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ON QUASI-ARMENDARIZ MODULES

Muhittin Başer and M. Tamer Koşan

Abstract. In this paper, we introduce the concept of a (α-) quasi-Armendariz
module, principally quasi-Baer module and syudy its some properties. In
particular, we show: (1) For an α-quasi-Armendariz module MR, MR is a
principally quasi-Baer module if and only if M [x; α]R[x;α] is a principally
quasi-Baer module. (2) A necessary and sufficient condition for a trivial
extensions to be quasi-Armendariz is obtained. Consequently, new families of
quasi-Armendariz rings are presented.

1. INTRODUCTION

Throughout this work all rings R are associative with identity and modules are
unital right R-modules and α : R −→ R is an endomorphism of the ring R. In
[7] Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal
of R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al.
[4] called a ring R right (resp. left) principally quasi-Baer [or simply right (resp.
left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left)
ideal of R is generated by an idempotent. R is called p.q.-Baer if it is both right
and left p.q.-Baer. A ring R is called a right (resp. left) p.p.-ring if the right (resp.
left) annihilator of every element of R is generated by an idempotent. R is called a
p.p.-ring if it is both a right and left p.p.-ring. A ring is called reduced ring if it has
no nonzero nilpotent elements and MR is called α-reduced module by Lee-Zhou
[13] if, for any m ∈ M and a ∈ R, (1) ma = 0 impliesmR∩Ma = 0, (2) ma = 0
iff mα(a) = 0, where α : R −→ R is a ring endomorphism with α(1) = 1. The
module MR is called a reduced module if M is 1R-reduced. It is clear that R is a
reduced ring iff RR is a reduced module.

In [13] Lee-Zhou introduced the following notation. For a module MR, we
consider M [x; α] =

{∑s
i=0 mix

i : s ≥ 0, mi ∈ M
}

. This set is an abelian group
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under an obvious addition operation. Moreover M [x; α] becomes a module over
R[x; α] under the following scalar product operation:
Form(x) =

∑s
i=0 mix

i ∈ M [x; α] and f(x) =
∑t

j=0 ajx
j ∈ R[x; α],m(x)f(x) =∑s+t

k=0

(∑
i+j=k miα

i(aj)
)

xk.

The modules M [x; α] is called the skew polynomial extension of M . When α is
identity, we write M [x]R[x] for M [x; 1R]R[x;1R].

According to Lee-Zhou [13] a module MR is called α-Armendariz if the fol-
lowing conditions are satisfied:

(1) For m ∈ M and a ∈ R, ma = 0 if and only if mα(a) = 0,
(2) For any m(x) =

∑s
i=0 mix

i ∈ M [x; α] and f(x)=
∑t

j=0 ajx
j ∈R[x; α],

m(x)f(x) = 0 implies miα
i(aj)=0 for all i and j.

The moduleMR is Armendariz iff MR is 1R-Armendariz. If MR is α-reduced then
MR is α-Armendariz.

For a subsetX of a moduleMR, let rR(X) = {r ∈ R : Xr = 0}. In [13] Lee-
Zhou introduced Baer modules, quasi-Baer modules and p.p.-modules as follows.

(1) MR is called Baer if, for any subsetX ofM , rR(X)=eR where e2 =e∈R.
(2) MR is called quasi-Baer if, for any submodule N of M , rR(N ) = eR where

e2 = e ∈ R.
(3) MR is called principally projective (or simply p.p.) if, for any m ∈ M ,

rR(m) = eR where e2 = e ∈ R.

2. QUASI-ARMENDARIZ MODULES AND PRINCIPALLY QUASI-BAER MODULES

Our focus in this section is to introduce the concept of a (α-) quasi-Armendariz
module, principally quasi-Baer module and study its some properties. It is easy to
see that the notation of quasi-Armendariz modules generalize that of Armendariz
modules as well as that α-reduced modules. We investigate connections to other
related conditions.

