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LATTICE OPERATIONS OF POSITIVE BILINEAR MAPPINGS

Rusen Yilmaz

Abstract. In this paper we establish extension theorems for additive mappings
ϕ : A+ × B+ �→ C+, where A, B are Riesz spaces (lattice ordered spaces
or vector lattices) and C is an order complete Riesz space, to the whole of
A × B, thereby extending well-known results for additive mappings between
Riesz spaces. We prove, in particular, that when A, B and C are order
complete Riesz spaces, the ordered vector space Bb(A × B, C) of all order
bounded bilinear mappings has the structure of a lattice space.

1. INTRODUCTION

The extension theory of positive operators on a Riesz space has been well-
documented; see, for example, the book by Aliprantis and Burkinshaw [1]. It
is well-known that the ordered vector space Lb(E, F ) of all order bounded linear
mappings of a Riesz space E into an order complete Riesz space F has the structure
of a lattice space. This important result was first proved by Riesz [5] for the special
case F = IR, and later extended to the general setting by Kantorovic [2, 3]. In this
paper we consider order bounded bilinear mappings ϕ : A × B �→ C, where A, B

and C are Riesz spaces. In §§2 and 3 we establish extension theorems for additive
mappings ϕ : A+×B+ �→ C+ to the whole of A×B. In particular, we prove in §3
that ϕ may be extended uniquely to an order bounded bilinear mapping on A × B.
This enables us to define lattice operations on the space Bb(A×B, C) when A, B

and C are order complete Riesz spaces.
For the elementary theory of Riesz space and terminology not explained here

we refer to [1, 4].

2. QUASI-BILINEAR MAPPINGS

Definition 2.1. Let A, B and C be ordered vector spaces.
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(i) A mapping ϕ : A×B �→ C is said to be positive (in notations ϕ ≥ 0 or ϕ ≤ 0)
whenever ϕ(x, y) ∈ C+ (i.e., ϕ(x, y) ≥ 0) holds for all (x, y) ∈ A+ × B+.

(ii) A mapping ϕ : A+ × B+ �→ C+ is said to be additive whenever

ϕ(x + y, z) = ϕ(x, z) + ϕ(y, z) and ϕ(x, w + z) = ϕ(x, w) + ϕ(x, z)

hold for all x, y ∈ A+ and w, z ∈ B+.

(iii) A mapping ψ : A+ × B �→ C (respectively ϕ : A × B+ �→ C) is said to be
a right (respectively left) quasi-bilinear mapping if it is linear in the second
variable (first variable) and additive in the first (second) or, equivalently,

ψ(x + y, λu + v) = λψ(x, u)+ ψ(x, v)+ λψ(y, u)+ ψ(y, v)

(ϕ(λx + y, u + v) = λϕ(x, u) + λϕ(x, v) + ϕ(y, u) + ϕ(y, v))

for all λ ∈ IR, x, y ∈ A+ and u, v ∈ B (x, y ∈ A and u, v ∈ B+).
The collection of all right (left) quasi-bilinear mappings of A+ × B into C

(respectively A × B+ into C) will be denoted by QB(A+ × B, C) (respectively
QB(A × B+, C)). Evidently, QB(A+ × B, C) (respectively QB(A × B+, C)) is
an ordered vector space under the ordering, for all x ∈ A+ and y ∈ B+, ϕ1 ≥ ϕ2

if and only if ϕ1(x, y) ≥ ϕ2(x, y).
In this paper we shall concentrate on right quasi-bilinear mappings; similar

results hold for left quasi-bilinear mappings ([6]).
The following result follows almost immediately from the definition.

Lemma 2.2. Let A, B and C be ordered vector spaces. If ϕ : A+×B+ �→ C+

is an additive mapping, then (x, y) ≤ (a, b) in A+ ×B+ implies ϕ(x, y) ≤ ϕ(a, b)
in C+.

Lemma 2.3. Let A, B and C be Riesz spaces, with C order complete. If
ϕ : A+×B+ �→ C+ is additive, then ϕ is positive homogeneous in both variables;
that is, ϕ(x, λy) = λϕ(x, y) and ϕ(λx, y) = λϕ(x, y) for all λ ≥ 0 and (x, y) ∈
A+ × B+ .

