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OSCILLATION THEOREM FOR SECOND-ORDER
DIFFERENCE EQUATIONS

Jinfa Cheng and Yuming Chu

Abstract. Sufficient and necessary conditions are established for the second-
order difference equations

∆(rn−1∆xn−1) + pnxγ
n = 0, n = 1, 2, . . .

where γ is the quotient of odd positive integers. Our results extend the well
known oscillation theorem which was proved in [1,JMAA,91:9-29,1983], and
answer an open problem in [2] when rn = 1, γ = 1.

1. INTRODUCTION

Consider the second order difference equations

(1) ∆(rn−1∆xn−1) + pnxγ
n = 0, n = 1, 2, . . .

where ∆xn = xn+1 − xn,γ is the quotient of odd positive integers and pn, rn ∈
(0,∞) for n = 1, 2, . . . with pn not eventually equal to zero. Denote

(2) Rn =
n−1∑
s=0

1
rs

and assume

(3) lim
n→∞Rn =

∞∑
s=0

1
rs

= ∞.
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A solution xn of Eq. (1) is oscillatory if xn are neither eventually all positive
nor eventually all negative. Otherwise, it is called nonoscillatory.

Eq. (1) is a discrete analogue of the second order equation

(4) (r(t)y′)′ + p(t)yγ = 0

which appears in astrophysics, relativistic mechanics,nuclear physics,chemical reac-
tions,etc (See [2]).

we say that Eq. (1) and Eq.(4) is strictly superlinear if γ > 1; strictly sublinear
if 0 < γ < 1; and linear if γ = 1.

When rn = 1,Eq. (1) was reduced to

(5) ∆2xn−1 + pnxγ
n = 0, n = 1, 2, . . .

which is the discrete analogue of the Emden-Fowler equation ([2])

(6) y′′ + p(t)yγ = 0.

In the past years, the theory of the oscillatory behavior of second-order differen-
tial and difference equations have been investigated by many authors, and numerous
oscillation criteria have been obtained (see [1-9]). For example, for the linear dif-
ferential equations, that is, when γ = 1, numerous oscillation criteria have been
obtained. when γ = 1, r(t) = 1, most important conditions that guarantee Eq.(4) is
oscillatory as follows:
(A1) lim

t→∞
∫ t
t0

p(s)ds = ∞. (Fite[3])

(A2) lim
t→∞

1
t

∫ t
t0

∫ s
t0

p(u)duds = ∞. (W intner[4])

(A3) −∞ < lim
t→∞ inf 1

t

∫ t
t0

∫ s
t0

p(u)duds < lim
x→∞ sup 1

t

∫ t
t0

∫ s
t0

p(u)duds ≤ ∞. (Hart-
man[5]).
Kamenev [6] gave another condition for the oscillation, i.e.,

(A4) lim
t→∞ sup 1

tn

∫ t
0 (t − s)np(s)ds = ∞, n > 1.

The Kamenev criterion has been extended by several authors. Among them,
when γ = 1, r(t) �= 1, Philos [7], Q.Kong [8] obtain results on the oscillation
by replacing the kerned function (t − s)n by a general class of functions H(t, s)
satisfying certain assumptions. This class of functions is as follows: Let H : D ≡
{(t, s) : t ≥ s ≥ t0} → R be a continuous function such that

H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 for t > s ≥ t0,

and has a continuous and nonpositive partial derivative Hs(t, s) on D with respect
to the second variable. Moreover, let h : D → R be a continuous function with

Hs(t, s) = −h(t, s)
√

H(t, s) for all (t, s) ∈ D,
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some related concrete results can be found in [7-8] and the references therein.
However, most of these articles only discussed the sufficient conditions by use of
the Raccati technique and integral averaging technique. Just a few of them have
studied the necessary and sufficient conditions for the oscillatory behavior. In [1],
the authors studied oscillatory criteria for Eq.(5) and obtained very important results.
To the best of our knowledge, paper [1] is probably the only one publications on the
necessary and sufficient conditions for the oscillatory of solution of second-order
difference equations.

The following theorem was established by Hooker and Patula [1].

Theorem A. (a) Assume that

(7)
∞∑

n=1

npn < ∞

Then Eq. (5) has a bounded nonoscillatory solution.
(b) Assume that γ > 1. Then every solution of Eq. (5) oscillates if and only if

(8)
∞∑

n=1

npn = ∞.

