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GENERALIZED IMPLICIT HYBRID PROJECTION-PROXIMAL
POINT ALGORITHM FOR MAXIMAL MONOTONE

OPERATORS IN HILBERT SPACE

Lu-Chuan Ceng1 and Jen-Chih Yao2,∗

Abstract. In this paper, we introduce a generalized implicit hybrid projection-
proximal point algorithm for finding zeros of a maximal monotone operator
in a Hilbert space setting. The global convergence of the method for the
weak topology under appropriate assumptions on the algorithm parameters is
established.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A
set-valued operator A : H → 2H is called maximal monotone if A is monotone,
i.e., ∀x, y ∈ H, ∀v ∈ A(x), ∀w ∈ A(y), 〈v − w, x − y〉 ≥ 0, and the graph
GrA = {(x, v) ∈ H × H : v ∈ A(x)} is not properly contained in the graph of
any other monotone operators. We deal in this paper with iterative methods for
finding zeros of maximal monotone operators in H ; i.e., given a maximal monotone
operator A : H → 2H , find x ∈ H such that

(1.1) 0 ∈ A(x).

A classical method to solve the problem 0 ∈ A(x) is the proximal point algorithm
(PPA) which was proposed and studied in [5, 6]. The PPA generates a sequence
{xk} ⊂ H by the successive approximation scheme

xk+1 = xk − λkv
k, vk ∈ A(xk+1), k = 0, 1, ...,

Received April 14, 2006, accepted July 24, 2006.
Communicated by Wen-Wei Lin.
2000 Mathematics Subject Classification: 90C25, 65K05, 47J25.
Key words and phrases: Maximal monotone operator, Proximal point, Inexact iteration, Relaxation,
Weak convergence.
1This research was partially supported by the National Science Foundation of China (10771141), and
Science and Technology Commission of Shanghai Municipality grant (075105118).
2This research was partially supported by a grant from the National Science Council.
*Corresponding author.

753



754 Lu-Chuan Ceng and Jen-Chih Yao

where {λk} is a sequence of positive regularization parameters. It is easy to see
that the PPA is equivalent to the following iteration:

(PPA) xk+1 = JA
λk

(xk),

where the single-valued function JA
λ := (I + λA)−1 : H → H is the resolvent of

A of parameter λ [7]. We have the following characterization.

(1.2) JA
λ (x) = x if and only if 0 ∈ A(x).

See, e.g., [3]. Given variable parameters λk > 0 and αk ∈ [0, 1), the following
inertial type iteration was proposed in [1]:

(IPPA) xk+1 = JA
λk

(xk + αk(xk − xk−1)),

under the conditions:

(1.3) λ := inf
k≥0

λk > 0,

(1.4) ∀k ∈ N, αk ∈ [0, 1) and α := sup
k≥0

αk < 1,

(1.5)
∑

αk‖xk − xk−1‖2 <∞.

We also recall the relaxed proximal point algorithm which was proposed in [4]:

(RPPA) xk+1 = [(1− ρk)I + ρkJ
A
λk

](xk),

where ρk ∈ (0, 2) is a relaxation factor satisfying

(1.6) R1 := inf
k≥0

ρk > 0 and R2 := sup
k≥0

ρk < 2.

Recently, Alvarez [2] constructed an inexact relaxed and inertial hybrid projection-
proximal point algorithm for which weak convergence was proved under conditions
(1.3)-(1.6) and additional conditions on αk are given in order to ensure (1.5) a priori.

Motivated by the work in [2], the first aim in this paper is to introduce a
generalized, relaxed and inertial hybrid projection-proximal point algorithm which
improves, extends and unifies [2, Algorithm 1.1] and for which weak convergence
is proved under the conditions more general than those in [2, Theorem 1.1]. The
second goal is to construct a generalized inexact version of the RIPPA which
includes the more standard inexact version of the RIPPA in [2, Theorem 1.2] as
a special case, and for which weak convergence holds under the conditions more
general than those in [2, Theorem 1.2].
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This paper is organized as follows. Section 2 introduces a generalized, relaxed
and inertial hybrid projection-proximal point algorithm for which weak convergence
is proved under very general conditions. Next a generalized inexact version of
the RIPPA is considered in Section 3 for which weak convergence holds under
appropriate summability conditions on the errors.

