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ON MINIMAL DISPLACEMENT PROBLEM AND

RETRACTIONS OF BALLS ONTO SPHERES

Kazimierz Goebel

Abstract. We present here various facts and examples concerning the evalu-

ation of the minimal displacement d(T ) = inf ‖Tx − x‖ for some classes of
Lipschitz self mappings of balls in Banach spaces.

Let (X, ‖ · ‖) be an infinite-dimensional Banach space with the unit ball B and
the unit sphere S. The term minimal displacement problem has been first used by

the present author in [4]. It came from the observation that while looking for the

fixed points of a mapping T : B → B we often exercise the evaluation of the

quantity

d(T ) = inf
x∈B

‖x− Tx‖

called the minimal displacement of T .

Sometimes we are able to establish some uniform estimates for T ’s belonging
to certain class T . The minimal displacement for the whole class is defined as

d(T ) = sup
T∈T

d(T ) = sup
T∈T

inf
x∈B

‖x− Tx‖.

The class T under concern is often divided into subclasses T (k) indexed by a certain
parameter k. In this case we can also investigate the function of this parameter,
namely,

ψ(k) = d(T (k)).

Our aim here is to present some aspects of this problem via relatively simple

examples. The whole theory can be presented in more general settings but here we

restrict ourselves to the case of subclasses of Lipschitz maps defined on the ball.
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We show some connections to another problem of finding Lipschitz retractions of

B onto its sphere S. For more details we refer the reader to [6].
We shall denote here by L the class of all Lipschitz maps. L is naturally divided

into subclasses L(k) indexed by k ∈ [0,∞) consisting of all mappings satisfying
Lipschitz condition with constant k:

‖Tx− Ty‖ ≤ k‖x− y‖.

This notation will be used regardless of the domain of T and other restrictions.

Subclasses under concern and their natural scaling by Lipschitz constant k will be
indexed L0,L1... and L0(k),L1(k) . . . .

There are two basic facts lying in the background of this theory

A. For any k > 1, there exists a mapping T : B → B of class L(k) such that
d(T ) > 0.

This is an outcome of a more general theorem of a P. K. Lin and Y. Sternfeld

[7] saying that the same holds for mappings T : C → C, where C is an arbitrary

closed and convex but noncompact subset of X .

B. The unit sphere S is the lipschitzian retract of B.

This means that there exists a mapping R : B → S such that Rx = x for

all x ∈ S and such that R ∈ L(k) for certain (sufficiently large) k. It has been
proved first by B. Nowak [9] for some Banach spaces and then in the general case

by Y. Benyamini and Y. Sternfeld [2]. The above leads to the formulation of the

“optimal” retraction problem.

For any space X , denote by

k0(X) = inf{k : there exists a retraction of class L(k)}.

So far the constant k0(X) is unknown for any space X . The mentioned problem
reads: find or give a good estimate for k0(X).

Finally, let us recall that the unit ball B is the lipschitzian retract of the whole

space X . The standard retraction is the so called radial projection

Px =
{

x for x ∈ B,
x

‖x‖ for x 6∈ B.

In general, P ∈ L(2) and for some spaces we have better evaluations. Especially
for Hilbert space, P ∈ L(1).
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Radial projection is not necessarily optimal with respect of the value of its

Lipschitz constant. For example, if X = C[a, b], the Lipschitz constant of P equals
2 while there exists another retraction Q : X → B of class L(1). Indeed, put
Q(f)(t) = α(f(t)) or, in other words, Q = α ◦ f , where

α(t) = min{1,max[t,−1]} =





−1 for t ≤ −1,
t for − 1 ≤ t ≤ 1,
1 for t ≥ 1.

Obviously, for any ball Br = rB of radius r the retraction Pr : X → Br,

given by Prx = rP (x/r), has the same Lipschitz constant as P. The same holds
for Qr(f) = rQ(f/r).

Let us pass to examples illustrating the above notions. We believe certain

observations can be new even for specialists.

