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ON AN EXTENSION OF THE KATO-VOIGT PERTURBATION

THEOREM FOR SUBSTOCHASTIC SEMIGROUPS

AND ITS APPLICATION

J. Banasiak∗

Abstract. The aim of this paper is to discuss some recent developments of the

perturbation method introduced first by Kato for the Kolmogoroff equation and

later extended by Voigt and Arlotti to deal with a range of problems related

to the solvability of the so-called Master Equation. The paper consists of two

parts. In the first we recall and unify some abstract results on generation of

substochastic semigroups. In the second we perform a detailed analysis of

an equation from the polymer degradation theory to demonstrate a number of

possible generation cases.

1. INTRODUCTION

In many branches of the applied sciences we are interested in the evolution of

the density function (t, ξ) 7→ u(t, ξ), where t is the time and ξ ∈ Ω is an element

of some state space – it could be the velocity or energy in the kinetic theory, the

number of bacteria in a sample in the population theory, mass in the coagulation-

fragmentation theory. The function u is then interpreted as the probability (density)
of finding an individual which at the time t has the property ξ. If we assume that

the probability at time t is completely determined by the probability at an earlier
time t0 (that is, we are dealing with a Markov process), then the time evolution of

u is described by the master equation (e.g., [11])

∂tu(t, ξ)=
∫

Ω

[k(ξ′, ξ)u(t, ξ′) − k(ξ, ξ′)u(t, ξ)]dµξ′

=
∫

Ω

k(ξ′, ξ)u(t, ξ′)dµξ′ − u(t, ξ)
∫

Ω

k(ξ, ξ′)dµξ′ ,
(1.1)
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where dµξ is an appropriate measure in the state space, and k(ξ′, ξ) is the transition
rate (probability density of transitions per unit time) of the change between the states

ξ′ and ξ (that is, the probability of the change from ξ′ to ξ to occur in the time

interval dt is approximately k(ξ′, ξ)dξdt).
An intrinsic property of the above process is that all the particles must be

accounted for or, in other words, the total number of particles doesn’t change:

∫

Ω

u(t, ξ)dµξ =
∫

Ω

u(0, ξ)dµξ,(1.2)

for any time t. Therefore from the physical point of view, the natural spaces for

studying such problems are L1 spaces (or l1 if ξ takes only discrete values). Equation
(1.2) can be checked formally by integrating (1.1) and using the symmetry of the

transition rate.

The process discussed above (or a combination of such processes) may take

place simultaneously with an evolution in the physical space so that in general we

will be concerned with evolution equations of the form

∂tu = A0u + A1u + Bu,(1.3)

where A0 typically is the free streaming operator: A0u = −v · ∇xu, or the diffu-

sion operator, whereas A1u = −mu with a nonnegative, measurable, and almost
everywhere finite function m, and B is an integral operator.

The first equation of this type, namely the Kolmogoroff equation, was first

studied in the semigroup theory framework by Kato in his seminal paper [6]. His

results were extended to a more abstract framework and extensively applied to a

range of problems arising mainly in the kinetic theory by Voigt, Arlotti, Desch,

Mokhtar-Karroubi, and recently by the author (see, e.g., [13, 1, 2, 9, 3, 4]).

An interesting feature of these problems is that the semigroup (G(t))t≥0 solving

the Cauchy problem related to (1.3) is constructed by a limiting procedure which

doesn’t allow to control the domain of the generator; in the general case one can

only prove that the generator T of (G(t))t≥0 is an extension of A0 + A1 + B. In

most applications it is not enough, as typically we are interested in the cases when

the solution semigroup (G(t))t≥0 is a transition (or stochastic) semigroup, that is,

when ‖G(t)x‖ = ‖x‖ for all t ≥ 0 and x ≥ 0 (see also Remark 2.1). In a number of
applications (see [6]) this could happen if and only if T = A0 + A1 + B; generally

the last equality is a sufficient condition for (G(t))t≥0 to be stochastic. Thus it is

important to be able to determine when T = A0 + A1 + B. We shall present some

sufficient conditions, which are modifications of those introduced in [2], and apply

them to the fragmentation model [14, 8] which will be introduced in Section 4. We

shall see that for some values of the parameter the generator T of the semigroup

is the closure of the operator appearing on the right-hand side of the equation (and
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that this result is sharp, that is, T 6= A0 + A1 + B). On the other hand, in the last

section of the paper we shall demonstrate that for a range of parameter values the

generator T is a proper extension of A0 + A1 + B and that the semigroup generated

by T is not stochastic.