2. GENERALIZED IMPLICIT HYBRID PROJECTION-PROXIMAL POINT ALGORITHM

We first introduce the following generalized relaxed and inertial hybrid projection-
proximal point algorithm.

Algorithm 2.1. Let σ ∈ [0, 1) be a fixed relative error tolerance.

Step 1. Given xk, xk−1 ∈ H, λk > 0, αk, βk ∈ [0, 1), and ρk ∈ (0, 2), find
uk ∈ H such that

(2.1)




x̃k = JA
λk

(xk + ek),

yk = βkx̃
k + (1− βk)[xk + αk(xk − xk−1)],

λkv
k = uk + η̃k for some vk ∈ ρkA(yk − uk/ρk)

where the residuals ek, η̃k ∈ H satisfy

(2.2)

{ ‖ek‖ ≤ µk‖x̃k − xk‖ with lim
k→∞

µk = 0,

‖η̃k‖ ≤ σ max{‖uk‖, λk‖vk‖}.

Step 2. If βk = 0 and vk = 0, then set xn := yk for all n ≥ k + 1 and stop.
Otherwise:

(i) Let Pk : H → H be the orthogonal projection operator onto the hyperplane

(2.3) Hk = {x ∈ H : 〈vk, x− yk〉 = −〈vk, uk〉/ρk}.

(ii) Set

(2.4) xk+1 = yk + ρk(Pky
k − yk) = yk − 〈v

k, uk〉
‖vk‖2 vk.

(iii) Let k ← k + 1 and return to Step 1.
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Remark 2.1. (i) If we take βk = 0, uk = yk − zk and

η̃k = λkη
k with ‖ηk‖ ≤ σ max{‖zk − yk‖/λk, ‖vk‖},

then Algorithm 2.1 reduces to [2, Algorithm 1.1]. (ii) Observe that (2.1) amounts
to

uk = ρk(yk − JA
λk

(yk + η̃k/ρk)).

Indeed the latter is equivalent to yk + η̃k/ρk ∈ (I + λkA)(yk − uk/ρk) which can
be written as uk/ρk + η̃k/ρk ∈ λkA(yk −uk/ρk) which is exactly (2.1). Thus it is
clear that the algorithm described above is well defined.

In order to prove weak convergence of Algorithm 2.1, we need the following
lemmas.

Lemma 2.1. [2, Lemma 2.1]. Let σ ∈ [0, 1). If v = u + η with ‖η‖ ≤
σ max{‖u‖, ‖v‖}, then

(i) ‖v‖ ≤ ‖u‖/(1− σ);
(ii) 〈v, u〉 ≥ (1− σ)‖u‖‖v‖.

Lemma 2.2. [2, Lemma 2.3]. Let ϕk ≥ 0 and δk ≥ 0 be such that

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk

with
∑

δk <∞, and 0 ≤ αk ≤ α < 1. Then the following hold:

(i)
∑

[ϕk − ϕk−1]+ <∞, where [t]+ := max{t, 0};
(ii) There exists ϕ∗ ≥ 0 such that limk→∞ ϕk = ϕ∗.

Lemma 2.3. [2, Lemma 2.4]. Let H be a Hilbert space and {xk} a sequence
such that there exists a nonempty set S ⊂ H satisfying the following conditions:

(a) For every x̄ ∈ S, limk→∞ ‖xk − x̄‖ exists;
(b) If xkj ⇀ x̂ weakly in H for a subsequence kj →∞, then x̂ ∈ S.

Then there exists x∗ ∈ S such that xk ⇀ x∗ weakly in H as k →∞.

Lemma 2.4. Let {an},{bn} and {cn} be three nonnegative real sequences
satisfying the following condition:

(∗) an+1 ≤ (1 + bn)an + cn, n ≥ n0

for some integer n0 ≥ 1, where
∑

bn < ∞ and
∑

cn < ∞. Then the limit
limn→∞ an exists.
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Proof. On account of (∗), we derive

an+m+1 ≤ (
n+m∏
j=n

(1 + bj))(
n+m∑
i=n

ci + an),

for all m, n ≥ n0, and hence

lim sup
m→∞

am ≤ exp(
∞∑

j=n

bj)(
∞∑

i=n

ci + an).

This immediately implies that

lim sup
m→∞

am ≤ lim inf
n→∞ an;

that is, limn→∞ an exists.

We now state and prove the main result of this section.