Following [16] a ring R is called Armendariz if, for any polynomials f(x) =∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j ∈ R[x], f(x)g(x) = 0 implies aibj = 0 for

all i and j. This notion is generalized by Hirano [8] as the follows; a ring R is
called quasi-Armendariz if, whenever f(x)R[x]g(x) = 0, where f(x) =

∑m
i=0 aix

i,
g(x) =

∑n
j=0 bjx

j ∈ R[x] then aiRbj = 0 for all i and j.
Armendariz rings are quasi-Armendariz. A commutative ring R is Armendariz

if and only if it is quasi-Armendariz. The following example shows that there exists
a quasi-Armendariz ring R such that R is not Armendariz.
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Example 2.1. Let F be a field and consider the ring

R =
(

F F
0 F

)
.

Then by ([11], Example 1), R is not Armendariz. Since F is a quasi-Armendariz,

R =
(

F F

0 F

)
is a quasi-Armendariz by [8, Corollary 3.15].

Following Anderson and Camillo [1], a right R module M is called an Armen-
dariz module if, whenever m(x)f(x) = 0 where m(x) =

∑n
i=0 mix

i ∈ M [x] and
f(x) =

∑s
j=0 ajx

j ∈ R[x], then miaj = 0 for all i and j. Similarly one can define
an Armendariz left R-module. Generalizing this definition, we begin the following.

Definition 2.2. A right R-module M is called quasi-Armendariz if, whenever
m(x)R[x]f(x) = 0 where m(x) =

∑n
i=0 mix

i ∈ M [x] and f(x) =
∑s

j=0 ajx
j ∈

R[x], then miRaj = 0 for all i and j.

Clearly, R is a quasi-Armendariz ring if and only if RR is a quasi-Armendariz
right R-module and Armendariz modules are quasi-Armendariz.

Example 2.3. Several easyexamplesofquasi-Armendarizmodules can be given:
(1) Every reduced module is a quasi-Armendariz module. (2) For any n ∈ Z, Zn

is a quasi-Armendariz Z-module.

Lemma 2.4. Let M be an R-module.

(1) The following are equivalent:
(a) For any m(x) ∈ M [x], (rR[x](m(x)R[x]) ∩ R)[x] = rR[x](m(x)R[x]).
(b) For any m(x) =

∑n
i=0 mix

i ∈ M [x] and f(x) =
∑t

j=0 ajx
j ∈ R[x],

m(x)R[x]f(x) = 0 implies miRaj = 0.
(2) Let MR be a quasi-Armendariz module and m(x) ∈ M [x].

If rR[x](m(x)R[x]) �= 0, then rR[x](m(x)R[x])∩ R �= 0.

Proof. (1) (a) ⇒ (b) Let m(x) =
∑n

i=0 mix
i ∈ M [x] and f(x) =

∑t
j=0 ajx

j

∈ R[x] be such that m(x)R[x]f(x) = 0. Then f(x) ∈ rR[x](m(x)R[x]). By
(a) f(x) ∈ (rR[x](m(x)R[x]) ∩ R)[x], and so aj ∈ rR[x](m(x)R[x]) ∩ R for all
j = 0, 1, ..., t. Then m(x)R[x]aj = 0 and so miRaj = 0 for all i and j.

(b) ⇒ (a) Let g(x) =
∑s

j=0 bjx
j ∈ (rR[x](m(x)R[x]) ∩ R)[x]. Then bj ∈

rR[x](m(x)R[x]) and so m(x)R[x]bj = 0 for all j. Then m(x)R[x]g(x) = 0.
Hence g(x) ∈ rR[x](m(x)R[x]). Therefore (rR[x](m(x)R[x])∩R)[x]⊆ rR[x](m(x)
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R[x]). Let h(x) =
∑k

j=0 cjx
j ∈ rR[x](m(x)R[x]). Then m(x)R[x]h(x) =

0. By (b) miRcj = 0. Therefore m(x)R[x]cj = 0 for all j. Hence cj ∈
rR[x](m(x)R[x]) ∩ R for all j, and so h(x) ∈ (rR[x](m(x)R[x]) ∩ R)[x]. Thus
rR[x](m(x)R[x]) ⊆ (rR[x](m(x)R[x])∩R)[x]. Hence (rR[x](m(x)R[x])∩R)[x] =
rR[x](m(x)R[x]).