Example I. Consider the whole family L0 of Lipschitz maps T : B → B. Take
T ∈ L0(k) for certain k. If k < 1, then T being a contraction has a fixed point
and d (T ) = 0. If k ≥ 1, then according to Statement A we may have d(T ) > 0.
But for any ε > 0, the equation

x =
1

k + ε
Tx(1)

has a solution. This is because the right hand side of (1) is a contraction. Thus we

have

‖x− Tx‖ =
(

1 − 1
k + ε

)
‖Tx‖ ≤ 1 − 1

k + ε
,

implying as ε→ 0,

d(T ) ≤ 1 − 1
k
.(2)

On the other hand,

d(L0) = 1.(3)

This can be shown using B. Let R : B → S be a retraction of class L(k), where
k ≥ k0(X). Take any ε > 0 and consider the mapping Tε : B → B defined by

Tεx =





−R
(x
ε

)
for ‖x‖ ≤ ε,

− x

‖x‖ = −P
(x
ε

)
for ‖x‖ ≥ ε.

(4)

It is easy to observe that k0(X) ≥ 2 (better evaluations will follow) and then notice
that Tε ∈ L(k/ε) and d(Tε) ≥ 1 − ε.
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The estimate (3) shows that d(L) is not achieved on any T ∈ L. This is a
partial observation of the fact that for any continuous mapping T : B → B we have
d(T ) < 1 [3].

Example II. Consider again the same class of all mappings T : B → B of

class L0 but look on L0 as the union

L0 =
⋃

k≥0

L0(k).

Put

ψ0,X(k) = d(L0(k)).

The estimate (2) shows that

ψ0,X(k) ≤ 1 − 1
k

(5)

for k ≥ 1. The case k < 1 is trivial. We shall often leave the indicator of the
space writing ψ0 instead of ψ0,X . However this indicator is important since there

are spaces with different ψ0,X’s. Let us call the space extremal if

ψ0,X(k) = 1 − 1
k
.

Such spaces do exist. Take for example X = C[−1, 1] and for x ∈ B, define

(Tx)(t) = Q(k(x(t) + 2t)).(6)

It is easy to check that T ∈ L0(k) with d(T ) = 1 − (1/k). Similar examples
can be constructed in many spaces as, for example, c0, l

∞, spaces of differentiable
functions with standard norms, and in all subspaces of C[a, b] of finite codimension.
This last recent result is not published yet and is due to Bolibok [3].

There are spaces which are not extremal. Such are all uniformly convex spaces

and l1. The known estimates are (see [3, 5])

ψ0,H(k) ≤
(

1 − 1
k

)√
k

k + 1
(7)

for Hilbert space H (sketch of the proof will be given in the next section) and

ψ0,l1(k) ≤





2 +
√

3
4

(
1 − 1

k

)
for 1 ≤ k ≤ 3 + 2

√
3,

k + 1
k + 3

for k > 3 + 2
√

3.

(8)

It is not known whether these estimates are sharp. Actually we do not know the

exact formula for ψ0,X for any nonextremal space.

To finish this case, let us list some basic properties of ψ0 :
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a) ψ0(k) is nondecreasing,

b) limk→∞ ψ0(k) = 1,

c) ψ(1− α + αk) ≥ αψ0(k) for all 0 ≤ α ≤ 1,

d) ψ0(k)/(k− 1) is nonincreasing,

e) kψ0(k)/(k− 1) is nondecreasing,

f) ψ
′
0(1) = limk→1+ ψ0(k)/(k− 1) exists and ψ

′
0(1) > 0,

g) ψ0(k) ≥ ψ
′
0(1)(1− (1/k),

h) X is extremal if and only if ψ
′
0(1) = 1.

Property a) is trivial, b) follows from the fact that d(L) = 1, and c) follows from
the simple observation that if T ∈ L0(k) and α ∈ [0, 1], then Tα = (1−α)I+αT ∈
L0(1 − α + αk) with ‖x − Tαx‖ = α‖x − Tx‖ for all x ∈ B. Next, d) is a
reformulation of c). Property e) requires a proof. f), g), h) then follow easily.

Take any A > k. Let T ∈ L0(k). Fix x ∈ B and consider the equation

y =
(

1 − 1
A

)
x+

1
A
Ty.

In view of Banach Contraction Principle, it has exactly one solution y depending
on x. Put y = Fx. We have the implicit formula

Fx =
(

1 − 1
A

)
x+

1
A
TFx(9)

from which we get F ∈ L0((A− 1)/(A− k)) and TF ∈ L0(k(A− 1)/(A− k)).
Also if ‖x− Tx‖ ≥ d > 0 for all x ∈ B, then

‖x− TFx‖ =
A

A− 1
‖Fx− TFx‖ ≥ Ad

A− 1
.