Theorem 2.1. Let {xk} ⊂ H be a bounded sequence generated by (2.1)-(2.4)
where A : H → 2H is a maximal monotone operator with S := A−1({0}) 
= ∅, σ ∈
[0, 1) and the parameters αk and ρk satisfy (1.4) and (1.6), respectively. Under (1.5)
and

∑
βkµ

2
k <∞, we have

(i) For all x̄ ∈ S, ‖xk − x̄‖ is convergent, and

(2.5) lim
k→∞

‖xk+1 − yk + uk/ρk‖ = 0;

(ii) If λk additionally satisfies (1.3), then limk→∞ ‖vk‖ = 0 and there exists
x∗ ∈ S such that xk ⇀ x∗ weakly in H as k →∞.

Proof. We divide the proof into several steps.
(i) Let x∗ be any element of S. Then it follows from (2.1) that

1
λk

(xk − x̃k + ek) ∈ A(x̃k).

Since x∗ is a root of A, so, 0 ∈ A(x∗). Thus from the monotonicity of A we obtain

〈 1
λk

(xk − x̃k + ek)− 0, x̃k − x∗〉 ≥ 0.

By the assumption that λk > 0, we immediately have

(2.6) 〈xk − x̃k + ek, x̃k − x∗〉 ≥ 0.
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Note that
‖u + v‖2 = ‖u‖2 − ‖v‖2 + 2〈v, u + v〉, ∀u, v ∈ H.

From (2.6) we get

(2.7)

‖x̃k − x∗‖2 = ‖xk − x∗‖2 − ‖x̃k − xk‖2 + 2〈x̃k − xk, x̃k − x∗〉
= ‖xk − x∗‖2 − ‖x̃k − xk‖2 + 2〈ek, x̃k − x∗〉
−2〈xk − x̃k + ek, x̃k − x∗〉

≤ ‖xk − x∗‖2 − ‖x̃k − xk‖2 + 2〈ek, x̃k − x∗〉.
(ii) For µk > 0, using the Cauchy-Schwartz inequality we have

(2.8) 2〈ek, x̃k − x∗〉 ≤ 1
2µ2

k

‖ek‖2 + 2µ2
k‖x̃k − x∗‖2.

Since limk→∞ µk = 0, there exists an integer N0 ≥ 0 such that for all n ≥ N0,
1− 2µ2

k > 0. Substituting (2.8) in (2.7) and utilizing (2.2), we obtain

‖x̃k − x∗‖2 ≤ ‖xk − x∗‖2 − ‖x̃k − xk‖2 + 1
2µ2

k
‖ek‖2 + 2µ2

k‖x̃k − x∗‖2
≤ ‖xk − x∗‖2 − ‖x̃k − xk‖2 + 1

2‖x̃k − xk‖2 + 2µ2
k‖x̃k − x∗‖2

= ‖xk − x∗‖2 − 1
2‖x̃k − xk‖2 + 2µ2

k‖x̃k − x∗‖2,
which implies that

(2.10)
‖x̃k − x∗‖2 ≤ (1 +

2µ2
k

1− 2µ2
k

)‖xk − x∗‖2 − 1
2(1− 2µ2

k)
‖x̃k − xk‖2

≤ (1 +
2µ2

k

1− 2µ2
k

)‖xk − x∗‖2 − 1
2
‖x̃k − xk‖2.

(iii) Note that for all x, y ∈ H and 0 ≤ λ ≤ 1, there holds the following
well-known identity:

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2− λ(1− λ)‖x− y‖2.
Thus from (2.1) and (2.10) we conclude that

(2.11)

‖yk − x∗‖2 = ‖βk(x̃k − x∗) + (1− βk)(xk − x∗ + αk(xk − xk−1))‖2
≤ βk‖x̃k − x∗‖2 + (1− βk)‖xk − x∗ + αk(xk − xk−1)‖2

≤ βk[(1 + 2µ2
k

1−2µ2
k
)‖xk − x∗‖2 − 1

2‖x̃k − xk‖2]
+(1− βk)[‖xk − x∗‖2 + 2αk〈xk − x∗, xk − xk−1〉
+α2

k‖xk − xk−1‖2].
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Observe that

