, then the left quasi-
bilinear mapping ¢ : A x BT — C defined by (=, y) = p(zt,y) — p(z~,y) for
all z € A and y € B™ is the unique extension of (.

3. ORDER BOUNDED BILINEAR MAPPINGS

Definition 3.1. Let A, B and C be ordered vector spaces. A subset D of
A x B is called order bounded if there exist (a,b) and (&, b) in A x B such that
(a,b) < (x,y) < (a,b) for all (x,y) € D. A bilinear mapping ¢ : A x B — C
is said to be order bounded if ¢ maps order bounded subsets of A x B onto order
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bounded subsets of C. In other words, ¢ : A x B — (' is order bounded if

there exist u,v € C such that u < ¢(z,y) < v for all (z,y) € A x B satistying
(a,b) < (z y) (a, b) for some (a,b), (a,b) € A x B.

The set of all order bounded bilinear mappings of B(A x B, C') will be denoted
by By(A x B,C). It is not difficult to see that By,(A x B, (') is an ordered linear
subspace of B(A x B,C). In this section we show that, for an order complete
Riesz space C, By(A x B,C) is an order complete Riesz space. We start with the
following lemma.

Lemma 3.2. If A, B and C are Riesz spaces, then every positive bilinear
mapping ¢ : A x B — C' is order bounded.

Proof. Let D an order bounded subset of A x B; that is, there exists (u,v)
in AT x BT such that (—u, —v) < (z,y) < (u,v) in A x B for all (z,y) € D.
It follows from (z + u,y +v) > (0,0) and (v — z,v —y) > (0,0) that p(x,y) +
o(z,v)+o(u, y)+e(u,v) > 0and p(u,v)—p(u, y)—p(x,v)+e(z,y) > 0, and so
—p(u,v) < @(z,y) in C. Similarly, from (u—=z y—l—v) (0,0) and (z+u, v—y) >
(0,0), we see that o(x,y) < ¢(u,v) in C. Hence —¢(u,v) < p(z,y) < ¢(u,v) in
C, or, equivalently, since C' is a Riesz space, |¢(z,y)| < ¢(u,v) in C, as required.

Theorem 3.3. [Extension Theorem] Let A, B and C be Riesz spaces, with C
order complete. If ¢ : AT x BT — C7T is an additive mapping, then ¢ extends
uniquely to a positive bilinear mapping ¢ : A x B +— C such that p(z,y) =
oz, yt) — @iz, y~) for all v € A and y € B, where @, is the unique positive
left quasi-bilinear mapping from A x B into C, as given in Remark 2.5.

Proof.  We first show that ¢ is unambiguously defined on A x B. For this
reason, suppose that y = u — v with u,v € BT. It follows from (z,y" +v) =
(x,u+y~)in A x BT that ¢i(z,y1) — @i(z,y") = ¢1(z,u) — ¢;(z,v). Hence,
since every y € B has at least one decomposition y = u — v with u,v € BT, if we
define o(z,y) = ¢i1(z, u) — @i(x, v), then p(x, y) depends only on (z,y) in A x B;
not on the particular decomposition of (x, y).

By repeating the same arguments as the ones used to prove the extension theorem
(Theorem 2.4), it follows from the left quasi-bilinearity of @; on AT x B that ¢ is
bilinear. Moreover, ¢ is positive since ¢; on AT x BT is positive.

Finally, for the uniqueness of (, assume that ¢ is another bilinear mapping from
A x B into C which extends ¢; that is, p(z,y) = ¢(z,y) for all (z,y) € AT x BT,
Givenx € Aand y € BT, there existu,v € AT andw, 2 € B' such that z = u—v
and y = w — z. Hence
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‘Z(xu y) = (E(’U,, w) + (E(’U, Z) - (E(’U, ’U)) - (E(’U,, z)
= (1w, w) — @i(v,w)) = (Gi(u, z) — @i(v, 2))
= ¢(r,w) — ¢z, 2) = p(z,y)

for all (z,y) € A x B, which shows that ¢ = ¢, as required.

Theorem 3.4. Let A, B and C be Riesz spaces, with C order complete. A
bilinear mapping v : Ax B +— C' is order bounded if and only if there exist positive
bilinear mappings ¢ 1, s : A X B +— C such that ¢ = p1 — 2.

Proof. Suppose first that p = @1 — 9, where ¢ and o are positive bilinear
mappings. Since (1 and 9 are order bounded by Lemma 3.2, ¢ is order bounded.

Conversely, suppose that ¢ is an order bounded bilinear mapping from A x B
into C. Then, for x € A and y € B, the set

{le(w, 0)]: =2 <u <@, —y <v <y}

is an order bounded subset of CT; in particular, the set {¢(a,b): 0 < a < x,0 <

b <y} is an order bounded subset of C*. Hence \/o<q<x ©(a, b) exists in C since
0<b<y
C is order complete. If we set

b, y) =\ olab),
0<a<zx
0<b<y
then it is clear that ¢)(x,y) > 0 in C for all (z,y) > (0,0) in A x B.
We show that v is additive on AT x BT. If a,b € A and ¢ € B satisfy
0<a<z, 0<b<ymAand0<c<zinB,then0<a+b<z+yinA,
and so it follows from

pla,c)+pb,c)=pla+bo)< \/  ouv)=y@+y,2)
0<u<z+y
0<v<z

that ¢ (z, z) + ¥ (y, 2) < Y(x + y, 2).