Proof. The result is trivial for λ = 0, and so we assume that λ > 0. We shall
only prove that ϕ(x, λy) = λϕ(x, y) for all λ > 0, (x, y) ∈ A+ × B+; the second
equation can be established similarly. If λ is rational, then λ = p

q for some positive
integers p, q > 0. By the additivity of ϕ,

ϕ(a, pb) = pϕ(a, b) and ϕ(a, b) = ϕ(a, q(
b

q
)) = qϕ(a,

b

q
),

which implies that ϕ(a, λb) = λϕ(a, b) for all positive rationals λ.
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If λ is irrational, then choose two sequences of rational numbers {εn} and {ηn}
such that 0 ≤ εn ↑ λ and ηn ↓ λ. Given a ∈ A+ it follows from εnb ≤ λb ≤
ηnb in B+ that (a, εnb) ≤ (a, λb) ≤ (a, ηnb) in A+ × B+ for all a ∈ A+. By
Lemma 2.2, ϕ(a, εnb) ≤ ϕ(a, λb) ≤ ϕ(a, ηnb), and so

εnϕ(a, b) ≤ ϕ(a, λb) ≤ ηnϕ(a, b) for n = 1, 2, . . . .

Moreover, εnϕ(a, b) ↑ λϕ(a, b) and ηnϕ(a, b) ↓ λϕ(a, b) in C+. It follows that
λϕ(a, b) ≤ ϕ(a, λb). Since ϕ(a, b) ≥ 0 in C and C is Archimedean (note that
every order complete Riesz space is Archimedean), it follows from (ηn − εn) ↓ 0
and the inequalities

0 ≤ ϕ(a, λb)− λϕ(a, b) ≤ ϕ(a, λb)− εnϕ(a, b) ≤ (ηn − εn)ϕ(a, b)

that ϕ(a, λb) = λϕ(a, b), as required.
Similarly we can show that ϕ(λa, b) = λϕ(a, b), for all λ ≥ 0 and (a, b) ∈

A+ × B+. This proves that an additive mapping ϕ is positive homogeneous from
A+ × B+ into C+.

Theorem 2.4. Let A, B and C be Riesz spaces, with C order complete. If
ϕ : A+ ×B+ �→ C+ is an additive mapping, then ϕ extends uniquely to a positive
right quasi-bilinear mapping, for all x ∈ A + and y ∈ B,

ϕ̃ : A+ × B �→ C such that ϕ̃(x, y) = ϕ(x, y+) − ϕ(x, y−).

Proof. We first observe that if y = u − v with u, v ∈ B+, then

ϕ(x, y+) − ϕ(x, y−) = ϕ(x, u)− ϕ(x, v)

for x ∈ A+. Indeed, it follows from y = y+ − y− = u − v that y+ + v = u + y−,
and so, by the additivity of ϕ on A+ × B+,

ϕ(x, y+) + ϕ(x, v) = ϕ(x, y+ + v) = ϕ(x, u + y−) = ϕ(x, u) + ϕ(x, y−),

from which it follows that ϕ(x, y+) − ϕ(x, y−) = ϕ(x, u) − ϕ(x, v). Therefore,
since every y ∈ A has at least one decomposition by the properties of Riesz spaces,
if we define

ϕ̃(x, y) = ϕ(x, u)− ϕ(x, v) ((x, y) ∈ A+ × B),

where y = u− v (u, v ∈ B+), then ϕ̃(x, y) depends only on (x, y) in A+ ×B and
not on the particular decomposition of (x, y). Thus ϕ̃ is well-defined on A+ × B.
Moreover, ϕ̃(x, y) = ϕ(x, y) holds for every (x, y) ∈ A+ × B+, and so ϕ̃ :
A+ × B �→ C is a positive mapping.
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We now show that ϕ̃ is additive on A+ × B. To see this, let x1, x2 ∈ A+ and
y ∈ B. Then (x1 + x2, y) = (x1 + x2, y

+ − y−) in A+ × B, and so, it follows
from the additivity of ϕ on A+ × B+ in the first variable that

ϕ̃(x1 + x2, y) = ϕ̃(x1, y) + ϕ̃(x2, y).