Acknowledgment. The author is grateful to Dr. W. Lamb for communicating

the fragmentation model to him, and for a number of stimulating discussions.

The author also expresses sincere thanks for the referee, who suggested a sim-

plification of a number of proofs, based on a more extensive use of the Miyadera –

Voigt theory.

2. ABSTRACT GENERATION RESULTS

In this section, we shall formulate and provide proofs of several results which

are scattered in the literature [13, 1, 2], and which are very often considered only

in a specific context.

Let (Ω, µ) be a measure space. By X we denote the Banach space L1(Ω, µ)
endowed with the standard norm ‖ · ‖. For any subspace Z ⊂ X , by Z+ we

denote the cone of nonnegative (a.e.) elements of Z. Let (G(t))t≥0 be a strongly

continuous semigroup on X . We say that (G(t))t≥0 is a substochastic semigroup

if for each t ≥ 0, G(t) ≥ 0 and ‖G(t)‖ ≤ 1. It is called a stochastic semigroup if
additionally ‖G(t)f‖ = ‖f‖ for X+.

In accordance with the discussion in the introduction, we shall consider two

linear operators in X : A(= A0 + A1) and B, which have the following properties:

1. (A, D(A)) generates a substochastic semigroup denoted by (GA(t))t≥0,

2. D(B) ⊃ D(A) and Bf ≥ 0 for any f ∈ D(B)+,

3. for any f ∈ D(A)+,

∫

Ω

(Af + Bf)dµ ≤ 0.(2.1)

Let us observe that the above list yields the following properties of the operators

involved.

Lemma 2.1. (i) The operator B(λI − A)−1 is a bounded positive operator in

X .

(ii) If Af = −mf for some a.e. positive measurablem, then for any f ∈ D(A),
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‖Bf‖ ≤ ‖Af‖.(2.2)

Proof. (i) Since A generates a contraction semigroup, the resolvent is well-

defined for λ > 0. From the properties of B we see that B(λI − A)−1 is defined

on X and positive, and hence is bounded [12, Theorem II. 5.3].

(ii) From (2.1) we obtain for f ∈ D(A)+,

‖Bf‖ =
∫

Ω

Bfdµ =
∫

Ω

mfdµ = ‖Af‖.

Let us take arbitrary f ∈ D(A), then also |f | ∈ D(A), |Bf | ≤ B|f | and

‖Bf‖ ≤ ‖B|f |‖ =
∫

Ω

B|f |dµ =
∫

Ω

m|f |dµ =
∫

Ω

|mf |dµ = ‖Af‖.

The next lemma is a minor generalization of Lemma 1.2 of [13], and is also more

general than Lemma 1 of [1].

Lemma 2.2. For any f ∈ D(A), the function t 7→ BGA(t)f is continuous and

t∫

0

‖BGA(s)f‖ds ≤ ‖f‖ − ‖GA(t)f‖.(2.3)

Proof. For f ∈ D(A) it follows as in the proof of Lemma 1.2 (a) in [13] that

t∫

0

‖BGA(s)f‖ds ≤ ‖|f |‖ − ‖GA(t)|f |‖.

However, ‖|f |‖ = ‖f‖ and, since GA(t)|f | ≥ |GA(t)f |, we obtain −‖GA(t)|f |‖ ≤
−‖GA(t)f‖, so that the lemma is proved.

The following gives an abstract version of Theorem 4 of [1].

Theorem 2.1. Under the above assumptions, there exists a smallest substochas-
tic semigroup (G(t))t≥0 generated by an extension T of A + B. This semigroup

satisfies the integral equation

G(t)f = GA(t)f +

t∫

0

G(t − s)BGA(s)fds(2.4)



Kato-Voigt Perturbation Theorem 173

for any f ∈ D(A) and t ≥ 0, and can be also obtained by the Phillips-Dyson
expansion

G(t)f =
∞∑

n=0

Sn(t)f, f ∈ X,(2.5)

where the iterates Sn(t) are defined through (2.7).