(2) Clear from (1) (b) ⇒ (a).

A generalization of a zero commutative ring is a semicommutative ring. A ring
R is semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Historically, some
of the earliest results known to us about semicommutative rings (although not so
called at the time) was due to Shin [17].

McCoy [15] proved that if R is a commutative ring, then whenever g(x) is a
zero-divisor in R[x], there exists a non-zero element c ∈ R such that cg(x) = 0
and Hirano [8] proved that if R is a semi-commutative ring, then whenever f(x) is
a zero-divisor in R[x] there exists a non-zero element c ∈ R such that f(x)c = 0.
We shall extend these results to module case.

Proposition 2.5. Let M be a reduced module. If m′(x) is a torsion element in
M [x] (i.e. m′(x)h(x) = 0 for some 0 �= h(x) ∈ R[x]), then there exists a non-zero
element c of R such that m ′(x)c = 0.

Proof. Let m′(x) =
∑n

i=0 mix
i and h(x) =

∑s
j=0 hjx

j and m′(x)h(x) = 0.
Then

(1) m0h0 = 0 ;
(2) m0h1 + m1h0 = 0 ;
(3) m0h2 + m1h1 + m2h0 = 0 ;
...

...

(n + s) mnhs = 0.

Note that for a reduced moduleM for any m ∈ M and any a ∈ R, ma = 0 implies
mRa = 0 and ma2 = 0 impliesma = 0 by Lemma 1.2 in [13]. By (1)m0Rh0 = 0
since M is reduced. Multiplying (2) by h0 from the right and using hypothesis we
obtain m1Rh0 = 0 and so m0Rh1 = 0. Multiplying (3) by h0 from the right and
using hypothesis, from (1) and (2), we have m2h0 = 0, m1h1 = 0, m0h2 = 0, and
so m2Rh0 = 0, m1Rh1 = 0, m0Rh2 = 0. By induction, miRhj = 0 for all i and
j. Assume that h(x) �= 0. Then at least one of coefficients of h(x) is nonzero, say
hj0 �= 0. Then m′(x)hj0 = 0. This completes the proof.

Now, we give the following new definition which is connected with Lee-Zhou
definitions.
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Definition 2.6. The module M is called principally quasi-Baer module (p.q.-
Baer for short) if, for any m ∈ M , rR(mR) = eR where e2 = e ∈ R.

It is clear that R is a right p.q.-Baer ring iff RR is a p.q.-Baer module. If R is
a p.q.-Baer ring, then for any right ideal I of R, IR is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer
module is p.q.-Baer, and every Baer module is quasi-Baer. If R is commutative
then MR is p.p.-module iff MR is p.q.-Baer module.

We can give the following definition by considering definition of α-Armendariz
module.

MR is called α-quasi-Armendariz if the following conditions are satisfied:

(1) For any m ∈ M and any a ∈ R, ma = 0 if and only if mα(a) = 0,

(2) For any m(x) =
s∑

i=0

mix
i ∈ M [x; α] and f(x) =

t∑
j=0

ajx
j ∈ R[x; α],

m(x)R[x; α]f(x) = 0 implies miRαi(aj) = 0 for all i and j.

Note that the module MR is quasi-Armendariz if and only if MR is 1R-quasi-
Armendariz.

Theorem 2.7. Let M be an α-quasi-Armendariz module. Then MR is a
p.q.-Baer module if and only if M [x; α]R[x;α] is a p.q.-Baer module.

Proof. Assume that M [x; α]R[x;α] is a p.q.-Baer module. Let m ∈ M .
Then there exists an idempotent f(x) ∈ R[x; α] such that rR[x;α](mR[x; α]) =
f(x)R[x; α]. Note that f(x)R[x; α] ⊆ rR[x;α](mR) = rR(mR)[x; α] always
holds. Let g(x) = b0 + ... + btx

t ∈ rR(mR)[x; α]. Then mRbj = 0 for all
0 ≤ j ≤ t. By hypothesis mRαi(bj) = 0 for all i and 0 ≤ j ≤ t. Let
h(x) =

