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MAPS PRESERVING LIE PRODUCT ON B(X)

Xiuping Yu and Fangyan Lu

Abstract. Let X and Y be complex Banach spaces. Let φ be a bijection from
B(X) onto B(Y ) satisfying φ([A,B]) = [φ(A), φ(B)] for all A,B ∈ B(X).
Then φ = ψ + τ , where ψ is a ring isomorphism or a negative of a ring
anti-isomorphism from B(X) onto B(Y ), and τ is a map from B(X) into CI
satisfying τ ([A,B]) = 0 for all A,B ∈ B(X).

1. INTRODUCTION AND THE MAIN RESULT

Given an associative ring R, one can render it into a Lie ring by defining, for
a, b ∈ R, the Lie product [a, b] to be ab− ba. The study of the Lie structure is an
active research area in ring theory and operator theory. See [1-3, 5, 9, 12, 15-17,
23-25] and references therein. In this paper we investigate the relationship between
the Lie multiplication structure and the addition structure. This is also motivated
by the study, in for example [8, 14, 20, 21], of question of when a multiplicative
bijection is additive, and by the study, in for example [6, 10, 11, 18, 19], of question
of when a bijection preserving Jordan product is additive.

Let X be a complex Banach space. By B(X) we mean the algebra of all
bounded linear operators on X . Our main result reads as follows.

Theorem 1.1. Let X and Y be complex Banach spaces and suppose that
X is of dimension > 1. Let φ be a bijection from B(X) onto B(Y ) satisfying
φ([A,B]) = [φ(A), φ(B)] for all A,B ∈ B(X). Then one of the following holds.

(1) φ = ψ+ τ , where ψ is a ring isomorphism from B(X) onto B(Y ), and τ is
a map from B(X) into CI satisfying τ([A,B]) = 0 for all A,B ∈ B(X).
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(2) φ = ψ + τ , where ψ is a negative of a ring anti-isomorphism from B(X)
onto B(Y ), and τ is a map from B(X) into CI satisfying τ([A,B]) = 0 for
all A,B ∈ B(X).

The proof of the theorem will be given in Section 3. It should be mentioned that
some parts of the proof what follows are essentially due to Hua [7] and Martindale
[13]. For the sake of completeness (and also because of the inaccessibility of their
papers), we shall reproduce their proofs in some detail when the occasion demands.

2. PRELIMINARIES

Throughout this section, Z is a complex Banach space with the topological dual
X∗. For z ∈ Z and f ∈ Z∗, the operator z⊗f is defined by x �→ f(x)z for x ∈ Z.

Lemma 2.1. Let A,B, E, F be in B(Z) and suppose that E and F are non-
zero idempotents. If EAETF = ETFBF for all T ∈ B(Z), then EAE = λE
and FBF = λF for some λ ∈ C. In particular, if EAETF = 0 for all T ∈ B(Z)
then EAE = 0; and if ETFBF = 0 for all T ∈ B(Z) then FBF = 0.

Proof. Fix a functional f in Z∗ such that f(Fz0) = 1 for z0 ∈ Z. Putting
T = Ez ⊗ f in EAETF = ETFBF and applying the equation to z0, we get
a scalar λ such that AEz = λEz for all z ∈ Z. So EAE = λE . Hence
ETFBF = λETF for all T ∈ B(X). That is ET (FBF − λF ) = 0 for all
T ∈ B(X). Since it is well-known that B(Z) is a prime ring, FBF = λF .

Following Hua [7], we define an operator A in B(Z) to be an I-operator if
A = B + λI , where B is an idempotent in B(Z), I is the identity operator on Z
and λ is a (complex) scalar. The following characterizes I-operators in B(Z).

Lemma 2.2. Let A be in B(Z). Then A is an I-operator if and only if
[A, [A, [A, T ]]] = [A, T ] for all T ∈ B(Z).

Proof. The “only if ” part is obvious. Now assume that [A, [A, [A, T ]]] = [A, T ]
for all T ∈ B(X), i.e.,

(2.1) (A3 −A)T − 3A2TA+ 3ATA2 − T (A3 − A) = 0.