Proof. In [13] the author proved, generalizing the idea of Kato [6], that the

semigroup (G(t))t≥0 can be obtained as a strong limit of the semigroups (Gr(t))t≥0

generated by A+rB, when 0 < r → 1−. Moreover, if r ≤ r′, then Gr(t) ≤ Gr′(t)
for each t. For r < 1, the operator rB is a Miyadera perturbation of A with bound

r, and therefore

Gr(t)f = GA(t)f + r

t∫

0

Gr(t − s)BGA(s)fds.(2.6)

Since also rGr(t) ≤ r′Gr′(t) if r ≤ r′, using the Lebesgue monotone convergence
theorem (in L1(Ω× [0, t])) we ascertain that the right-hand side of (2.6) converges

to GA(t)f +
t∫

0

G(t − s)BGA(s)fds as r → 1− for all f ∈ X+, thus, by linearity,

for all f ∈ X . This proves (2.6).

To obtain the Phillips-Dyson expansion of the semigroup (G(t))t≥0, we define

recursively the following operators:

S0(t)f = GA(t)f,

Sn(t)f =

t∫

0

Sn−1(t − s)BGA(s)fds, n > 0,
(2.7)

for f ∈ D(A) and t ≥ 0. It follows that the Dyson-Phillips iterates for the pertur-
bation rB are given by rSn(t), thus, as in the Miyadera-Voigt theory, the families
{Sn(t)}t≥0 can be extended to strongly continuous families of bounded (contractive)

positive operators in X . Moreover, for any 0 < r < 1 the semigroup (Gr(t))t≥0 is

given by

Gr(t)f =
∞∑

n=0

rnSn(t)f,

where the series is uniformly convergent on bounded t-intervals. Since Sn(t) are
positive, for f ∈ X+ and 0 < r′ ≤ r < 1 we have r

′nSn(t)f ≤ rnSn(t)f , thus
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by the monotone convergence theorem (in l1(X)) the series above is convergent to
∞∑

n=0
Sn(t)f in X . Thus for all f ∈ X+ we have

G(t)f =
∞∑

n=0

Sn(t)f.

The extension by linearity gives (2.5).

Remark 2.1. The drawback of Theorem 2.1 is that it doesn’t provide any char-

acterization of the domain of the generator T . The ideal situation would be, of

course, if D(T ) = D(A) = D(A+B). However, as we mentioned in the introduc-
tion, the case when T = A + B is also physically acceptable since in such a case

the semigroup is still stochastic provided A + B is formally conservative, that is,

the assumption (2.1) is replaced by

∫

Ω

(A + B)udµ = 0

for u ∈ D(A + B) = D(A). If T = A + B, then for u ∈ D(T ) there exists a
sequence (un)n∈N of elements of D(A) such that un → u and (A + B)un → Tu

in X as n → ∞. Thus
∫

Ω

Tudµ = lim
n→∞

∫

Ω

(A + B)undµ = 0.

This in turn shows that if 0 ≤◦
u u ∈ D(T ), then 0 ≤ u(t) = G(t)

◦
u u ∈ D(T ) for

any t ≥ 0 and

d

dt
‖u(t)‖ =

∫

Ω

du(t)
dt

dµ =
∫

Ω

TG(t)
◦
u udµ = 0.

On the other hand, if T is a bigger extension of A + B, then the above property

may not hold and there may be a loss of particles in the evolution. We shall see

that such a situation is possible in Proposition 5.2.

The next proposition is related to the above discussion. We note that for a

particular case of Kolmogoroff’s equation similar results, though through a different

method, have been proved in [6].

Proposition 2.1. Under the assumption of this section we have:
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( i ) the generator T is characterized by

(I − T )−1f =
∞∑

n=0

(I − A)−1[B(I − A)−1]nf(2.8)

for every f ∈ X .