‖xk − x∗‖2 = ‖xk−1 − x∗‖2 + 2〈xk − x∗, xk − xk−1〉 − ‖xk − xk−1‖2

and hence

‖xk − x∗‖2 − ‖xk−1 − x∗‖2 + ‖xk − xk−1‖2 = 2〈xk − x∗, xk − xk−1〉.
This together with (2.11) implies that for all k ≥ N0

(2.12)

‖yk − x∗‖2

≤ βk[(1 +
2µ2

k

1− 2µ2
k

)‖xk − x∗‖2 − 1
2
‖x̃k − xk‖2]

+(1− βk)[‖xk − x∗‖2 + αk(‖xk − x∗‖2 − ‖xk−1 − x∗‖2

+‖xk − xk−1‖2) + α2
k‖xk − xk−1‖2]

= (1+
2βkµ

2
k

1− 2µ2
k

)‖xk−x∗‖2+αk(1−βk)(‖xk−x∗‖2−‖xk−1−x∗‖2)

+αk(1− βk)‖xk − xk−1‖2 + α2
k(1− βk)‖xk − xk−1‖2

≤ (1+
2βkµ

2
k

1−2µ2
k

)‖xk−x∗‖2+αk(1−βk)(‖xk − x∗‖2 − ‖xk−1 − x∗‖2)

+2αk‖xk − xk−1‖2.

(iv) From now on assume that vk 
= 0 for all k ≥ 1; otherwise, the algorithm
finishes in a finite number of iterations providing a solution to (1.1).

As in the proof of [2, Theorem 2.2], we define ϕk := 1
2‖xk − x∗‖2. It follows

from (2.4) that

(2.13)

ϕk+1 =
1
2
‖yk − x∗‖2 + ρk〈Pky

k − yk, yk − x∗〉+ ρ2
k

2
‖Pky

k − yk‖2

=
1
2
‖yk − x∗‖2 − ρk(1− ρk/2)‖Pky

k − yk‖2

+ρk〈Pky
k − yk, Pky

k − x∗〉.

Next notice that by Lemma 2.1 (i), vk 
= 0 implies uk 
= 0 due to (2.1) and (2.2).
Then by virtue of Lemma 2.1 (ii),

(2.14) 〈vk, uk〉 ≥ (1− σ)‖vk‖‖uk‖ > 0.

Now we define lk(x) := 〈vk, x − yk〉. As vk/ρk ∈ A(yk − uk/ρk). The mono-
tonicity of A leads to 〈vk/ρk, x

∗ − (yk − uk/ρk)〉 ≤ 0 and hence 〈vk, x∗ − yk〉 ≤



760 Lu-Chuan Ceng and Jen-Chih Yao

−〈vk, uk〉/ρk. This shows that x∗ lies in the half-space H≤
k = {x ∈ H : lk(x) ≤

−〈vk, uk〉/ρk}. Therefore from ρk > 0 and (2.14) we know that the hyperplane
Hk given by (2.3) strictly separates yk from x∗. Moreover since the orthogonal
projection of yk onto Hk is also the orthogonal projection onto the half-space H≤

k ,
one gets 〈Pky

k − yk, P kyk − x∗〉 ≤ 0. It follows from (2.13) that

(2.15) ϕk+1 ≤ 1
2
‖yk − x∗‖2 − ρk(1− ρk/2)‖Pky

k − yk‖2.

(v) Substituting (2.12) in (2.15), we deduce that for all k ≥ N0

(2.16) ϕk+1 ≤ ϕk + αk(1− βk)(ϕk − ϕk−1) + δk − ρk(1− ρk/2)‖Pky
k − yk‖2

where δk := αk‖xk − xk−1‖2 + βkµ2
k

1−2µ2
k
‖xk − x∗‖2. Since ∑

βkµ
2
k <∞, it follows

that
∑∞

k=N0

βkµ2
k

1−2µ2
k

< ∞. Note that {xk} is bounded. Thus from (1.5) we get∑
δk < ∞. Observe that 0 ≤ αk(1 − βk) ≤ α < 1 due to (1.4). By virtue of

Lemma 2.2 applied to (2.16), the sequence {ϕk} is convergent. Furthermore on
account of (1.6), (2.4), (2.14) and (2.16), we derive for all k ≥ N0

(2.17)

(1/R2− 1/2)(1− σ)2‖uk‖2
≤ (1/R2 − 1/2)(〈vk, uk〉/‖vk‖)2
≤ ((1− ρk/2)/ρk)[ρk‖Pky

k − yk‖]2
= ρk(1− ρk/2)‖Pky

k − yk‖2
≤ ϕk − ϕk+1 + αk(1− βk)(ϕk − ϕk−1) + δk

≤ |ϕk − ϕk+1|+ |ϕk − ϕk−1|+ δk

where R1 := infk≥0 ρk > 0 and R2 := supk≥0 ρk < 2. Since limk→∞ δk = 0 and
limk→∞ ϕk exists, from (2.17) we immediately obtain

(2.18) lim
k→∞

‖uk‖ = lim
k→∞
〈vk, uk〉/‖vk‖ = 0.