Similarly we see that ϕ̃(x, y + z) = ϕ̃(x, y) + ϕ̃(x, z) as (x, y + z) = (x, (y+ +
z+) − (y− + z−)) in A+ × B for all x ∈ A+ and y, z ∈ B.

For the homogeneity of ϕ̃ on A+ × B, let λ ∈ IR, x ∈ A+ and y ∈ B. Then
(x, λy) = (x, (λy)+− (λy)−) holds in A+ ×B. If λ ≥ 0, then we have (x, λy) =
(x, λy+ − λy−) in A+ × B. Since ϕ is positive homogeneous by Lemma 2.3,

ϕ̃(x, λy) = ϕ(x, λy+) − ϕ(x, λy−) = λϕ(x, y+) − λϕ(x, y−) = λϕ̃(x, y).

If λ ≤ 0, then −λ ≥ 0, and so (λy)+ = (−λ)y− and (λy)− = (−λ)y+. Hence
(x, λy) = (x, (−λ)y− − (−λ)y+), and so since ϕ is positive homogeneous by
Lemma 2.3,

ϕ̃(x, λy) = ϕ(x, (−λ)y−)−ϕ(x, (−λ)y+) = λ(ϕ(x, y+)−ϕ(x, y−)) = λϕ̃(x, y).

This proves that ϕ̃ is homogeneous on A+ × B in the second variable.
Similarly it can be seen that ϕ̃ is positive homogeneous on A+ × B in the first

variable.
So far, we have proved that ϕ̃ is a positive right quasi-bilinear mapping from

A+ × B into C. Finally, it remains to show that ϕ̃ is unique. Assume that ψ is
another right quasi-bilinear mapping from A+ × B into C which extends ϕ; that
is, ψ(x, y) = ϕ(x, y) for all (x, y) ∈ A+ × B+. By the decomposition property of
Riesz spaces, given y ∈ B, there exist u and v in B+ such that y = u − v. Hence
ψ(x, y) = ψ(x, u)−ψ(x, v) = ϕ(x, u)−ϕ(x, v) = ϕ̃(x, y) for all (x, y) ∈ A+×B,
as required.

Remark 2.5. Let A, B and C be Riesz spaces, with C order complete. If
ϕ : A+ × B+ �→ C+ is an additive mapping in both variables, then the left quasi-
bilinear mapping ϕ̃ : A × B+ �→ C defined by ϕ̃(x, y) = ϕ(x+, y)− ϕ(x−, y) for
all x ∈ A and y ∈ B+ is the unique extension of ϕ.

3. ORDER BOUNDED BILINEAR MAPPINGS

Definition 3.1. Let A, B and C be ordered vector spaces. A subset D of
A × B is called order bounded if there exist (a, b) and (ã, b̃) in A × B such that
(a, b) ≤ (x, y) ≤ (ã, b̃) for all (x, y) ∈ D. A bilinear mapping ϕ : A × B �→ C

is said to be order bounded if ϕ maps order bounded subsets of A × B onto order
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bounded subsets of C. In other words, ϕ : A × B �→ C is order bounded if
there exist u, v ∈ C such that u ≤ ϕ(x, y) ≤ v for all (x, y) ∈ A × B satisfying
(a, b) ≤ (x, y) ≤ (ã, b̃) for some (a, b), (ã, b̃) ∈ A × B.

The set of all order bounded bilinear mappings of B(A×B, C) will be denoted
by Bb(A × B, C). It is not difficult to see that Bb(A × B, C) is an ordered linear
subspace of B(A × B, C). In this section we show that, for an order complete
Riesz space C, Bb(A × B, C) is an order complete Riesz space. We start with the
following lemma.

Lemma 3.2. If A, B and C are Riesz spaces, then every positive bilinear
mapping ϕ : A × B �→ C is order bounded.

Proof. Let D an order bounded subset of A × B; that is, there exists (u, v)
in A+ × B+ such that (−u,−v) ≤ (x, y) ≤ (u, v) in A × B for all (x, y) ∈ D.
It follows from (x + u, y + v) ≥ (0, 0) and (u − x, v − y) ≥ (0, 0) that ϕ(x, y) +
ϕ(x, v)+ϕ(u, y)+ϕ(u, v) ≥ 0 and ϕ(u, v)−ϕ(u, y)−ϕ(x, v)+ϕ(x, y)≥ 0, and so
−ϕ(u, v) ≤ ϕ(x, y) in C. Similarly, from (u−x, y+v) ≥ (0, 0) and (x+u, v−y) ≥
(0, 0), we see that ϕ(x, y) ≤ ϕ(u, v) in C. Hence −ϕ(u, v) ≤ ϕ(x, y) ≤ ϕ(u, v) in
C, or, equivalently, since C is a Riesz space, |ϕ(x, y)| ≤ ϕ(u, v) in C, as required.