Consequently,

ψ0

(
k(A− 1)
A− k

)
≥ A

A − 1
ψ0(k).

Denoting k(A− 1)/(A− k) by l (observe that l > k), we obtain

lψ0(l)
l− 1

≥ kψ0(k)
k − 1

,

which ends the proof.

Let us finish this section by listing a few open problems. The most intriguing

in our opinion are
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Problem 1. Find exact formulas for ψ0,H and ψ0,l1.

Problem 2. Does there exist a Banach space Y such that ψ0,Y ≤ ψ0,X for all

Banach spaces X? Is this a Hilbert space or l1 ?

The estimates (7) and (8) are probably not sharp and do not indicate which

space is “better”. Estimate (7) is smaller for k close to 1 while (8) is better for

large k.
Two more related questions are:

Problem 3. Does there exist a space Y such that ψ′
0,Y (1) ≤ ψ

′
0,X(1) for all

spaces X ? Is this a Hilbert space?

Problem 4. From (7) we have ψ′
0,H(1) ≤ 1/

√
2. Is this the best estimate?

Example III. Let us consider the subclass L1 of L consisting of mappings T
transforming B into S. Obviously,

L1 =
⋃

k≥1

L1(k),

where

L1(k) = {T : B → S : T ∈ L(k)}.

For this family of mappings, let us define

ψ1,X(k) = d(L1(k)) = sup{d(t) : T ∈ L1(k)}.

As before, we shall sometimes skip the space indicator writing ψ1(k) instead of
ψ1,X(k). Obviously, ψ1,X is nondecreasing, and of course

ψ1,X(k) ≤ ψ0,X(k) ≤ 1− 1
k
.

Construction (4) from Example I shows that

lim
k→∞

ψ1(k) = 1,

while construction (6) from Example II indicates that for some spaces (e.g., C[a, b])
we may have

ψ1,X(k) = ψ0,X(k) = 1− 1
k
.

First we show that in general it is not true. Let H be a Hilbert space, T : B → S

be of class L(k) and such that for all x ∈ B,

‖x− Tx‖ ≥ (1− ε)ψ1,H(k).
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Take A > k and let y, z be respectively solutions of the two equations

y =
1
A
Ty

and

z =
(

1 − 1
A

)
y +

1
A
Tz.

We have

k2‖z − y‖2≥ ‖Tz − Ty‖2 = ‖Az − (A− 1)y −Ay‖2

= ‖(Az −Ay) − (A− 1)y‖2

= A2‖z − y‖2 − 2A(A− 1)(z − y, y) + (A− 1)2‖y‖2,

implying

2A(z − y, y) ≥ (A− 1)‖y‖2.

But ‖Tz‖ = ‖Ty‖ = 1. Also, z− y = (Tz− z)/(A− 1), and Tz− y = A(z− y).
Thus we have

1= ‖Tz‖2 = ‖(Tz − y) + y‖2 = ‖A(z − y) + y‖2

= A2‖z − y‖2 + 2A(z − y, y) + ‖y‖2

=
(

A

A− 1

)2

‖z − Tz‖2 +A‖y‖2

≥
(

1− 1
A

)−2

(1 − ε)2ψ2
1,H(k) +

1
A
.

And finally,

(1 − ε)2ψ2
1,H(k) ≤

(
1 − 1

A

)3

,

from which letting ε→ 0 and A→ k we obtain

ψ1,H(k) ≤
(

1 − 1
k

) 3
2

=
(

1 − 1
k

)√
k − 1
k

.(10)

This is a better evaluation than (7):

ψ0,H(k) ≤
(

1 − 1
k

)√
k

k + 1
.

Here let us indicate that the proof of (7) can be obtained in the same way as

above if we only skip the fact that ‖Tz‖ = ‖Ty‖ = 1 and observe that ‖y‖ =
‖Ty − y‖/(A− 1). The conclusion that

ψ1,H(k) < ψ0,H(k)
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at least for small k can be drawn from the fact that (10) implies ψ
′
1,H(1) = 0, while

ψ
′
0,H(1) > 0.
The function ψ1(k) has an application to the optimal retraction problem. Sup-

pose R : B → S is a retraction having Lipschitz constant k ≥ k0(X). Define the
mapping T = −R. Then T : B → S, T ∈ L(k) and T 2 = R. Take ε > 0 and
select x ∈ B such that

‖x− Tx‖ = ‖x+Rx‖ ≤ d(T ) + ε.