Consequently from (2.2) and Lemma 2.1 (i) we conclude that

(2.19) λk‖vk‖ ≤ ‖uk‖/(1− σ)→ 0 as k →∞.

Moreover in view of (2.4) we know that the second limit in (2.18) yields limk→∞
‖xk+1 − yk‖ = 0. From this fact, together with the first limit in (2.18), it follows
that (2.5) holds because R1 = infk≥0 ρk > 0 due to (1.6). This completes the proof
of Theorem 2.1 (i).

(vi) In order to prove Theorem 2.2 (ii), it suffices to show the uniqueness of the
weak cluster point. Indeed by Theorem 2.2 (i), condition (a) of Lemma 2.3 holds
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with S = A−1({0}). Next suppose (1.3) holds and let x̂ be a weak cluster point of
{xk}. By (2.5), x̂ is also a weak cluster point of {yk − uk/ρk}. But
(2.20) vk/ρk ∈ A(yk − uk/ρk)

with vk/ρk → 0 strongly in H by (2.19) together with (1.3) and (1.6). Since
the graph of the maximal monotone operator A is closed in H ×H for the weak-
strong topology (see [8]), it is possible to pass to the limit in (2.20) to deduce that
0 ∈ A(x̂), i.e., x̂ ∈ S. Thus condition (b) of Lemma 2.3 is also satisfied. Therefore
by Lemma 2.3 we infer that {xk} is weakly convergent to an element in S.

Remark 2.2. According to Remark 2.1, we know that [2, Algorithm 1.1] is
a special case of Algorithm 2.1. Now we claim that [2, Theorem 1.1] is exactly
a corollary of Theorem 2.2. Indeed it suffices to shows that the sequence {xk}
generated by [2, Algorithm 1.1] is bounded. Let x∗ ∈ S := A−1({0}) and define
ϕk := 1

2‖xk − x∗‖2. Since we have βk = 0 for the case of [2, Algorithm 1.1],
(2.16) reduces to

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk − ρk(1− ρk/2)‖Pky
k − yk‖2

where δk := αk‖xk − xk−1‖2. According to Lemma 2.2 (ii), the limit limk→∞ ϕk

exists. This implies that {xk} is bounded.
Remark 2.3. If in Theorem 2.1, the assumption of the boundedness of

{xk} is removed, and the condition ∑
αk‖xk − xk−1‖2 < ∞ is replaced by the

one
∑

αk‖xk − xk−1‖ < ∞ while other assumptions remain the same, then the
conclusions (i) and (ii) in Theorem 2.1 remain valid. As a matter of fact, let
x∗ ∈ S := A−1({0}). Then it follows from (2.10) and (2.15) that for all k ≥ N0

(2.21)

‖xk+1−x∗‖
≤ ‖yk−x∗‖ = ‖βk(x̃k−x∗) + (1−βk)[xk−x∗ + αk(xk−xk−1)]‖
≤ βk‖x̃k−x∗‖+ (1−βk)[‖xk−x∗‖+ αk‖xk−xk−1‖]

≤ βk(1+
2µ2

k

1−2µ2
k

)1/2‖xk−x∗‖+(1−βk)[‖xk−x∗‖+αk‖xk−xk−1‖]

≤ βk(1+
µ2

k

1−2µ2
k

)‖xk−x∗‖+ (1−βk)[‖xk−x∗‖+αk‖xk−xk−1‖]

≤ (1+
βkµ

2
k

1− 2µ2
k

)‖xk−x∗‖+αk‖xk − xk−1‖.