Theorem 3.3. [Extension Theorem] Let A, B and C be Riesz spaces, with C

order complete. If ϕ : A+ × B+ �→ C+ is an additive mapping, then ϕ extends
uniquely to a positive bilinear mapping ϕ : A × B �→ C such that ϕ(x, y) =
ϕ̃l(x, y+) − ϕ̃l(x, y−) for all x ∈ A and y ∈ B, where ϕ̃l is the unique positive
left quasi-bilinear mapping from A × B + into C, as given in Remark 2.5.

Proof. We first show that ϕ is unambiguously defined on A × B. For this
reason, suppose that y = u − v with u, v ∈ B+. It follows from (x, y+ + v) =
(x, u + y−) in A × B+ that ϕ̃l(x, y+) − ϕ̃l(x, y−) = ϕ̃l(x, u) − ϕ̃l(x, v). Hence,
since every y ∈ B has at least one decomposition y = u− v with u, v ∈ B+, if we
define ϕ(x, y) = ϕ̃l(x, u)− ϕ̃l(x, v), then ϕ(x, y) depends only on (x, y) in A×B;
not on the particular decomposition of (x, y).

By repeating the same arguments as the ones used to prove the extension theorem
(Theorem 2.4), it follows from the left quasi-bilinearity of ϕ̃l on A+ × B that ϕ is
bilinear. Moreover, ϕ is positive since ϕ̃l on A+ × B+ is positive.

Finally, for the uniqueness of ϕ, assume that ϕ̃ is another bilinear mapping from
A×B into C which extends ϕ; that is, ϕ̃(x, y) = ϕ(x, y) for all (x, y) ∈ A+×B+.
Given x ∈ A and y ∈ B+, there exist u, v ∈ A+ and w, z ∈ B+ such that x = u−v
and y = w − z. Hence
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ϕ̃(x, y) = ϕ̃(u, w) + ϕ̃(v, z)− ϕ̃(v, w)− ϕ̃(u, z)

= ((ϕ̃l(u, w)− ϕ̃l(v, w))− (ϕ̃l(u, z)− ϕ̃l(v, z))

= ϕ(x, w)− ϕ(x, z) = ϕ(x, y)

for all (x, y) ∈ A × B, which shows that ϕ̃ = ϕ, as required.

Theorem 3.4. Let A, B and C be Riesz spaces, with C order complete. A
bilinear mapping ϕ : A×B �→ C is order bounded if and only if there exist positive
bilinear mappings ϕ1, ϕ2 : A × B �→ C such that ϕ = ϕ1 − ϕ2.

Proof. Suppose first that ϕ = ϕ1 − ϕ2, where ϕ1 and ϕ2 are positive bilinear
mappings. Since ϕ1 and ϕ2 are order bounded by Lemma 3.2, ϕ is order bounded.

Conversely, suppose that ϕ is an order bounded bilinear mapping from A × B
into C. Then, for x ∈ A and y ∈ B, the set

{|ϕ(u, v)| : −x ≤ u ≤ x,−y ≤ v ≤ y}
is an order bounded subset of C+; in particular, the set {ϕ(a, b) : 0 ≤ a ≤ x, 0 ≤
b ≤ y} is an order bounded subset of C+. Hence

∨
0≤a≤x
0≤b≤y

ϕ(a, b) exists in C since

C is order complete. If we set

ψ(x, y) =
∨

0≤a≤x
0≤b≤y

ϕ(a, b),

then it is clear that ψ(x, y) ≥ 0 in C for all (x, y) ≥ (0, 0) in A × B.
We show that ψ is additive on A+ × B+. If a, b ∈ A and c ∈ B satisfy

0 ≤ a ≤ x, 0 ≤ b ≤ y in A and 0 ≤ c ≤ z in B, then 0 ≤ a + b ≤ x + y in A,
and so it follows from