(ii) If
∞∑

n=0
[B(I − A)−1]nf converges for any f ∈ X, then T = A + B.

(iii) If lim
n→∞

‖[B(I − A)−1]nf‖ = 0 for any f ∈ X, then T = A + B.

Proof. (i) Taking the Laplace transform of (2.5) with λ = 1, we obtain

(I − T )−1f =
∞∑

n=0

L(Sn(t)f)(1).(2.9)

Now, for f ∈ D(A),

L(Sn(t)f)(1) = L(Sn−1(t)f)(1)L(BGA(t)f)(1),

where we used Corollary C.17 of [5] (applicable by Lemma 2.2). The next step

requires some care as we don’t know whether B is a closed operator. However,

using the boundedness of B(I − A)−1 we have

L(BGA(t)f)(1) = L(B(I − A)−1GA(t)(I − A)f)(1) = B(I − A)−1f.

Therefore, for any f ∈ D(A),

L(S0(t)f)(1) = (I − A)−1f,

L(Sn(t)f)(1) = L(Sn−1(t))B(I − A)−1f = (I − A)−1[B(I − A)−1]nf,

and since L(Sn(t)f)(1) is a bounded operator, we can extend the above to the whole
of X . Combining this with (2.9), we obtain (2.8).

(ii) If the series converges in X , then we clearly have

(I − T )−1f =
∞∑

n=0

(I − A)−1[B(I − A)−1]nf = (I − A)−1
∞∑

n=0

[B(I − A)−1]nf,

which shows that D(A) ⊃ D(T ). Since D(A) ⊂ D(T ), we have the equality.
(iii) Assume that for any f ∈ X , ‖(B(I − A)−1)nf‖ → 0 as n → 0. Denote

zN = (I − A)−1
N∑

n=0

(B(I − A)−1)nf ∈ D(A).
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Clearly, zN → z = (I − T )−1f ∈ D(T ) in X . Now,

(I − (A + B))zN =
N∑

n=0

(B(I − A)−1)nf − B(I − A)−1
N∑

n=0

(B(I − A)−1)nf

=
N∑

n=0

(B(I − A)−1)nf −
N+1∑

n=1

(B(I − A)−1)nf

= f − (B(I − A)−1)Nf.

Thus, if the assumption is satisfied, then (I − (A + B))zN converges in X and

consequently z ∈ D(A + B). Since z is an arbitrary member of D(T ), we obtain
D(T ) ⊂ D(A + B). On the other hand, T , as a generator, is a closed extension of
A + B, and thus A + B ⊂ T .

From this theorem we see that the extension T of A+B generates a substochastic

semigroup. In particular, this is a semigroup of contractions and, consequently, T

is a dissipative operator. However, any restriction of a dissipative operator is also

dissipative, and thus A + B is dissipative. This allows a simple corollary.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have:

1. T = A + B if and only if the range of λ − (A + B), Rg(λ− (A + B)), is
dense in X for some (all) λ > 0.

2. If additionally A + B is a closed operator, then T = A + B.

Proof. 1) Let us assume that Rg(λ− (A + B)) is dense in X . By [5, Theorem
3.15], (Lumer–Phillips Theorem), this statement is equivalent to saying that A + B

is a generator (that A + B is densely defined follows from the fact that A itself

is a generator). Since T a closed extension of A + B (as a generator), we must

have A + B ⊂ T . Since both are generators, they must coincide. The converse is
obvious.

Item 2 follows immediately.

3. SUFFICIENT CONDITION FOR T = A + B

In this section we shall sketch an approach of [2] (with some modification

due to the author, first given for a specific situation in [4]) which enables a better

characterization of the generator T .

As the first step we extend all the discussed operators in the following way.
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Let E denote the set of all the extended real-valued measurable functions defined

on Ω; clearly X ⊂ E. We define the subset F ⊂ E by the following condition:
f ∈ F if and only if for every nonnegative and nondecreasing sequence of functions
(fn)n∈N satisfying supn fn = |f | we have supn(I − A)−1fn ∈ X .