Suppose that A is not a scalar multiple of I . Then there exist a vector z0 ∈ Z and
a functional f ∈ Z∗ such that f(z0) = 0 and f(Az0) = 1. Putting T = z ⊗ f in
Eq. (2.1) and applying this equation to z0, we get two scalars λ and µ such that
A2z + λAz + µz = 0 for all z ∈ Z. Namely, A2 + λA+ µI = 0. Translating A
by a scalar multiple of I , we get that A2 = γI for some γ ∈ C. Since A is not a
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scalar multiple of I , Eq. (2.1) yields γ = 1
4 . Now A + 1

2I is an idempotent. This
completes the proof.

Lemma 2.3. Suppose that E and F in B(Z) are idempotents and satisfy
EF = FE . Then the statement that either EF = 0 or (I −E)(I−F ) = 0 is true
if and only if [[E, [E, [T, F ]]], F ] = [E, [T, F ]] holds for all T ∈ B(X).

Proof. A computation gives

[[E, [E, [T, F ]]], F ]− [E, [T, F ]]

= 2(EFT (I −E)(I − F ) + (I − E)(I − F )TEF ).

Then the necessity is obviously seen, and the fact that B(Z) is a prime ring gives
the sufficiency.

3. THE PROOF OF THE THEOREM

The proof of the theorem will be given in some steps. The main idea is to divide
B(X) into the three-by-three block matrix algebra and to identify the behavior of
φ on each block. We note that this idea is inspired by Martindale [13].

3.1. Elementary Results

We begin with a trivial one.

Lemma 3.1. We have φ(0) = 0.

Proof. Indeed, φ(0) = φ([0, 0]) = [φ(0), φ(0)] = 0.

We will make a crucial use of the following two results.

Lemma 3.2. Let S, A1, A2, . . . , An ∈ B(X) and λ ∈ C. Suppose that φ(S) =∑n
i=1 φ(Ai)+λI . Then for all T ∈ B(X), we have φ([T, S]) =

∑n
i=1 φ([T, Ai]).

Proof. Multiplying φ(S) =
∑n

i=1 φ(Ai) + λI by φ(T ) from both sides
separately, we get that

φ(T )φ(S) =
n∑

i=1

φ(T )φ(Ai) + φ(T )λI

and

φ(S)φ(T ) =
n∑

i=1

φ(Ai)φ(T ) + λIφ(T ).
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Then
φ([T, S]) = [φ(T ), φ(S)] = φ(T )φ(S)− φ(S)φ(T )

=
n∑

i=1

φ(T )φ(Ai) −
n∑

i=1

φ(Ai)φ(T )

=
n∑

i=1

(φ(T )φ(Ai)− φ(Ai)φ(T ))

=
n∑

i=1

([φ(T ), φ(Ai)]) =
n∑

i=1

φ([T, Ai]),

completing the proof.

Lemma 3.3. Let A be in B(X). Then φ(A+CI) = φ(A)+CI . In particular,
φ(CI) = CI .

Proof. Let λ be in C. Since φ is surjective, we can choose S from B(X) such
that φ(S) = φ(A) + λI . Then for T ∈ B(X), making use of Lemma 3.2, we get
that

φ([T, S]) = φ([T, A]).

Since φ is injective, [T, S] = [T, A]. So T (S − A) = (S − A)T for all T ∈
B(X). By Lemma 2.1, S − A = µI for some µ ∈ C. Consequently, we have that
φ−1(φ(A) + CI) ⊆ A+ CI ; namely, φ(A) + CI ⊆ φ(A+ CI). Considering φ−1,
we have that φ(A+CI) ⊆ φ(A)+CI . So φ(A+CI) = φ(A)+CI . In particular,
assuming A = 0, we get that φ(CI) = CI .

3.2. The Assumptions

If X is of dimension 1, then B(X) is commutative and hence so is B(Y ). Thus
any bijective map from B(X) onto B(Y ) can be presented in the form ψ + τ ,
where ψ is an arbitrary ring isomorphism and τ is a map from B(X) into B(Y ).
Consequently, the statement (1) is true in this case.