Now, define a curve γ : [0, 1] → S by

γ(t) = T ((1− t)x+ tTx).

Then γ being lipschitzian is rectifiable and joins the two antipodal points −Rx and
Rx of S. Let g(X) denote the infimum of the lengths of such curves. The number
g(X) is sometimes called the “girth” of the sphere and obviously g(X) ≥ 2 for any
space X , while g(H) = π for Hilbert space H (see [10]). Since γ is k-lipschitzian,
its length l(γ) satisfies

g(X) ≤ l(X) ≤ k‖Tx− x‖ ≤ k(d(T ) + ε).

Moreover, d(T ) ≤ ψ1,X(k) and letting ε pass to zero we obtain

kψ1,X(k) ≥ g(X).

In view of ψ1(k) ≤ 1 − (1/k), we get k ≥ g(X) + 1, and consequently,

k0(X) ≥ g(X) + 1 ≥ 3

for all spaces X. Similar reasoning for a Hilbert space leads to the inequality

k

(
1 − 1

k

) 3
2

≥ π,

which when solved numerically shows that k0(H) ≥ 4.55 . . . .

Most of the questions we asked about ψ0 can be raised as well in connection

with ψ1.

Example IV. This time let us look for the subclass L2 of L consisting of all
mappings T : B → X (the image is not neccesarily contained in B) sending all
the points x ∈ S to the origin. This means that ‖x‖ = 1 implies ‖Tx‖ = 0 or,
in other words, T (S) = {0}. This class is also naturally divided into subclasses
L2(k).
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Our interest in this class is connected too with the optimal retraction problem.

If T is of class L2(k) with d(T ) > 0, then we can easily construct a retraction
R : B → S by putting

Rx =
x− Tx

‖x− Tx‖ = P

(
x− Tx

d(T )

)
.(11)

Obviously, R is lipschitzian and

R ∈ L1

(
2
k + 1
d(T )

)
.(12)

Having estimations for d(T ), we can evaluate k0(X) (an example will follow in
the next section). It is also worthwhile to observe that any lipschitzian retraction

R : B → S can be obtained via formula (11). If R ∈ L(k), k ≥ k0(X), then putting
T = I−R we get the mapping of class L2(k+1) satisfying ‖Tx−x‖ = d(T ) = 1
for all x ∈ B. Applying (11) to T we reconstruct R.

In view of the above it seems to be worthwhile to define analogously as before

the function

ψ2(k) = sup{d(T ) : T ∈ L2(k)} = d(L2(k)).

Obviously, ψ2(k) ≤ 1 for k ≥ 1 and in view of the above remarks for k > k0(X)+1
we have ψ2(k) = 1.

Let us find the first evaluation of ψ2(k) for smaller k’s. Without loss of gener-
ality we can assume that our mappings are defined on the whole space X and take

value zero outside of B (‖x‖ ≥ 1 implies Tx = 0). Observe that for all x ∈ B,

x 6= 0,

‖Tx‖ =
∥∥∥∥Tx− T

(
x

‖x‖

)∥∥∥∥ ≤ k(1− ‖x‖)

and

‖Tx− T0‖ ≤ k‖x‖.

Consequently, ‖T0‖ ≤ k and for all x ∈ X we have

∥∥∥∥Tx− 1
2
T0
∥∥∥∥≤

1
2
‖Tx‖ +

1
2
‖Tx− T0‖

≤ k

2
(1− ‖x‖) +

k

2
‖x‖ =

k

2
.

This means that T transforms the ball B((T0)/2, k/2) into itself. We leave to the
reader the justification of the simple observation that

d(T ) ≤ k

2
ψ0,X(k) ≤ k − 1

2
.
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Finally,

ψ2,X(k) ≤ min
{

1,
k

2
ψ0,X(k)

}
≤ min

{
1,
k − 1

2

}

and in consequence

ψ′
2,X(1) ≤ 1

2
ψ′

0,X(1).

It is not known whether the above evaluations are sharp. If there is an extremal

space for which

ψ2,X(k) = min
{

1,
k − 1

2

}
=
{

k−1
2 for k ≤ 3,
1 for k > 3,

then using (12) with k = 3 we would get k0(X) ≤ 8. Let us recall that the best
estimate for k0, known so far, is k0(L1(0, 1)) ≤ 9.43... (see [6]).