On the other hand, if a € AT and b € BT satisfy 0 < a <z +yin A and 0 <
b < z in B, then there exist a; and as in A such that 0 < a1 < z, 0 < ay <
y and a; + as = a, by the decomposition property of Riesz spaces (see, e.g., [1,
Theorem 1.9]). Hence

QO(G,, b) = gp(a’lv b) + QO(G,Q, b) < \/ QO(’U,l, ’U) + \/ (P('U;27 ’U)
0<u;1 <z 0<u2<y
0<v<z 0<v<z

- ¢($a Z) + 1#(2/7 z)v
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from which it follows that \/o<q<zty @(z + ¥y, 2) < ¥(z,2) + ¥(y, 2); that is,
0<b<z

b+, 2) < 0, 2) + D(y, 2). Therefore 1z +y, 2) = ¥(, 2) + ¥ (y, 2).

Similarly we can show that ¢ (x, y+2) = ¢(z,y) +¢(x, 2) for all z € AT and
y,z € BT. This proves that ¢ is an additive mapping from A" x BT into C". By
Theorem 3.3, there exists a unique positive bilinear mapping; say 1, from A x B
into C' which extends ¢, i.e., ¢1(z,y) = ¢(z,y) for all (z,y) € AT x BT. Write
w9 = 1 — . Clearly ¢y defines a bilinear mapping on A X B, (1 and ¢ are in
the space By (A x B, C) of all order bounded bilinear mappings of ¢ : Ax B — C.
Thus, by the definition of v,

o1(z,y) = Y(7,y) > p(r,y), andso a(x,y) = ¢1(2,y) — (z,y) >0

for all (z,y) € AT x BT. Hence yy > 0; that is, @9 is positive, and so is order
bounded by Lemma 3.2. Therefore we have ¢ = ¢ — o with ¢1,p2 > 0 in
By(A x B, C), as required.

Theorem 3.5. Let A, B and C be Riesz spaces, with C order complete, and
let By(A x B, C) be the space of all order bounded bilinear mappings of ¢ : Ax B
into C. If order in By(A x B, C) is defined by

01> 2 ifandonly if pi(z,y) > 2(x,y)

Jor all (z,y) € AT x B*, then By(A x B, C) becomes an order complete Riesz
space.

Proof. We first prove that B,(A x B, C) is a Riesz space. In order to do this,
in the view of the identities in Riesz spaces

eV =(p—9)T+¢ and oA =—((—p)V(-v)),

it is enough to show that ™ exists and belongs to By(A x B, C) for every ¢ €
By(Ax B, C). To this end, let ¢ € By(A x B, C). As in the proof of the preceding
theorem, if we define

VAT x BT C by d(z,y)= \/ ¢(ab)
0<a<zx
0<b<y

for all (z,y) € A" x BT, then we see that ¢ is an additive mapping. By the
extension theorem (Theorem 3.3), ¢ defines a positive bilinear mapping from A x B
into C' (more precisely, ¢ extends uniquely to a positive bilinear mapping, again
denoted by ¢, from A x B into ().

We have to show that 1 is the least upper bound of ¢ and 0. Clearly b > 0
and ¢ > ¢ since ¥ (z,y) > p(x,y) for all (z,y) € AT x B*. Hence ¢ > ¢ V 0;
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that is, ¢ is any other upper bound of ¢ and 0 in By(A x B, C). Suppose that ¢’ is
an upper bound of ¢ and 0 in By(A x B,C). Then ¢'(z,y) > ¢'(a,b) > ¢(a,b)
for all (0,0) < (x,y) < (a,b) in A x B. It follows that

¢/($a y) > \/ (P(av b) = w(xu y)

0<a<zx
0<b<y
for all (z,y) € AT x BT, and so ¢’ > 1. Therefore v is the least upper bound of
¢ and 0; that is, 1) = ¢ V 0 in By(A x B, C). In the usual notation, 1) = ¢™ holds
in By(A x B,C'). This shows that o™ € B,(A x B, C) for each ¢ € By(A x B,C)
and satisfies ¢ (z,y) = Vo<a<z ¢(a, ) for all (z,y) € AT x BT, as required.
0<b<y

Finally we establish that B,(A x B, C) is order complete, as follows.