If X is of dimension 2, it follows from the following Proposition 3.4 that Y
is also of dimension 2. So, in this case, φ is a bijection preserving Lie product
from M2(C) onto itself. By Lemma 2.2, φ(eii) = fii + λiI , i = 1, 2. Here f11

and f22 are commuting idempotents. Hence by Lemma 2.3, either f11f22 = 0 or
(I − f11)(I − f22) = 0 (cf. Proposition 3.4). If (I − f11)(I − f22) = 0 then
(I − f11) + (I − f22) = I (cf. Lemma 3.5). This in turn implies that f11f22 = 0.
Therefore we always have that f11f22 = 0 and f11 + f22 = I . So there exists an
invertible matrix T ∈ M2 such that Tφ(eii)T−1 = eii + λiI , i = 1, 2. Define
ψ = TφT−1. Then ψ(Ceij) = Ceij , 1 ≤ i �= j ≤ 2 (cf. Lemma 3.6) and
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ψ(Ceii) ⊆ Ceii + CI , i = 1, 2 (cf. Lemma 3.7). Using those facts we can prove
that the statement (1) holds. We omit details.

Assumption 1. X is of dimension> 2.

Now there exist three non-trivial idempotent operators P1, P2, P3 on X such
that P1 + P2 + P3 = I and PiPj = 0 for all i �= j. For each i ∈ {1, 2, 3}, by
Lemma 2.2, there exists an idempotent operator Qi in B(Y ) such that φ(Pi) −Qi

is a scalar multiple of I . Since Pi is non-trivial, it follows from Lemma 3.3 that
Qi is also non-trivial. Therefore, such a Qi is unique. In the forgoing, we shall fix
those Pi and Qi.

Proposition 3.4. Either QiQj = 0 for all i �= j, or (I −Qi)(I −Qj) = 0 for
all i �= j.

Proof. Since any pair of {P1, P2, P3} commute, it follows that any pair of
{Q1, Q2, Q3} commute. Making use of the necessity of Lemma 2.3, [[Pi, [Pi, [T,
Pj ]]], Pj] = [Pi, [T, Pj]] for all T ∈ B(X), i �= j. Since φ is surjective, it fol-
lows that [[Qi, [Qi, [S,Qj]]], Qj] = [Qi, [S,Qj]] for all S ∈ B(Y ). Making use of
the sufficiency of Lemma 2.3, either QiQj = 0 or (I −Qi)(I − Qj) = 0. If (I−
Q1)(I−Q2) = (I−Q1)(I−Q3) = 0 but Q2Q3 = 0, then I−Q1 = (I−Q1)Q2 =
(I−Q1)(I−Q3) = 0. This conflicts with the fact thatQ1 �= I , completing the proof.

In the forgoing, we shall prove the theorem only for one of cases.

Assumption 2. QiQj = 0 for all i �= j.

Under this assumption, we shall show that the statement (1) of the theorem
holds. If (I − Qi)(I − Qj) = 0 for all i �= j, a similar argument establishes the
statement (2) of the theorem. We note that there is an easy treatment for this case
when Y is reflexive. Suppose that (I − Qi)(I − Qj) = 0 for all i �= j and that
Y is reflexive. Then the equation θ(A) = A∗ for A ∈ B(Y ) defines an algebraic
anti-isomorphism from B(Y ) onto B(Y ∗). It is easily seen that Φ = −θ(φ) is a
bijection preserving Lie product from B(X) onto B(Y ∗). Moreover, Q′

i is a unique
idempotent such that Φ(Pi) − Q′

i is a scalar multiple of I and Q′
iQ

′
j = 0 for all

i �= j, where Q′
i = θ(I − Qi). Thus, applying the argument what follows, the

statement (1) of the theorem holds for Φ. Hence the statement (2) of the theorem
holds for φ = −θ−1(Φ).

3.3. The Peirce Decompositions

Let Aij = PiB(X)Pj , 1 ≤ i, j ≤ 3. Then B(X) =
∑3

i,j=1 Aij since P1 +
P2 +P3 = I . This is the Peirce decomposition of B(X). We note that this kind of
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machinery already proved effective in [6, 10, 11, 14, 18, 19] where serval results
are obtained on the additivity of maps which preserve certain product. Similarly,
let Bij = QiB(Y )Qj . In the sequel, when writing Aij (or Bij ), it indicates that
Aij ∈ Aij ( Bij ∈ Bij , respectively).

To get B(Y ) =
∑3

i,j=1 Bij , we need the following lemma.

Lemma 3.5. Q1 +Q2 +Q3 = I.