(c) Assume that γ = 1 and

(9)
∞∑

n=1

pn = ∞.

Then every solution of Eq. (5) oscillates.
(d) Assume that 0 < γ < 1, then every solution of Eq. (5) oscillates if and

only if

(10)
∞∑

n=1

nγpn = ∞.

It is interesting to note that when γ �= 1, that is when Eq.(5) is nonlinear, we
know necessary and sufficient conditions for oscillation. However, for the linear
equation, that is when γ = 1, necessary and sufficient conditions for oscillation are
not known. It follows from Theorem A (a) that when γ = 1,

∞∑
n=1

npn = ∞

is a necessary condition for all bounded solutions to oscillate. But is it sufficient?
(see[2])
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Motived by these results, our aim in this paper is to investigate the oscillatory
of the solution of so-called generalized Emden-Fowler difference equation (1) and
establish several sufficient and necessary conditions. Our following results extent
Theorem A and answer the above problem .

Our main results are:

Theorem. Assume that (3) holds, then the following statements are true:
(a) Assume that

(11)
∞∑

n=1

Rnpn < ∞

Then Eq. (1) has a bounded nonoscillatory solution.
(b) Assume that γ > 1, then every solution of Eq. (1) oscillates if and only if

(12)
∞∑

n=1

Rnpn = ∞.

(c) Assume that γ = 1, then every bounded solution of Eq. (1) oscillates if and
only if

(13)
∞∑

n=1

Rnpn = ∞.

(d) Assume that 0 < γ < 1, then every solution of Eq. (1) oscillates if and
only if

(14)
∞∑

n=1

Rγ
npn = ∞.

Remark 1. When rn = 1, then Rn = n, our theorem extend and improve
Theorem A.

2. THE PROOF OF THE THEOREM

Before we present the proof of the theorem we need the following lemma.

Lemma. Assume that (3) holds and the Eq. (1) has nonoscillatory solution.
Then Eq. (1) has a solution {xn} such that for some N > 0,

(15) xn > 0, ∆xn > 0, and ∆(rn∆xn) < 0 for n ≥ N.
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Proof. As γ is the quotient of odd integers, the opposite of a solution is also a
solution and so Eq. (1) has a solution {xn} which is eventually positive. That is,
there exists N > 0 such that

xn > 0 for n ≥ N.

From Eq. (1) we see that

∆(rn−1∆xn−1) = −pnxγ
n < 0, for n ≥ N

Therefore, rn−1∆xn−1 is monotone decreasing for n ≥ N. The next cases are
possible:

Case 1. rn−1∆xn−1 < 0, n ≥ N. then we have rn−1∆xn−1 ≤ rN−1∆xN−1 =

cN−1 < 0, n ≥ N, and obtain∆xn−1 ≤ cN−1
1

rn−1
, xn ≤ xN−1+cN−1

n∑
s=N

1
rs−1

→
−∞, which contradicts the assumption that xn > 0.

Case 2. rn−1∆xn−1 > 0, n ≥ N. In this case, we have

∆xn > 0, n ≥ N.

The proof of the lemma is complete.

Proof of the Theorem.
(a) Assume that (11) holds. We must prove that Eq. (1) has a bounded nonoscil-

latory solution.
Observe that if {xn} satifies the equation

(16) xn = 1−
∞∑

i=n+1

(Ri − Rn)pix
γ
i ,

then {xn} is a solution of Eq. (1). Therefore it suffices to show that Eq. (16) has
bounded nonoscillatory solution. To this end, choose N so large that

(17) max{
∞∑

i=N

Ripi, 2γ
∞∑

i=N

Ripi} <
1
2
.

Consider the Banach space lN∞ of all bounded, real sequences z = {zn}n≥N with
the norm defined by ||z|| = sup

n≥N
|zn|.
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Set

(18) S = {z ∈ lN∞ :
1
2
≤ zn ≤ 1, n ≥ N}.

Clearly S is a closed subset of lN∞. Define the mapping T on S by

(19) (Tz)n = 1 −
∞∑

i=n+1

(Ri − Rn)piz
γ
i for n ≥ N.