Before proceeding any further we adopt the assumption that f ∈ D(B) if and
only if f+ = max{f, 0}, f− = max{−f, 0} both belong to D(B). Through B we

construct another subset of E, say G, defined as the set of all functions f ∈ X such

that for any nonnegative, nondecreasing sequence (fn)n∈N of elements of D(B)
such that supn fn = |f |, we have supn Bfn < +∞ almost everywhere. It is easy

to check that D(A) ⊆ G ⊆ X ⊆ F ⊆ E.
It can be proved that we can correctly define the mapping L : F+ → X+ by

Lf = sup
n

(I − A)−1fn,

where 0 ≤ fn ≤ fn+1 for any n, and supn fn = f .
To proceed, in [2] the assumptions (1)–(3) of Section 2 were supplemented by

two more:

(4) The mapping L is injective.

(5) If f ∈ G+ and (f ′
n)n∈N, (f

′′
n )n∈N are two nondecreasing sequences of elements

of D(A)+ satisfying f = supn f ′
n = supn f

′′
n , then supn Bf ′

n = supn Bf
′′
n .

The common value will be denoted by Bf .

We extend the mappings L and B onto F and G, respectively, by linearity.
The above construction of L is not always easy to apply. We shall interpret

it from the point of view of Sobolev towers (see, e.g., [5, Section II.5]). This

interpretation will also show that the assumption (4) above is superfluous.

Thus, according to [5], we define the space X−1 as the completion of X with

respect to the norm

‖f‖−1 = ‖(I − A)−1f‖X .

Then the semigroup (GA(t))t≥0 extends continuously to a semigroup (GA,−1(t))t≥0

in X−1, which is generated by the closure of A in X−1. This closure, denoted by

A−1, is defined on the domain D(A−1) = X ⊂ X−1. The resolvent extends then

by density to a bounded one-to-one operator R(λ, A−1) : X−1 → X−1 with the

range exactly equal to X . We have the following lemma.

Lemma 3.1. The operator L is a restriction of R(1, A−1). As a consequence,
the assumption (4) is satisfied.

Proof. Let g ∈ X+ satisfy g = Lf . This means that g = supn(I−A)−1fn for a

nondecreasing sequence of nonnegative functions fn ∈ X+ such that supn fn = f .
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Since (I − A)−1 is a positive operator, the sequence ((I − A)−1fn)∞n=0 is also

nondecreasing and g ≥ (I − A)−1fn for any n ∈ N. Because g is integrable, we
obtain

lim
n→∞

∫

Ω

(I − A)−1fndµ =
∫

Ω

gdµ

and

lim
n→∞

∫

Ω

|g − (I − A)−1fn| =
∫

Ω

gdµ− lim
n→∞

∫

Ω

(I − A)−1fndµ = 0.

This shows that ((I − A)−1fn)n∈N converges in X and therefore g = Lf =
R(1, A−1)f . The extension for arbitrary f is done by linearity.

Corollary 3.1. If Af = −mf, where m is a nonnegative, measurable, and
almost everywhere finite function, then

F = X−1 = {f ∈ E; (1 + m)−1f ∈ X},(3.1)

and Lf = (1 + m)−1f .

Proof. Since (I −A)−1f = (1+m)−1f , by the definition of F, f ∈ F provided
supn(1 + m)−1fn ∈ X for any nondecreasing sequence of nonnegative functions

fn such that supn fn = |f |.

For h ∈ D(T ), let us denote g = (I − T )h ∈ X . Using (2.8) and replacing the

operators involved there by their extensions, we see that h can be expressed by

h =
∞∑

k=0

L(BL)kg.(3.2)

Let us denote, for any g ∈ X ,

fn =
n∑

k=0

(BL)kg

and

hn = Lfn.

We note that for a nonnegative g we can consider limits of both sequences in

the sense of monotonic convergence almost everywhere, as L and B are positive

operators. We denote by f and h the respective limits provided they exist. In this
case we obtain Lf = h. The result of [2] which we shall apply here reads as

follows.
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Theorem 3.1. Let all the above assumptions be satisfied. If for any g ∈ X+

the limit of the following real convergent sequence satisfies

lim
n→∞

∫

Ω

A0hndµ ≤
∫

Ω

(h − f + Bh)dµ,(3.3)

then T = A + B.