Proof. Choose S =
∑3

i,j=1 Sij ∈ B(X) such that φ(S) = Q1+Q2+Q3. Then
φ(S) = φ(P1) + φ(P2) + φ(P3) + µI for some µ ∈ C. Fix an index i ∈ {1, 2, 3}.
For all Tii ∈ Aii, by Lemma 3.2,

φ([Tii, S]) =
3∑

j=1

φ([Tii, Pj]) = 0.

So we have that

(3.2) TiiS − STii = 0

for all Tii ∈ Aii. In particular, PiS − SPi = 0 and therefore Sij = PiSPj = 0
for each j ∈ {1, 2, 3} with j �= i. Now (3.2) becomes TiiSii − SiiTii = 0 for all
Tii ∈ Aii. So Sii = λiPi for some λi ∈ C by Lemma 2.1. Thus the arbitrariness
of i ∈ {1, 2, 3} gives that S = λ1P1 + λ2P2 + λ3P3. Since Q1 + Q2 + Q3 is
idempotent, it follows from Lemma 2.2 that S is an I-operator. So the spectrum of
S is contained in {λ, λ+ 1} for some λ ∈ C. Namely, {λ1, λ2, λ3} ⊆ {λ, λ+ 1}.
We now show that λ1 = λ2 = λ3. Otherwise, without loss of generality, we may
suppose that λ1 = λ2 + 1. Let T12 ∈ A12 be non-zero. Then

(3.3) φ(T12) = φ([S, T12]) =
3∑

k=1

φ([Pk, T12]) = φ(T12) + φ(−T12).

It follows from the injectivity of φ that −T12 = 0. This contradiction shows that
λ1 = λ2 = λ3. So S is a scalar multiple of I . Hence by Lemma 3.3 Q1+Q2+Q3 is
also a scalar multiple of I . Consequently, Q1 +Q2 +Q3 = I since it is idempotent.

We note that if (I − Qi)(I − Qj) = 0 for all i �= j and φ(S) = (I − Q1) +
(I −Q2) + (I −Q3) then Eq. (3.3) becomes

φ(T12) = φ([S, T12]) = −
3∑

k=1

φ([Pk, T12]) = −φ(T12) − φ(−T12).

Therefore 2φ(T12) = −φ(−T12). Hence 2φ(−T12) = −φ(T12) = 1
2φ(−T12).

So 3
2φ(−T12) = 0, which is also a contradiction. This is the main difference
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between the proof for the case QiQj = 0 for all i �= j and the one for the case
(I −Qi)(I −Qj) = 0 for all i �= j.

3.4. The Behavior of φ on Aij

Making use of Lemma 3.3, we see that Pi is a unique idempotent such that
φ−1(Qi)−Pi is a scalar multiple of I . So the behavior of φ acting on Aij and the
behavior of φ−1 acting on Bij are same.

Lemma 3.6. φ(Aij) = Bij, i �= j.

Proof. Let A ∈ Aij . Then

φ(A) = φ([A, Pj]) = [φ(A), φ(Pj)] = [φ(A), Qj].

So Qjφ(A)Qi = 0. Hence

φ(A) = φ([Pi, [A, Pj]]) = [Qi, [φ(A), Qj]]

= Qiφ(A)Qj +Qjφ(A)Qi = Qiφ(A)Qj ∈ Bij.

Therefore, φ(Aij) ⊆ Bij . Considering φ−1, we get φ(Aij) ⊇ Bij , completing the
proof.

Lemma 3.7. φ(Aii) ⊆ Bii + CI for each i ∈ {1, 2, 3}. Moreover, for each
Bii ∈ Bii there is Aii ∈ Aii such that φ(Aii) = Bii + λI for some λ ∈ C.

Proof. We only consider the case i=1. The proof for the other cases is similar.
Let A be in A11 and write φ(A) =

∑3
i,j=1 Bij corresponding to the decompo-

sition of B(Y ). Then for all j ∈ {1, 2, 3}, we have that

0 = φ([A, Pj]) = [φ(A), Qj] =
∑

i�=j

(Bij −Bji).