Example V. Again let us consider mappings sending S into 0, T (S) = {0}.
However, let us restrict our attention to the subclass of L3 of L2 consisting of those

mappings for which T (B) ⊂ B. Analogously as before, let us scale L3 into L3(k)
and define ψ3,X(k). In view of the above restrictions we have

ψ3,X(k) ≤ ψ0,X(k) ≤ 1 − 1
k

and

ψ3,X(k) ≤ ψ2,X(k).

It is expected that ψ3,X(k) < ψ2,X(k) for all k > 1. Nevertheless ψ3 can also be

used to obtain some estimates for k0(X) via formula (12). This can be illustrated
by the following construction.

Let X = C[0, 1]. It is not difficult to check that for any r1, r2 > 0 and
f, g ∈ C[0, 1],

‖Qr1f −Qr2g‖ ≤ max{‖f − g‖, |r1 − r2|},
where Qr denotes the projection of class L(1) defined at the beginning. As we
have already shown there exists a mapping T1 : B → B of class L0(k) such that
d(T ) = 1 − (1/k). Consider the ball of radius 2 (B2 = 2B) and extend T1 to the

mapping T2 : 2B → B by putting

T2f =





Tf for ‖f‖ ≤ 1,
T (Qf) for 1 ≤ ‖f‖ ≤ 2 − 1

k ,

Qk(2−‖f‖)(T (Qf)) for 2 − 1
k ≤ ‖f‖ ≤ 2.

Again T2 ∈ L(k) and for all f ∈ S2 (‖f‖ = 2) we have T2f = 0. Moreover, it can
be observed that ‖f − T2f‖ ≥ 1 − (1/k) for all f ∈ B2. Now denoting

Tf =
1
2
T2(2f),
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we get the mapping T ∈ L3(k) with d(T ) = 1
2(1 − (1/k)). This leads to the

observation that

1
2

(
1 − 1

k

)
≤ ψ3,C[0,1](k) ≤ ψ2,C[0,1](k) ≤

k − 1
2

,

implying

ψ′
3,C[0,1](1) = ψ′

2,C[0,1](1) =
1
2
.

However it can be proved that the left part of the last inequality is not sharp since

limk→∞ ψ3,X(k) = 1 for all spaces X.
If we use (12) to generate the retraction

Rf =
f − Tf

‖f − Tf‖ = P

(
f − Tf

1
2

(
1 − 1

k

)
)
,

we get R ∈ L(4k(k + 1)/(k− 1)) and therefore

k0(C[0, 1]) ≤ 4 min
k>1

k(k + 1)
k − 1

= 4
(
1 +

√
2
)2

= 23.31... .

This estimate is probably far from being sharp but according to our knowledge it is

so far the best known.

The last two examples are of a little different nature and are less connected to

the optimal retraction problem but are close to the classical theory of nonexpansive

mappings.

Recall that a mapping T is said to be nonexpansive if T ∈ L(1) or, in other
words, if

‖Tx− Ty‖ ≤ ‖x− y‖.

If T is nonexpansive, so are all of its iterates Tn, n = 0, 1, 2, 3, . . . . (T 0 = Id).

There is a class of mappings sharing a similar property. A mapping T is said to
be uniformly lipschitzian or T has the uniform Lipschitz constant k if there exists
k ≥ 1 such that

‖Tnx− Tny‖ ≤ k‖x− y‖

for n = 0, 1, 2, . . . . The class UL of uniformly lipschitzian mappings is naturally
scaled into subclasses UL(k). If T ∈ UL(k), then defining an equivalent metric by

r(x, y) = sup{‖Tnx− Tny‖ : n = 0, 1, 2, . . .},

we observe that

r(Tx, Ty) ≤ r(x, y),
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which means that T is nonexpansive with respect to this metric. On the other hand,

if r(·, ·) is any metric equivalent to the one induced by the norm, which means that
there are two constants a, b > 0 such that

a‖x− y‖ ≤ r(x, y) ≤ b‖x− y‖,

then any r-nonexpansive T satisfies

‖Tnx− Tny‖ ≤ b

a
‖x− y‖

for n = 0, 1, 2, . . . . Thus the class UL can be viewed as the class of all mappings
nonexpansive with respect to equivalent metrics.