This theorem is not immediately useful as the function h is not explicitly known.

However, the following corollary is useful in many instances.

Corollary 3.2. If Af = A1f = −mf for some measurable, nonnegative, and
almost everywhere finite functionm, and for any H ∈ X+ such that−mH +BH ∈
X we have

∫

Ω

(−mH + BH)dµ ≥ 0,(3.4)

then T = A + B.

Proof. Inequality (3.4) coincides with (3.3) re-written in the context of this corol-

lary. Hence if we prove then that any h defined by (3.2) satisfies the assumptions
imposed onH , then (3.4) will yield (3.3). Clearly, h ∈ X+. Next, since fn ∈ X , we

have hn ∈ D(A) ⊂ D(B) and Bhn = fn+1 − g. Thus supn Bhn = f − g. On the
other hand, we have f = supn fn and h = supn hn = supn(I−A)−1fn = Lf ∈ X .

Thus f ∈ F = X−1 and from the assumption on m it follows that f is bounded
almost everywhere. This implies that h ∈ G and Bh = f − g. Therefore,

−mh + Bh = h − f + f − g = h − g ∈ X . Hence, if (3.4) is satisfied for
any H stipulated in the corollary, then (3.3) is satisfied for any h defined by (3.2)
and the proof is complete.

Remark 3.1. The theory sketched in the previous two sections has been success-

fully applied to a number of problems ranging from the linear Boltzmann equation

with external field in the context of both standard [1, 2] and extended [3] kinetic

theory, Kolmogoroff’s and cell growth equations [2] and kinetic-diffusion equations

arising in the theory of hydrodynamic limits in the extended kinetic theory [4]. In

the next section we shall apply it to the fragmentation equation.
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4. FRAGMENTATION MODEL

An equation of a simple fragmentation model (polymer degradation) [14] can

be written as:

∂tu = Kαu = Aαu + Bαu,(4.1)

where, for x > 0,
Aαu = −xαu(x)

and

(Bαu)(x) = 2

∞∫

x

yα−1u(y)dy.

Here u is the number density of particles with mass x. The parameter α is an

arbitrary real number. The problem splits into three distinct cases depending on

whether α = 0, α < 0, α > 0. When α = 0, the operators Kα and Bα are bounded

and the problem is easy; one can obtain even the closed form solution to (4.1) (cf.

[7]). Therefore in the analysis below we shall always assume that α 6= 0.
The basic space in our considerations will be the space

X1 = L1([0,∞[, xdx)

with the natural norm

‖f‖ =

∞∫

0

x|f(x)|dx.

The natural domain for Kα is then

D(Kα) = D(Aα) = Dα = {f ∈ X1; xαf ∈ X1}.

The reason for the introduction of the space X1 is that for 0 ≤ u ∈ Dα,

∞∫

0

(Bαu)(x)xdx= 2

∞∫

0

x




∞∫

x

u(y)yα−1dy


dx

= 2

∞∫

0

yα−1u(y)




y∫

0

xdx


dy =

∞∫

0

(−Aαu)(x)xdx.

This equation in the present context expresses the mass conservation law.

We see immediately that we can apply Theorem 2.1 to get the following result.

Theorem 4.1. Let α ∈ R be arbitrary. There exists a smallest substochastic

semigroup (Gα(t))t≥0 in X1 generated by an extension Tα of Kα.
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Below we shall prove that the generator of (Gα(t))t≥0 coincides with the closure

of Kα if α > 0 and identify the generator (which turns out to be a proper extension
of Kα) for α < 0.

Since the operator Aα is the multiplication by −xα, we can apply Corollary 3.2.

Thus the space F coincides with the first associated space of the Sobolev tower, that
is, explicitly

F = X−1 = L1(R+, x(1 + xα)−1dx).

The set G is the set of functions f ∈ X1 for which the function

F (x) = (Bαf)(x) = 2

∞∫

x

yα−1f(y)dy

is finite almost everywhere. Clearly, the only point where F (x) could be infinite is
x = 0. Now Corollary 3.2 reads that if for any 0 ≤ H ∈ X1 such that −xαH +
BαH ∈ X1 we have

∞∫

0

(−xαH + BαH)xdx ≥ 0,

then Tα = Kα. Technical details relevant to the problem at hand are given below.