From this, we get that Bij = 0 for all i �= j. Thus φ(A) = B11 + B22 +B33. For
R23 ∈ B23, by Lemma 3.6 there exists T23 ∈ A23 such that φ(T23) = R23. Then

B22R23 −R23B33 = [
3∑

i=1

Bii, R23] = [φ(A), φ(T23)] = φ([A, T23]) = 0.

So, by Lemma 2.1, B22 = λQ2 and B33 = λQ3 for some λ ∈ C. Thus

φ(A) = B11 + λ(Q2 +Q3) = B11 − λQ1 + λI.
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Therefore φ(A11) ⊆ B11 + CI .
Now letBii ∈ Bii. Applying the preceding result to φ−1, there exist anAii ∈ Aii

and a scalar λ ∈ C such that φ(Aii + λI) = Bii. By Lemma 3.3, we can suppose
that φ(Aii + λI) = φ(Aii) + µI for some µ ∈ C. Then φ(Aii) = Bii − µI ,
completing the proof.

3.5. The Definition of ψ

By Lemma 3.7, for Aii ∈ Aii with i ∈ {1, 2, 3}, there exists a unique scalar
fi(Aii) such that φ(Aii) − fi(Aii)I ∈ Bii. Now for

∑3
i,j=1 Aij ∈ ∑3

i,j=1 Aij , we
define

ψ(
3∑

i,j=1

Aij) =
3∑

i,j=1

φ(Aij)−
3∑

k=1

fk(Akk)I.

Lemma 3.8. We have that

(i) ψ(Aij) = φ(Aij), i �= j;
(ii) ψ(Aij) = Bij for all i, j ∈ {1, 2, 3};
(iii) ψ(

∑3
i,j=1Aij) =

∑3
i,j=1 ψ(Aij);

(iv) ψ is surjective.

Proof. If i �= j, ψ(Aij) = φ(Aij) by the definition, and hence ψ(Aij) = Bij by
Lemma 3.6. By the definition again, ψ(Aii) = φ(Aii) − fi(Aii). So ψ(Aii) = Bii

by Lemma 3.7 and

ψ(
3∑

i,j=1

Aij) =
3∑

i=1

(φ(Aii)− fi(Aii)I) +
3∑

i�=j

φ(Aij) =
3∑

i,j=1

ψ(Aij).

So far, we have proved the former three parts. Now the last part is an easy conse-
quence of parts (ii) and (iii).

3.6. The Additivity of ψ

We begin with the “ weak additivity ” of φ on each row.

Lemma 3.9. Let k ∈ {1, 2, 3} and Akj ∈ Akj for j = 1, 2, 3. Then
φ−1(

∑3
j=1 φ(Akj)) ∈

∑3
j=1 Akj + CI .

Proof. Choose S ∈ B(X) such that

(3.4) φ(S) = φ(A11) + φ(A12) + φ(A13).
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Then for T22 ∈ A22, we have that φ([T22, S]) = φ(−A12T22). So S12T22 = A12T22

and T22S22 − S22T22 = T22S21 = T22S23 = S32T22 = 0. Therefore S12 = A12,
S21 = S32 = S23 = 0 and S22 = λ2P2 for some λ2 ∈ C.

For T33 ∈ A33, by Eq. (3.4) and Lemma 3.2, we have that φ([T33, S]) =
φ(−A13T33). So S13T33 = A13T33 and T33S31 = T33S33 − S33T33 = 0. It follows
that S13 = A13, S31 = 0 and S33 = λ3P3 for some λ3 ∈ C.

For T12 ∈ A12, φ([T12, S]) = φ(−A11T12). So T12S22 − S11T12 = −A11T12.
Hence S11T12 = (A11 + λ2I)T12. From this we see that S11 = A11 + λ2P1.
Similarly, S11 = A11 + λ3P1. Consequently, λ2 = λ3 and S = A11 +A12 +A13 +
λ2I , completing the proof.

Lemma 3.10. ψ is additive on Aij for 1 ≤ i �= j ≤ 3.

Proof. Let A12 and B12 be in A12. Making use of the above lemma, we see
that the following equalities

ψ(A12) + ψ(B12) = φ(A12) + φ(B12)

= [Q1 + φ(A12), Q2 + φ(B12)]

= [φ(P1) + φ(A12), φ(P2) + φ(B12)]

= [φ(P1 +A12 + µ1I), φ(P2 +B12 + µ2I)]

= φ([P1 +A12 + µ1I, P2 + B12 + µ2I)])

= φ(A12 +B12) = ψ(A12 +B12).

hold true.