Hence the boundedness of {xk} immediately follows from Lemma 2.4 applied to
(2.21). Also it is easy to see that

∑
αk‖xk − xk−1‖2 < ∞. Consequently all

assumptions in Theorem 2.1 are all satisfied and so the desired conclusions follows.
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3. AN ALTERNATIVE INEXACT HYBRID SCHEME WITHOUT THE PROJECTION STEP

The following result which extends [2, Theorem. 3.1] shows the weak conver-
gence of an alternative inexact hybrid scheme without the projection step for solving
problem (1.1).

Theorem 3.1. Let A : H → 2H be a maximal monotone operator with
S := A−1({0}) 
= ∅ and {xk} ⊂ H a bounded sequence satisfying

(3.1)




x̃k = JA
λk

(xk + ek),

yk = βkx̃k + (1− βk)[xk + αk(xk − xk−1)] with βk ∈ [0, 1),

λkv
k = uk + η̃k for some vk ∈ ρkA(yk − uk/ρk),

xk+1 = yk − (1− βk)uk,

where the residuals ek, η̃k ∈ H satisfy

(3.2)

{ ‖ek‖ ≤ µk‖x̃k − xk‖ with lim
k→∞

µk = 0,∑ ‖η̃k‖ <∞,
∑ ‖η̃k‖‖yk‖ <∞,

and the parameters λk, αk, and ρk satisfy (1.3), (1.4) and (1.6), respectively. Sup-
pose (1.5), β := supk≥0 βk < 1 and

∑
βkµ

2
k < ∞. Then vk → 0 strongly in H

and there exists x̄ ∈ S such that xk ⇀ x̄ weakly in H .

Proof. We divide the proof into several steps.
(i) Let x∗ be any element of S. Then it follows from (2.12) that there exists an

integer N0 ≥ 1 such that for all n ≥ N0

(3.3)
‖ỹk − x∗‖2 ≤ (1 +

2βkµ
2
k

1− 2µ2
k

)‖xk − x∗‖2 + αk(1− βk)(‖xk − x∗‖2

−‖xk−1 − x∗‖2) + 2αk‖xk − xk−1‖2.

(ii). From (3.1) we can readily see that uk = ρk(yk − JA
λk

(yk + η̃k/ρk)). Let
{wk} be the auxiliary sequence defined by

(3.4) wk := ρk(yk − JA
λk

(yk))

Since JA
λk
is nonexpansive [3],

(3.5) ‖wk − uk‖ ≤ ‖η̃k‖.
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On the other hand, (3.4) may be written as wk = λkρkAλk
(yk) whereAλk

: H → H

is given by Aλk
= 1

λk
(I − JA

λk
). By (1.2),

(3.6) 0 ∈ A(x) ⇔ Aλk
(x) = 0.

Since Aλk
is a cocoercive maximal monotone operator of parameter λk,

(3.7) 〈yk − x∗, Aλk
(yk)〉 ≥ λk‖Aλk

(yk)‖2.

Hence from (3.7) we obtain

(3.8)

1
2
‖yk − (1− βk)wk − x∗‖2

=
1
2
‖yk − x∗‖2 − ρkλk(1− βk)〈yk − x∗, Aλk

(yk)〉

+
(ρkλk)2

2
(1− βk)2‖Aλk

(yk)‖2

≤ 1
2
‖yk − x∗‖2 − λ2

kρk(1− ρk/2)(1− βk)‖Aλk
(yk)‖2

≤ 1
2
‖yk − x∗‖2 − λ2

kρk(1− ρk/2)(1− β)‖Aλk
(yk)‖2.

(iii) Define ϕk := 1
2‖xk − x∗‖2. Then from (3.3), (3.5) and (3.8) we get

(3.9)

ϕk+1 =
1
2
‖yk − x∗ − (1− βk)wk + (1− βk)wk − (1− βk)uk‖2

≤ 1
2
‖yk − x∗ − (1− βk)wk‖2 + (1− βk)‖yk − x∗

−(1− βk)wk‖‖wk − uk‖+
1
2
(1− βk)2‖wk − uk‖2

≤ 1
2
‖yk − x∗‖2 − λ2

kρk(1− ρk/2)(1− β)‖Aλk
(yk)‖2

+‖η̃k‖‖yk − x∗‖+ 1
2‖η̃k‖2

≤ ϕk + αk(1− βk)(ϕk − ϕk−1) + δk

−λ2
kρk(1− ρk/2)(1− β)‖Aλk

(yk)‖2

where δk := βkµ2
k

1−2µ2
k
‖xk − x∗‖2 + αk‖xk − xk−1‖2 + ‖η̃k‖‖yk − x∗‖ + 1

2‖η̃k‖2.
Since (1.5) and (3.2) hold and {xk} is bounded, according to ∑

βkµ
2
k < ∞ we

deduce that
∑

δk < ∞. Thus by virtue of Lemma 2.2 (ii), {ϕk} is convergent.
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Furthermore this together with (1.3), (1.6) and (3.9) implies that λkAλk
(yk) → 0