A basic fact about uniformly lipschitzian mappings is the following.

C. If the space X is uniformly convex, then there exists a constant γ > 1 such
that each mapping T : B → B of class UL(k) with k < γ has a fixed point.

This fact has been first observed by W. A. Kirk and the present author [5] not

only for balls but for all convex, bounded and closed subsets of X . Then it has been
investigated and extended to more general or special cases by many authors. For

example, it is known that in the case of Hilbert space all mappings T ∈ UL(k) with
k <

√
2 have fixed points while there exists a mapping T : B → B, T ∈ UL(π

2 )
with d(T ) = 0 but without fixed points (the example has been given by J.-B. Baillon
[1]).

Example VI. Let us consider the class L4 divided into natural subclassesL4(k)
consisting of all UL mappings T : B → B. For this setting define as before the

function ψ4,X(k). There are two natural constants connected with ψ4:

γ0(X) = sup{k : all mappings T ∈ L4(k) have fixed points}

and
γ1(X)= sup{k : all mappings T ∈ L4(k) satisfy d(T ) = 0}

= sup{k : ψ4,X(k) = 0}.

Obviously, γ0(X) ≤ γ1(X) and ψ4,X(k) = 0 for k ≤ γ1(X). However, γ1(X) <
∞, and even more, the construction (4) from Example I actually shows that limk→∞
ψ4,X(k) = 1.

The results mentioned above say that for uniformly convex (and some other)

spaces, γ0(X) > 1. Especially for Hilbert spaces H we have
√

2 ≤ γ0(H) ≤ π
2 .

Practically nothing is known about γ1. Here are some questions.
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Problem 5. Are there spaces with γ0 < γ1?

Problem 6. For which spaces γ1 = 1? In other words, does there exist a space
with ψ4,X(k) > 0 for k > 1?

We hope the answer to this last question can be affirmative but the example is

unknown. Finally,

Problem 7. Can one find a formula for ψ4,H(k) or give some good estimations?

Example VII. Let our last class L5 consist of all T : B → B being 2-periodic
(involutions), which means T satisfying the condition T 2x = x (or T 2 = Id).

Obviously, L5 ⊂ L4 and for each k, L5(k) ⊂ L4(k).
Take any x ∈ B and let y = (x+ Tx)/2, T ∈ L5(k). We have

‖Ty − Tx‖ ≤ k‖x− y‖ =
k

2
‖x− Tx‖,

‖Ty − x‖ = ‖Ty − T 2x‖ ≤ k‖y − Tx‖ =
k

2
‖x− Tx‖.

The above implies

‖y − Ty‖ ≤ k

2
‖x− Tx‖.

Now, it is a routine observation that if k < 2 then the sequence of consecutive
iterates x0 = x, xn+1 = (xn + Txn)/2 converges to a fixed point of T . In other
words, all involutions of class L0(k) with k < 2 have fixed points. For spaces with
more regular geometrical structure, uniformly convex spaces or Hilbert spaces, this

estimate is even better. For example, it is known that for Hilbert spaces the same

holds for k <
√
π2 − 3 = 2.62 . . . (see [6]).

Define now our last function ψ5,X(k) in the usual manner. The above remarks
say that ψ5,X(k) = 0 for k < 2 and even further in regular spaces. Nothing more
is known.

Problem 8. Does there exist a lipschitzian involution T of B onto B without

a fixed point? Does there exist such an involution with d(T ) > 0?

This last question is connected with the well-known problem of geometric non-

linear functional analysis concerning uniform classification of spheres. It is known

that for any infinite-dimensional Banach space X , its unit ball B and its unit sphere
S are homeomorphic. The question whether B and S are Lipschitz equivalent is

open.

Assume that there exists a homeomorphism h : B → S such that h(B) = S

with h ∈ L(k) and h−1 ∈ L(k) for certain k. Then

‖h−1x− h−1y‖ ≥ 1
k
‖x− y‖
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for all x, y ∈ S. Putting
Tx = h−1(−hx),

we obtain an involution of class L(k2) for which

‖x− Tx‖= ‖x− h−1(−hx)‖ = ‖h−1(hx)− h−1(−hx)‖

≥ 1
k
‖2hx‖ =

2
k
.

Thus d(T ) ≥ 2/k and we would have

kψ5,X(k2) ≥ 2

similarly as in Example III.
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