Lemma 3.11. ψ is additive on Aii, i = 1, 2, 3.

Proof. For clarify of exposition, we assume that i = 1. Let A11 and B11 be in
A11. Choose S ∈ B(X) such that φ(S) = ψ(A11) + ψ(B11). Then

(3.5) φ(S) = φ(A11) + φ(B11) + λI,

where λ = f1(A11) + f1(B11).
For Tkk ∈ Akk with k ∈ {2, 3}, by Lemma 3.2, we have that φ([Tkk, S]) = 0

and then [Tkk, S] = 0. Therefore, Sij = 0 for all 1 ≤ i �= j ≤ 3, S22 = λ2P2 and
S33 = λ3P3 for some λ2, λ3 ∈ C.

For T1k ∈ A1k with k ∈ {2, 3}, by Eq. (3.5) and Lemmas 3.2 and 3.10, we
have that

φ([S, T1k]) = φ(A11T1k) + φ(B11T1k) = φ((A11 + B11)T1k).
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So [S, T1k] = (A11 + B11)T1k. In particular, S11T1k − T1kSkk = (A11 +B11)T1k.
Since Skk = λkPk, it follows that S11T1k = (A11 +B11 + λkI)T1k. Hence S11 =
A11 +B11 +λkP1 for each k ∈ {2, 3}. So λ2 = λ3 and then S = A11 +B11 +λ2I .
Now

ψ(A11) + ψ(B11) = φ(A11 + B11 + λI)

= φ(A11 +B11) + µI = ψ(A11 + B11) + f1(A11 +B11)I + µI.

Since ψ(A11)+ψ(B11)−ψ(A11+B11) is in A11, it follows that f1(A11+B11)I+
µI = 0. Consequently, ψ(A11 +B11) = ψ(A11) + ψ(B11), completing the proof.

Proposition 3.12. ψ is additive .

Proof. Let A =
∑3

i,j=1Aij and B =
∑3

i,j=1 Bij be in B(X). Then Lemmas
3.8, 3.10 and 3.11 are all used in seeing

ψ(A+B) = ψ(
3∑

i,j=1

(Aij + Bij)) =
3∑

i,j=1

ψ(Aij +Bij)

=
3∑

i,j=1

(ψ(Aij) + ψ(Bij)) = ψ(
3∑

i,j=1

Aij) + ψ(
3∑

i,j=1

Bij) = ψ(A) + ψ(B)

hold true.

3.7. The Definition of τ

For A ∈ B(X), we (have to) define τ(A) = φ(A) − ψ(A). Then τ(Aij) =
fi(Aii)I if i = j and 0 otherwise. However, to see that τ(A) lies in CI for all
A ∈ B(X), we need the following lemma.

Lemma 3.13. The difference of φ(
∑3

i,j=1Aij) and
∑3

i,j=1 φ(Aij) is a scalar
multiple of I for each

∑3
i,j=1Aij ∈ B(X).

Proof. Let
∑3

i,j=1Aij ∈ B(X) and choose S =
∑3

i,j=1 Sij from B(X) such
that φ(S) =

∑3
i,j=1 φ(Aij). Then by Lemma 3.2 and Proposition 3.12, we have

that

(3.6)
φ([P1, S]) = φ(A12) + φ(A13) + φ(−A21) + φ(−A31)

= φ(A12 + A13 − A21 − A31).

So [P1, S] = A12 +A13−A21−A31. From this we see that S12 = A12, S13 = A13,
S21 = A21 and S31 = A31. Symmetrically, we have that S23 = A23 and S32 = A32.
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For T12 ∈ A12, we have that

φ([T11, [T12, S]]) =
∑

i,j=1 φ([T11, [T12, Aij]])
= φ([T11, [T12, A21]]) + φ(T11T12A22) + φ(−T11A11T12).