strongly in H . Set ξk := yk − JA
λk

(yk) which amounts to

(3.10) ξk/λk ∈ A(yk − ξk).

Since Aλk
= 1

λk
(I − JA

λk
), ξk = λkAλk

(yk)→ 0 strongly in H . Hence from (3.4)
and (3.5) we get

(3.11)

‖uk‖ ≤ ‖wk‖+ ‖wk − uk‖
≤ ρk‖yk − JA

λk
(yk)‖+ ‖η̃k‖

≤ R2‖ξk‖+ ‖η̃k‖ → 0 as k →∞.

Together with this (3.1) implies that ‖vk‖ = 1
λk
‖uk + η̃k‖ → 0 and ‖xk+1− yk‖ =

(1 − βk)‖uk‖ → 0 as k → ∞. Let x̂ be a weak cluster point of {xk}. Then x̂
is also a weak cluster point of {yk} and consequently x̂ is a weak cluster point
of {yk − ξk}. By the weak-strong closedness of the graph of A, letting k → ∞
in (3.10) yields 0 ∈ A(x̂). Therefore condition (b) of Lemma 2.3 holds. This
completes the proof.

Remark 3.1. (i) If in Theorem 3.1, we take βk = 0 and η̃k = λkη
k, then (3.1)-

(3.2) reduce to (1.12)-(1.13) in [2, Theorem 1.2]. (ii) [2, Theorem 1.2] is exactly a
corollary of Theorem 3.1. Indeed it suffices to shows that {xk} is bounded under the
conditions of [2, Theorem 1.2]. As a matter of fact, combining (3.9) with βk = 0
implies that

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk

where δk := αk‖xk − xk−1‖2 + λk‖ηk‖‖yk − x∗‖ + λ2
k
2 ‖ηk‖2. From (1.5) and

(1.13), we obtain
∑

δk <∞. Thus in view of Lemma 2.2 (ii), {ϕk} is convergent
and hence {xk} is bounded.

Remark 3.2. If in Theorem 3.1, the assumption of the boundedness of {xk}
is removed, and the condition

∑
αk‖xk − xk−1‖2 <∞ is replaced by

∑
αk‖xk −

xk−1‖ < ∞ while other assumptions remain the same, then the conclusion in
Theorem 3.1 remains valid. As a matter of fact, let x∗ ∈ S := A−1({0}). Then it
follows from (2.10), (3.1), (3.5) and (3.8) that for all k ≥ N0

(3.12)

‖xk+1 − x∗‖
= ‖yk − x∗ − (1− βk)wk + (1− βk)(wk − uk)‖
≤ ‖yk − x∗ − (1− βk)wk‖+ (1− βk)‖wk − uk‖
≤ ‖yk − x∗‖+ (1− βk)‖η̃k‖
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≤ βk‖x̃k − x∗‖+ (1− βk)[‖xk − x∗‖+ αk‖xk − xk−1‖] + ‖η̃k‖

≤ βk(1 +
2µ2

k

1− 2µ2
k

)1/2‖xk − x∗‖+ (1− βk)[‖xk − x∗‖

+αk‖xk − xk−1‖] + ‖η̃k‖

≤ βk(1 +
µ2

k

1− 2µ2
k

)‖xk − x∗‖+ (1− βk)[‖xk − x∗‖

+αk‖xk − xk−1‖] + ‖η̃k‖

≤ (1 +
βkµ

2
k

1− 2µ2
k

)‖xk − x∗‖+ αk‖xk − xk−1‖+ ‖η̃k‖.

Hence the boundedness of {xk} immediately follows from Lemma 2.4 applied to
(3.12). Also it is easy to see that

∑
αk‖xk − xk−1‖2 < ∞. Consequently all

assumptions in Theorem 3.1 are actually satisfied and so the desired conclusion is
attained.
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