∑s
k=0 ckx

k ∈ R[x; α]. Then mh(x)bj =
∑s

k=0 mckα
k(bj)xk = 0 for

all j, and so mh(x)g(x) = 0 for all h(x) =
∑s

k=0 ckx
k ∈ R[x; α]. Hence g(x) ∈

rR[x;α](mR[x; α]). Thus rR[x;α](mR[x; α]) = f(x)R[x; α] = rR(mR)[x; α]. Let
f(x) = a0 + a1x + ... + anxn where all ai ∈ rR(mR). Note that, for any
a ∈ rR(mR), f(x)a = a. Hence f(x)a = (a0 + a1x + ... + anxn)a = a0a +
a1xa + ...+ anxna = a implies that a = a0a. Since a2

0 = a0 and rR(mR) = a0R,
MR is a p.q.-Baer module.

For the converse, assume that MR is p.q.-Baer. Let m(x) = m0 + m1x +
... + mnxn ∈ M [x; α]. Then rR[x](m(x)R[x]) = (rR[x](m(x)R[x]) ∩ R)[x] =
rR(m(x)R[x])[x] by Lemma 2.4. Let CmR the set of all coefficients of m(x)R[x],
i.e., CmR = {miR : i = 0, ..., n}. rR[x](m(x)R[x]) ∩ R = rR(m(x)R[x]) =
rR(CmR). Since MR is p.q.-Baer, rR(CmR) = ∩n

i=0rR(miR) = ∩n
i=0eiR, where

e2
i = ei ∈ R and rR(miR) = eiR. We claim that ∩n

i=0eiR = eR, where e2 =
e ∈ R. Since m1Re1 = 0, m1Re0e1 = 0 and so e0e1 ∈ rR(m1R) = e1R.
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Thus e1e0e1 = e0e1. Let f1 = e0e1 Then f 2
1 = (e0e1)(e0e1) = e0e1 = f1 and

e0R ∩ e1R = f1R. Since m2Re2 = 0, m2Rf1e2 = 0 and so f1e2 ∈ rR(m2R) =
e2R. Hence e2f1e2 = f1e2. Let f2 = f1e2. Then f2

2 = f2 and f1R ∩ e2R = f2R.
Continuing this process, we obtain f 2

n = fn ∈ R such that ∩n
i=0eiR = fnR. Thus

rR[x;α](m(x)R[x; α]) = rR(CmR)[x; α] = fnR[x; α].

Theorem 2.8. Let MR be a reduced module. Then the following statements
are equivalent;

(1) MR is a p.p.-module.
(2) MR is a p.q.-Baer module.
(3) M [x]R[x] is a p.p.-module.
(4) M [x]R[x] is a p.q.-Baer module.

Proof. (1) ⇔ (3) By [13, Corollary 2.12].
(2) ⇔ (4) Clear by Theorem 2.7 since every reduced module is quasi-Armendariz.
(1) ⇔ (2) Let m ∈ M . If a ∈ rR(m) then ma = 0 and by [13, Lemma 1.2],

mRa = 0 and so a ∈ rR(mR). Then rR(m) ⊆ rR(mR). But rR(mR) ⊆ rR(m)
obviously holds. Consequently, rR(mR) = rR(m) = eR. Hence the claim
follows.

3. WHEN IS A TRIVIAL EXTENSION QUASI-ARMENDARIZ?

Given a ring R and a bimodule RMR, the trivial extension of R by M is the
ring T (R, M) = R ⊕ M with the usual addition and multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrices
(

a m

0 a

)
where a ∈ R, m ∈ M .

Lemma 3.1. ([14, Lemma 2.1]) Let M be an (R, R)-bimodule. Then M [x] is
an (R[x], R[x])-bimodule and T (R[x], M [x]) = T (R, M)[x].

Proposition 3.2. Let M be an (R, R)-bimodule. If the trivial extension
T (R, M) is a quasi-Armendariz ring, then M is a quasi-Armendariz left and right
R-module.