Note that zγ
i ≤ 1 and so

(Tz)n ≥ 1 −
∞∑

i=n+1

(Ri − Rn)pi ≥ 1
2

for n ≥ N.

Also clearly, (Tz)n ≤ 1. Thus T : S → S. We now claim that T is a contraction
on S. Set f(x) = xγ , we find for x1, x2 ∈ ( 1

2 , 1),

|xγ
1 − xγ

2 | ≤ |f ′(ξ)||x1 − x2|, where ξ ∈ (min{x1, x2}, max{x1, x2}).
But

|f(x)| = |γξγ−1| ≤
{

γ if γ ≥ 1 ,

2γ if 0 < γ < 1 .

And so
|xγ

1 − xγ
2 | ≤ 2γ|x1 − x2| for x1, x2 ∈ (

1
2
, 1).

Let z, w ∈ S. Then for n ≥ N ,

|(Tz)n − (Tw)n| ≤
∞∑

i=n+1

(Ri − Rn)pi|zγ
i − wγ

i |

≤ 2γ

∞∑
i=n+1

(Ri − Rn)pi|zi − wi|

≤ 2γ|z − w|
∞∑

i=n+1

(Ri − Rn)pi ≤ 1
2
||z − w||.

Hence

(20) ||Tz − Tw|| ≤ 1
2
||z − w||.

and so T is a contraction on S. The (unique) fixed point of T is the desired bounded,
nonoscillatory solution of Eq. (16).
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(b) Assume that (12) holds,we must prove every solution of Eq. (1) oscillates.
Otherwise by lemma , Eq. (1) has a solution {xn} such that (15) holds. By
multiplying both sides of Eq. (1) by Rnx−γ

n and then by summing up we obtain

k−1∑
n=N

Rnx−γ
n ∆(rn−1∆xn−1)+

k−1∑
n=N

Rnpn = 0.

By using the summation-by-parts formula we find

Rkx
−γ
k rk−1∆xk−1−RNx−γ

N rN−1∆xN−1−
k−1∑
n=N

rn∆xn∆(Rnx−γ
n )+

k−1∑
n=N

Rnpn = 0.

Hence

(21)
k−1∑
n=N

rn∆xn∆(Rnx−γ
n ) = ∞.

Now observe that

∆(Rnx−γ
n ) =

1
rn

x−γ
n+1 + Rn∆(x−γ

n ) ≤ 1
rn

x−γ
n+1.

and so

(22)
k−1∑
n=N

rn∆xn∆(Rnx−γ
n ) ≤

k−1∑
n=N

rn∆xn
1
rn

x−γ
n+1 =

k−1∑
n=N

∆xnx−γ
n+1

Set f(x) = xn + (∆xn)(x − n) for n ≤ x ≤ n + 1 and n ≥ N , then f is
continuous and increasing for x ≥ N , and so

x−γ
n+1∆xn =

∫ n+1

n
x−γ

n+1∆xndx =
∫ n+1

n
f(n + 1)−γf ′(x)dx

<

∫ n+1

n
f(x)−γf ′(x)dx =

1
γ − 1

[f(n + 1)1−γ − f(n)1−γ ]

By summing up from n = N to n = k − 1 we obtain

k−1∑
n=N

x−γ
n+1∆xn ≤ 1

γ − 1
[f(k)1−γ − f(N )1−γ] ≤ f(N )1−γ

γ − 1

which because of (22) contradicts (21).
Conversely we must prove that if every solution of Eq. (1) oscillates and γ > 1,

then (12) holds. Otherwise (11) holds and by (a) we obtain the contraction that Eq.
(1) has a nonoscillatory solution.
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(c) Assume that γ = 1, We will prove that every bounded solution of Eq. (1)
oscillates. Otherwise by lemma , Eq. (1) has a solution {xn} such that (15) holds,
then lim

n→∞xn = c > 0, and there exists N > 0 such that

c

2
≤ xn ≤ c, for n > N.

By means of Eq. (1), we have

(23) ∆(rn−1∆xn−1) +
c

2
pn ≤ 0, for n > N,

multiplying both sides of inequality (23) by Rn and then by summing up we obtain

k−1∑
n=N

Rn∆(rn−1∆xn−1)+
c

2

k−1∑
n=N

Rnpn ≤ 0.