ϕ(a, c) + ϕ(b, c) = ϕ(a + b, c) ≤
∨

0≤u≤x+y
0≤v≤z

ϕ(u, v) = ψ(x + y, z)

that ψ(x, z) + ψ(y, z) ≤ ψ(x + y, z).
On the other hand, if a ∈ A+ and b ∈ B+ satisfy 0 ≤ a ≤ x + y in A and 0 ≤

b ≤ z in B, then there exist a1 and a2 in A such that 0 ≤ a1 ≤ x, 0 ≤ a2 ≤
y and a1 + a2 = a, by the decomposition property of Riesz spaces (see, e.g., [1,
Theorem 1.9]). Hence

ϕ(a, b) = ϕ(a1, b) + ϕ(a2, b) ≤
∨

0≤u1≤x
0≤v≤z

ϕ(u1, v) +
∨

0≤u2≤y
0≤v≤z

ϕ(u2, v)

= ψ(x, z) + ψ(y, z),



Lattice Operations of Positive Bilinear Mappings 45

from which it follows that
∨

0≤a≤x+y
0≤b≤z

ϕ(x + y, z) ≤ ψ(x, z) + ψ(y, z); that is,

ψ(x + y, z) ≤ ψ(x, z) + ψ(y, z). Therefore ψ(x + y, z) = ψ(x, z) + ψ(y, z).
Similarly we can show that ψ(x, y+ z) = ψ(x, y)+ψ(x, z) for all x ∈ A+ and

y, z ∈ B+. This proves that ψ is an additive mapping from A+ ×B+ into C+. By
Theorem 3.3, there exists a unique positive bilinear mapping; say ϕ1, from A × B

into C which extends ϕ, i.e., ϕ1(x, y) = ϕ(x, y) for all (x, y) ∈ A+ × B+ . Write
ϕ2 = ϕ1 − ϕ. Clearly ϕ2 defines a bilinear mapping on A × B, ϕ1 and ϕ are in
the space Bb(A×B, C) of all order bounded bilinear mappings of ϕ : A×B �→ C.
Thus, by the definition of ψ,

ϕ1(x, y) = ψ(x, y) ≥ ϕ(x, y), and so ϕ2(x, y) = ϕ1(x, y)− ϕ(x, y) ≥ 0

for all (x, y) ∈ A+ × B+. Hence ϕ2 ≥ 0; that is, ϕ2 is positive, and so is order
bounded by Lemma 3.2. Therefore we have ϕ = ϕ1 − ϕ2 with ϕ1, ϕ2 ≥ 0 in
Bb(A × B, C), as required.

Theorem 3.5. Let A, B and C be Riesz spaces, with C order complete, and
let Bb(A×B, C) be the space of all order bounded bilinear mappings of ϕ : A×B

into C. If order in Bb(A × B, C) is defined by

ϕ1 ≥ ϕ2 if and only if ϕ1(x, y) ≥ ϕ2(x, y)

for all (x, y) ∈ A+ × B+, then Bb(A × B, C) becomes an order complete Riesz
space.

Proof. We first prove that Bb(A× B, C) is a Riesz space. In order to do this,
in the view of the identities in Riesz spaces

ϕ ∨ ψ = (ϕ− ψ)+ + ψ and ϕ ∧ ψ = −((−ϕ) ∨ (−ψ)),

it is enough to show that ϕ+ exists and belongs to Bb(A × B, C) for every ϕ ∈
Bb(A×B, C). To this end, let ϕ ∈ Bb(A×B, C). As in the proof of the preceding
theorem, if we define

ψ : A+ × B+ �→ C by ψ(x, y) =
∨

0≤a≤x
0≤b≤y

ϕ(a, b)

for all (x, y) ∈ A+ × B+ , then we see that ψ is an additive mapping. By the
extension theorem (Theorem 3.3), ψ defines a positive bilinear mapping from A×B

into C (more precisely, ψ extends uniquely to a positive bilinear mapping, again
denoted by ψ, from A × B into C).