Making use of Lemma 3.9, we see that [T11, [T12, S]] = [T11, [T12, A21]]+T11T12A22

−T11A11T12 +λI for some λ ∈ C. Hence T11T12S22 −T11S11T12 = T11T12A22−
T11A11T12, and hence T12S22 − S11T12 = T12A22 − A11T12. Namely, T12(S22 −
A22) = (S11 − A11)T12. By Lemma 2.1, S11 = A11 + µP1 and S22 = A22 + µP2

for some µ ∈ C. Symmetrically, there exists a scalar γ such that S11 = A11 + γP1

and S33 = A33 + γP3. Consequently, µ = γ and S =
∑3

i,j=1 Aij + µI . Lemma
3.3 applies, completing the proof.

3.8. The Multiplicativity of ψ

Lemma 3.14. Let Aik ∈ Aik and Bkj ∈ Akj , i �= j. Then ψ(AikBkj) =
ψ(Aik)ψ(Bkj).

Proof. Since ψ(Apq) ∈ Bpq, we see the following equalities

ψ(AikBkj) = φ(AikBkj) = φ([Aik, Bkj])

= [φ(Aik), φ(Bkj)] = [ψ(Aik), ψ(Bkj)]

= ψ(Aik)ψ(Bkj)

hold true.

Lemma 3.15. Let Aii, Bii be in Aii, i ∈ {1, 2, 3}. Then ψ(AiiBii) =
ψ(Aii)ψ(Bii).

Proof. Let j be in {1, 2, 3} such that i �= j. Making use of the above lemma,
we have, for Tij ∈ Aij , that

ψ(AiiBiiTij) = ψ(AiiBii)ψ(Tij),

which is also equal to

ψ(AiiBiiTij) = ψ(Aii)ψ(BiiTij) = ψ(Aii)ψ(Bii)ψ(Tij).

So ψ(AiiBii)ψ(Tij) = ψ(Aii)ψ(Bii)ψ(Tij). Since ψ(Aij) = φ(Aij) = Bij , it
follows from Lemma 2.1 that ψ(AiiBii) = ψ(Aii)ψ(Bii).

Lemma 3.16. Let Aij ∈ Aij and Bji ∈ Aji, i �= j. Then ψ(AijBji) =
ψ(Aij)ψ(Bji).
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Proof. According to the definition of τ and ψ and making use of the additivity
of ψ,

τ([Aij, Bji]) = φ([Aij, Bji])− ψ([Aij, Bji])

= [φ(Aij), φ(Bji)]− ψ([Aij, Bji])

= [ψ(Aij), ψ(Bji)] − ψ([Aij, Bji])

= ψ(Aij)ψ(Bji)− ψ(Bji)ψ(Aij) − ψ(AijBji) + ψ(BjiAij)

∈ Bii + Bjj.

So τ([Aij, Bji]) = 0 and hence ψ(AijBji) = ψ(Aij)ψ(Bji).

Proposition 3.16. ψ is multiplicative.

Proof. Let A and B be in B(X). Write A =
∑3

i,j=1 Aij and B =
∑3

i,j=1 Bij

corresponding to the Peirce decomposition of B(X). Since ψ is additive and
ψ(Aij) ⊆ Bij , we have that

ψ(AB) =
3∑

i,k,j=1

ψ(AikBkj)

and

ψ(A)ψ(B) =
3∑

i,k,j=1

ψ(Aik)ψ(Bkj).

So in order to prove ψ(AB) = ψ(A)ψ(B), it suffices to show ψ(AikBkj) =
ψ(Aik)ψ(Bkj) for all 1 ≤ i, j, k ≤ 3. But those equalities are assured by Lemmas
3.14-3.16. The proof is complete.

3.9. The Remaining Proof

We will complete our proof by showing that ψ is injective and that τ vanishes
on commutators.

Suppose that ψ(A) = 0 for A ∈ B(Y ). Then for i ∈ {1, 2, 3}, ψ(AB) =
ψ(A)ψ(B) = 0 and so φ(APi) = τ(APi) ∈ CI . It follows from Lemma 3.3 that
APi ∈ CI . This implies that APi = 0 for i ∈ {1, 2, 3}. Hence A = 0 since
P1 + P2 + P3 = I .

Let A and B be in B(X). By the definition,

τ([A,B]) = φ([A,B])− ψ([A,B]) = [ψ(A), ψ(B)]− ψ([A,B]).

Note that ψ is actually a Lie isomorphism. It follows that τ([A,B]) = 0.
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