By the summation-by-parts formula we have

Rkrk−1∆xk−1 − RNrN−1∆xN−1 −
k−1∑
n=N

rn∆xn∆Rn+
c

2

k−1∑
n=N

Rnpn ≤ 0,

Observe that
k−1∑
n=N

rn∆xn∆Rn =
k−1∑
n=N

∆xn = xk − xN then we get

Rkrk−1∆xk−1 − RNrN−1∆xN−1 − xk + xN +
c

2

k−1∑
n=N

Rnpn ≤ 0,

from above inequality we have xk → ∞, which obviously contradicts the bounded
behavior of xn .

Conversely, we should prove that if every bounded solution of Eq. (1) oscillates
then (13) holds. Otherwise (11) holds and by (a) we obtain the contraction that Eq.
(1) has a bounded nonoscillatory solution.

(d) Assume that (14) holds, we shall prove that every solution of Eq. (1)
oscillates. Otherwise by lemma, Eq. (1) has a solution {xn} such that (15) holds.

Set gn = rn∆xn, then ∆gn = ∆(rn∆xn) < 0, gn is decreasing for n ≥ N .
Observe that for n ≥ N ,

xn − xN =
n−1∑
s=N

∆xs =
n−1∑
s=N

gs

rs
≥ gn

n−1∑
s=N

1
rs

and so

(24)
xn

gn
=

xn

rn∆xn
≥

n−1∑
s=N

1
rs

, for n ≥ N.
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By dividing both terms of Eq. (1) by (rn∆xn)γ ,and then applying (24), and finally
by summing up from n = N to n = k, we obtain

(25)
k∑

n=N

∆(rn∆xn)
(rn∆xn)γ

+
k∑

n=N

Rγ
npn ≤ 0.

In view of (25) it follows that

(26)
k∑

n=N

∆(rn∆xn)
(rn∆xn)γ

= −∞.

Set g(x) = rn∆xn+∆(rn∆xn)(x−n) for n ≤ x ≤ n+1 and n ≥ N ,then
g(x) is continuous and decreasing for n ≥ N .

g(x) ≤ g(n) = rn∆xn, for n ≤ x ≤ n + 1.

Then we have

∆(rn∆xn)
(rn∆xn)γ

=
∫ n+1

n

∆(rn∆xn)
(rn∆xn)γ

dx ≥
∫ n+1

n

g′(x)
gγ(x)

dx

By summing up from n = N to n = k, this implies that

k∑
n=N

∆(rn∆xn)
(rn∆xn)γ

≥ g1−γ(k) − g1−γ(N )
1 − γ

≥ −g1−γ(N )
1 − γ

,

which, as k → ∞ contradicts (26).
Conversely, we should prove that if every solution of Eq. (1) oscillates, then

(14) holds. Otherwise
∞∑

n=1
Rγ

npn < ∞.

Now choose N0 so large that
∞∑

n=N0

Rγ
npn < 1

2 . Let {xn} be the unique solution
of solution of Eq. (1) with

xN0 = 0, xN0+1 =
1

rN0

.

That is
xN0 = 0, gN0 = rN0∆xN0 = 1.

By induction, we can prove that

(27)
1
2
≤ gn = rn∆xn ≤ 1 for all n ≥ N0.
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In fact, assume that 1
2 ≤ rn∆xn ≤ 1 for n ≤ N − 1,where N > N0, then it is

obvious that xn ≥ 0 for n ≤ N − 1. We obtain

xn = xn − xN0 =
n−1∑
s=N0

∆xs =
n−1∑
s=N0

gs

rs
≤

n−1∑
s=N0

1
rs

for n ≤ N.

Therefore

1 ≥ rN∆xN = rN0∆xN0 −
N−1∑
s=N0

psx
γ
s

≥ rN0∆xN0 −
∞∑

s=N0

psR
γ
s ≥ 1 − 1

2 = 1
2 .

That is: 1
2 ≤ rn∆xn ≤ 1 for n = N . So (27) holds. {xn} is a nonoscillatory

solution of Eq. (1). This contradiction completes the proof of part (d).
The proof of the theorem is complete.

Remark 2. From the above proof of the theorem, we see that our results are
also valid for following more general equation:

∆(rn−1∆xn−1) + pn|xn|γsgnxn = 0, n = 1, 2, ...

where γ > 0.
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