We have to show that ψ is the least upper bound of ϕ and 0. Clearly ψ ≥ 0
and ψ ≥ ϕ since ψ(x, y) ≥ ϕ(x, y) for all (x, y) ∈ A+ × B+ . Hence ψ ≥ ϕ ∨ 0;
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that is, ψ is any other upper bound of ϕ and 0 in Bb(A×B, C). Suppose that ψ′ is
an upper bound of ϕ and 0 in Bb(A × B, C). Then ψ′(x, y) ≥ ψ′(a, b) ≥ ϕ(a, b)
for all (0, 0) ≤ (x, y) ≤ (a, b) in A × B. It follows that

ψ′(x, y) ≥
∨

0≤a≤x
0≤b≤y

ϕ(a, b) = ψ(x, y)

for all (x, y) ∈ A+ × B+, and so ψ′ ≥ ψ. Therefore ψ is the least upper bound of
ϕ and 0; that is, ψ = ϕ ∨ 0 in Bb(A×B, C). In the usual notation, ψ = ϕ+ holds
in Bb(A×B, C). This shows that ϕ+ ∈ Bb(A×B, C) for each ϕ ∈ Bb(A×B, C)
and satisfies ϕ+(x, y) =

∨
0≤a≤x
0≤b≤y

ϕ(a, b) for all (x, y) ∈ A+ × B+, as required.

Finally we establish that Bb(A × B, C) is order complete, as follows.
Suppose that 0 ≤ ϕτ ↑≤ ϕ0 holds in Bb(A × B, C). We have to show that∨

τ ϕτ exists in Bb(A × B, C). To this end, let ϕ(x, y) =
∨

τ ϕτ (x, y) for all
(x, y) ∈ A+ × B+. Clearly ϕ(x, y) exists as an element of C+ since C is order
complete. For x, y ∈ A+ and z ∈ B+, the nets {ϕτ (x, z)} and {ϕτ (y, z)} are
upwards directed in C+ and it follows from the bilinearity of ϕτ for all τ and the
properties of Riesz spaces (see, e.g., [4, Theorem 15.8(iii)]) that

ϕ(x + y, z) =
∨
τ

ϕτ (x, z) +
∨
τ

ϕτ (y, z) = ϕ(x, z) + ϕ(y, z).

Similarly we can show that ϕ(x, y + z) = ϕ(x, y) + ϕ(x, z) for all x ∈ A+

and y, z ∈ B+. This shows that ϕ is an additive mapping from A+ × B+ into C+

in both variables. Hence, by the extension theorem (Theorem 3.3), there exists a
unique positive bilinear mapping ψ from A×B into C which extends ϕ. It follows
that ψ(x, y) =

∨
τ ϕτ (x, y) for all (x, y) ∈ A+ × B+ since ψ(x, y) = ϕ(x, y) for

all (x, y) ∈ A+ × B+. Therefore ϕτ ↑ ψ holds in Bb(A × B, C); that is, ψ is the
desired supremum of the net {ϕτ} satisfying 0 ≤ ϕτ ↑≤ ϕ0 in Bb(A×B, C). This
proves that Bb(A × B, C) is an order complete Riesz space.

Considering Theorem 2.4 and following the proofs of Theorem 2.5, the following
can be established.

Remark 3.6. If A, B and C be Riesz spaces, with C order complete, then
the space of all right quasi-bilinear mappings (QB)b(A

+ × B, C) and the space of
all left quasi-bilinear mappings (QB)b(A × B+, C) are both order complete Riesz
spaces.

We observe that Bb(A × B, C) ⊆ (QB)b(A
+ × B, C) and Bb(A × B, C) ⊆

(QB)b(A × B+, C), and so Bb(A × B, C) ⊆ (QB)b(A
+ × B, C) ∩ (QB)b(A ×

B+, C). Hence Bb(A×B, C) is an order complete Riesz subspace of both (QB)b(A
+×

B, C) and (QB)b(A × B+, C).
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We are now in a position to express the lattice operations of the space Bb(A×
B, C).

Theorem 3.7. Let A, B and C be Riesz spaces, with C order complete. For
every ϕ ∈ Bb(A × B, C) and (x, y) ∈ A+ × B+, the following statements hold.

(1) ϕ+(x, y) =
∨

0≤a≤x
0≤b≤y

ϕ(a, b).

(2) ϕ−(x, y) =
∨

0≤a≤x
0≤b≤y

−ϕ(a, b).