Proof. Let m(x) = m0 + m1x + ... + msx
s ∈ M [x], f(x) = a0 + a1x + ... +

anxn ∈ R[x] and suppose that f(x)R[x]m(x) = 0. For an arbitrary c ∈ R, n ∈ M
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we have the following equation:
[

n∑
i=0

(
ai 0
0 ai

)
xi

](
c n
0 c

)
 s∑

j=0

(
0 mj

0 0

)
xj




=
(

f(x) 0
0 f(x)

)(
c n
0 c

)(
0 m(x)
0 0

)

=
(

f(x)c f(x)n
0 f(x)c

) (
0 m(x)
0 0

)
=

(
0 f(x)cm(x)
0 0

)
= 0.

Since T (R, M) is quasi-Armendariz,(
ai 0
0 ai

)(
c n

0 c

)(
0 mj

0 0

)
= 0

for all i and j. Therefore aicmj = 0 for all i and j. Consequently, M is a
quasi-Armendariz left R-module. Similarly, M is a quasi-Armendariz right R-
module.

Letting RMR =R RR yields the following:

Corollary 3.3. If the trivial extension T (R, R) is a quasi-Armendariz ring,
then also R is quasi-Armendariz.

Theorem 3.4. Let M be an (R, R)-bimodule such that

(1) R is a quasi-Armendariz ring.
(2) M is an Armendariz left and quasi-Armendariz right R-module.
(3) If f(x)Rg(x) = 0 in R[x], then f(x)M [x] ∩ M [x]g(x) = 0.

Then the trivial extension T (R, M) is a quasi-Armendariz ring.

Proof. Suppose that α(x)T (R, M)β(x) = 0 where

α(x) =
(

a0 m0

0 a0

)
+

(
a1 m1

0 a1

)
x + . . . +

(
an mn

0 an

)
xn ∈ T (R, M)[x],

β(x) =
(

b0 l0
0 b0

)
+

(
b1 l1
0 b1

)
x + . . . +

(
bs ls
0 bs

)
xs ∈ T (R, M)[x],

Let
f(x) = a0 + a1x + . . . + anxn, g(x) = b0 + b1x + . . . + bsx

s,

m(x) = m0 + m1x + . . . + mnxn, l(x) = l0 + l1x + . . . + lsx
s.
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Then f(x), g(x) ∈ R[x] and m(x), l(x) ∈ M [x]. For an arbitrary
(

a m

0 a

)
∈

T (R, M), it follows that

0 =
(

f(x) m(x)
0 f(x)

)(
a m

0 a

)(
g(x) l(x)
0 g(x)

)

=
(

f(x)ag(x) f(x)al(x) + f(x)mg(x) + m(x)ag(x)
0 f(x)ag(x)

)
.

Thus f(x)ag(x) = 0 and f(x)al(x)+ f(x)mg(x)+ m(x)ag(x) = 0. Since a ∈ R

arbitrary, f(x)Rg(x) = 0. Since R is a quasi-Armendariz by (1), aiRbj = 0
for all i and j. Since f(x)[al(x) + mg(x)] + [m(x)a]g(x) = 0, f(x)[al(x) +
mg(x)] = −[m(x)a]g(x) ∈ f(x)M [x]∩M [x]g(x) = 0, so f(x)[al(x)+mg(x)] =
[m(x)a]g(x) = 0. since a ∈ R arbitrary m(x)Rg(x) = 0. Then by (2), miRbj = 0
for all i and j. And f(x)[al(x)] = −[f(x)m]g(x) ∈ f(x)M [x] ∩ M [x]g(x) =
0 by (3).So f(x)al(x) = 0 and hence f(x)Rl(x) = 0. Then by (2), M is an
Armendariz left R-module and hence M is a quasi-Armendariz left R-module.
Therefore aiRlj = 0 for all i and j. For arbitrarym ∈ M , we have f(x)mg(x) = 0.
But f(x)m ∈ M [x] and sinceM is an Armendariz left R-module by (2), we obtain
aimbj = 0 for all i and j. Therefore(

ai mi

0 ai

)(
c n

0 c

) (
bj lj
0 bj

)
=

(
aicbj aiclj + ainbj + micbj

0 aicbj

)
= 0

for all i, j and
(

c n
0 c

)
∈ T (R, M). Consequently the trivial extension T (R, M)

is a quasi-Armendariz ring.
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