Suppose that 0 < ¢, T< ¢ holds in By(A x B,C). We have to show that
V., ¢ exists in By(A x B,C). To this end, let ¢(z,y) = \, ¢-(x,y) for all
(z,y) € AT x B*. Clearly ¢(z,y) exists as an element of C* since C is order
complete. For z,y € A" and z € BT, the nets {p,(x,2)} and {¢-(y,2)} are
upwards directed in C and it follows from the bilinearity of o, for all 7 and the
properties of Riesz spaces (see, e.g., [4, Theorem 15.8(iii)]) that

px+y,2 \/%wz +\/<p7y, p(x,2) + ¢(y, 2)-

Similarly we can show that o(x,y + 2) = ¢(z,y) + ¢(x, 2) for all z € AT
and y, 2 € BT. This shows that ¢ is an additive mapping from A" x BT into C"
in both variables. Hence, by the extension theorem (Theorem 3.3), there exists a
unique positive bilinear mapping ¢ from A x B into C' which extends . It follows
that ¢(z,y) = \/, ¢-(z,y) for all (z,y) € AT x BT since ¢(z,y) = ¢(x,y) for
all (z,y) € AT x BT. Therefore ¢, 1 % holds in By(A x B, C); that is, 1 is the
desired supremum of the net {¢, } satisfying 0 < ¢, 1< ¢¢ in By(A x B, C). This
proves that B,(A x B, C) is an order complete Riesz space.

Considering Theorem 2.4 and following the proofs of Theorem 2.5, the following
can be established.

Remark 3.6. If A, B and C be Riesz spaces, with C' order complete, then
the space of all right quasi-bilinear mappings (QB), (A" x B, C) and the space of
all left quasi-bilinear mappings (QB),(A x BT, C) are both order complete Riesz
spaces.

We observe that B,(A x B,C) C (9B),(A" x B,C) and By(A x B,C)
(OB),(A x BT,C), and so Bb(A x B,C) C (9B), (A+ x B,C)N(Q ) (A
BT, C). Hence Bb(AxB C) is an order complete Riesz subspace of both (QB), (A™ x
B, () and (9B),(A x BT, C).

-
X
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We are now in a position to express the lattice operations of the space Bj(A x
B,C).

Theorem 3.7. Let A, B and C be Riesz spaces, with C' order complete. For
every ¢ € By(A x B,C) and (x,y) € AT x BT, the following statements hold.

(1) ¢*(2,9) = Vo<azz 9(a,b).
0<b<y

(2) ¢ (z,9) = \/OSQSJJ —p(a,b).
0<b<y

(3) le(z,y)| < [ol(z,y).
(4) le(z,y)| < [ol(|zl, ly) for all (z,y) € A x B.

(5) ‘@‘(xv y) - \/||(;||§a: (P(av b) - \/||Z||§a: “P(av b)‘

Proof. We first note that ¢+ (and hence ¢~ and |p|) is well-defined in By( A x
B, C) since By(A x B, C) is an order complete Riesz space by Theorem 3.5.

(1) This is obvious since ¢ is the mapping 1) in the proof of Theorem 3.5.

(2) Follows from the fact that o~ = (—¢)™ in By(A x B, C) since By(A x B, C)
is a Riesz space.

(3) By the properties of Riesz spaces again, for all (z,y) € AT x BT, p(z,y) <
ot (z,y) <lel(z,y) and —p(z,y) < ¢~ (2,y) < |p|(z,y) holdin C. Hence
[p(z, y) = (o2, 9) V (—=p(z,9)) < |pl(z,y) for all (z,y) € AT x BT.

(4) Using the decomposition property of Riesz spaces, bilinearity of ¢ and (3),
for all x € A and y € B, we have

oz, )l < lel (@™, y )+l @™,y ) +Hel (@™, y ") +Hel (@™ y )l = lel(l=], lyl)-

(5) If la] < x in A and |b|] < y hold in B, then ¢(a,b) < |p(a,b)] <
lel(al, [b]) < |¢|(z,y) by (4) and the positivity of || in the Riesz space
By(A x B, C). It follows that

\/ ela,b) <lol(z,y) and \/ |p(a,b)| < |p|(z,y).
la|<z la|<z
|b] <y |b] <y

For the converse direction, we first observe that 0 < ¢y <z and 0 < ay < x
imply a; —ay < z and ag — a; < z, and so |a; — az| < x. Similarly 0 < b; <y
and 0 < by < y imply |by — bo| < y. It now follows from |p| = ¢ + ¢~ in
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By(A x B, C) that

lol(z,9) = ¢ (z,y) + ¢ (z,y)

0<u<z 0<w<z
0<v<y 0<2<y
= \/ QO(’U,,’U)—F \/ QO(—’U),Z)
0<u<z 0<w<z
0<v<y 0<z<y

IN
—
<
5
£
=
¥
<
5
|
&
&
¥
<
5
£
=
¥
<
5
|
&
(4
N2

+ \/ o(u —w, —2z)
0<u<Lz, 0wz

0<2<y
= \/ o(u—w,v+2)+ \/ o(u—w, —2z)
0<u<z, 0wz 0<u<z, 0wz
0<v<y, 0<z<y 0<z<y
- \/ QO(’U,—’U),’U—Z) < \/ @(a,b)ﬁ \/ \ap(a,b)\
0<u<z, 0<w<zx la|<z la|<z
Osvsy, Osz<y Ib|<y Ib|<y

Combining the above and preceding gives

lol(zy) =\ w(a,b)=\/ lpla,b)],

la|<z |a|<z
[bl<y [bl<y
as required.
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