(3) |ϕ(x, y)| ≤ |ϕ|(x, y).

(4) |ϕ(x, y)| ≤ |ϕ|(|x|, |y|) for all (x, y) ∈ A × B.

(5) |ϕ|(x, y) =
∨

|a|≤x
|b|≤y

ϕ(a, b) =
∨

|a|≤x
|b|≤y

|ϕ(a, b)|.

Proof. We first note that ϕ+ (and hence ϕ− and |ϕ|) is well-defined in Bb(A×
B, C) since Bb(A × B, C) is an order complete Riesz space by Theorem 3.5.

(1) This is obvious since ϕ+ is the mapping ψ in the proof of Theorem 3.5.

(2) Follows from the fact that ϕ− = (−ϕ)+ in Bb(A×B, C) since Bb(A×B, C)
is a Riesz space.

(3) By the properties of Riesz spaces again, for all (x, y) ∈ A+ ×B+, ϕ(x, y) ≤
ϕ+(x, y) ≤ |ϕ|(x, y) and −ϕ(x, y) ≤ ϕ−(x, y) ≤ |ϕ|(x, y) hold in C. Hence
|ϕ(x, y)| = (ϕ(x, y))∨ (−ϕ(x, y)) ≤ |ϕ|(x, y) for all (x, y) ∈ A+ × B+ .

(4) Using the decomposition property of Riesz spaces, bilinearity of ϕ and (3),
for all x ∈ A and y ∈ B, we have

|ϕ(x, y)| ≤ |ϕ|(x+, y+)+|ϕ|(x+, y−)+|ϕ|(x−, y+)+|ϕ|(x−, y−)| = |ϕ|(|x|, |y|).

(5) If |a| ≤ x in A and |b| ≤ y hold in B, then ϕ(a, b) ≤ |ϕ(a, b)| ≤
|ϕ|(|a|, |b|) ≤ |ϕ|(x, y) by (4) and the positivity of |ϕ| in the Riesz space
Bb(A × B, C). It follows that

∨
|a|≤x
|b|≤y

ϕ(a, b) ≤ |ϕ|(x, y) and
∨

|a|≤x
|b|≤y

|ϕ(a, b)| ≤ |ϕ|(x, y).

For the converse direction, we first observe that 0 ≤ a1 ≤ x and 0 ≤ a2 ≤ x
imply a1 − a2 ≤ x and a2 − a1 ≤ x, and so |a1 − a2| ≤ x. Similarly 0 ≤ b1 ≤ y

and 0 ≤ b2 ≤ y imply |b1 − b2| ≤ y. It now follows from |ϕ| = ϕ+ + ϕ− in
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Bb(A × B, C) that

|ϕ|(x, y) = ϕ+(x, y) + ϕ−(x, y)

=
∨

0≤u≤x
0≤v≤y

ϕ(u, v) +
∨

0≤w≤x
0≤z≤y

−ϕ(w, z) (by (1) and (2))

=
∨

0≤u≤x
0≤v≤y

ϕ(u, v) +
∨

0≤w≤x
0≤z≤y

ϕ(−w, z)

≤
( ∨

0≤u≤x
0≤v≤y

ϕ(u, v)+
∨

0≤w≤x
0≤z≤y

ϕ(−w, z)+
∨

0≤u≤x
0≤v≤y

ϕ(u, v)+
∨

0≤w≤x
0≤v≤y

ϕ(−w, v)
)

+
∨

0≤u≤x, 0≤w≤x
0≤z≤y

ϕ(u − w,−2z)

=
∨

0≤u≤x, 0≤w≤x
0≤v≤y, 0≤z≤y

ϕ(u − w, v + z) +
∨

0≤u≤x, 0≤w≤x
0≤z≤y

ϕ(u− w,−2z)

=
∨

0≤u≤x, 0≤w≤x
0≤v≤y, 0≤z≤y

ϕ(u − w, v − z) ≤
∨

|a|≤x
|b|≤y

ϕ(a, b) ≤
∨

|a|≤x
|b|≤y

|ϕ(a, b)|.

Combining the above and preceding gives

|ϕ|(x, y) =
∨

|a|≤x
|b|≤y

ϕ(a, b) =
∨

|a|≤x
|b|≤y

|ϕ(a, b)|,

as required.
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