Proposition 4.1. If α > 0, then Tα = Kα.

Proof. Since H ∈ X1, −xαH ∈ L1([0, n], xdx) for any n and, since by as-
sumption −xαH + BαH ∈ X1, we have also BαH ∈ L1([0, n], xdx). Therefore

∞∫

0

(−xαH(x) + (BαH)(x))xdx

= lim
n→∞

n∫

0

(−xαH(x) + (BαH)(x))xdx

= lim
n→∞




n∫

0

(−xαH(x)xdx + 2

∞∫

n




n∫

0

xdx


 yα−1H(y)dy

+2

n∫

0




y∫

0

xdx


 yα−1H(y)dy




= lim
n→∞

n2

∞∫

n

yα−1H(y)dy.
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Since the limit is finite by the definition of H , it must be nonnegative and the

statement is proved.

If we look now at the case α < 0, then a similar argument shows that

∞∫

0

(−xαH(x) + (BαH)(x))xdx

= lim
ε→0

∞∫

ε

(−xαH(x) + (BαH)(x))xdx

= lim
ε→∞




∞∫

ε

(−xαH(x)xdx + 2

∞∫

ε




y∫

ε

xdx


 yα−1H(y)dy




= − lim
ε→∞

ε2
∞∫

ε

yα−1H(y)dy.

Here, unfortunately, the limit can be either zero or negative, which is inconclusive.

Although it is possible to find a function H satisfying the assumptions of Corollary

3.2, and for which the above limit is strictly negative (H should behave as 1 when

x is close to zero), we don’t know whether such a function belongs to D(T ).

Remark 4.1. This short section shows some advantages as well as limitations of

the method presented earlier in this paper. Apart from the last inconclusive result,

we don’t know whether Proposition 4.1 gives the best answer – in principle it is

still possible that Tα = Kα. Fortunately, for the model discussed in this section it

is possible to find explicitly the resolvent of the generator and study it directly to

find answers to all the relevant questions. As we shall see in the next section, the

results obtained here are the best possible: for α > 0 indeed Tα = Kα 6= Kα, and

for α < 0 the generator Tα is a proper extension of Kα.

5. DIRECT STUDY OF THE FRAGMENTATION MMODEL

For reasons which will become clear later (see also the proof of Theorem 2.1),

we shall consider a more general operator

Kα,r = Aα + rBα

for 0 < r ≤ 1. From the preceding theory, for any α and 0 < r ≤ 1 there is an
extension Tα,r of Kα,r which is the generator of a semigroup, say, (Gα,r(t))t≥0.

We shall adopt the convention that for any operator Cα,r depending on r, Cα,1 =
Cα.
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From Section 2 it follows that for r < 1, rBα is a Miyadera perturbation of Aα

and thus the Miyadera-Voigt theory implies that Tα,r = Kα,r, with the domain Dα,

generating (Gα,r(t))t≥0.

Our next aim is to identify the resolvent of Tα,r. We start by solving the equation

λu + xαu − 2r

∞∫

x

yα−1u(y)dy = f.

Proceeding at this moment purely formally, we differentiate the above equation with

respect to x to get

(λ + xα)u′ + (α + 2r)xα−1u = f ′,

and, after standard manipulations, we obtain

u =
f

λ + xα
+

1
(λ + xα)1+2r/α


C − 2r

x∫

0

f(s)(λ + sα)−1+2r/αsα−1ds


 .(5.1)

The multiplying function (λ + xα)−1 is bounded for any α. Precisely, we have for
α > 0,

(λ + xα)−1 =
{

O(x−α) as x → +∞,
O(1) as x → 0+,

(5.2)

and for α < 0

(λ + xα)−1 =
{

O(x−α) as x → 0+,

O(1) as x → +∞.
(5.3)

Let us also write down the asymptotics of the kernel of the integral operator. Since

we know that xf is integrable, we shall rather investigate (λ + xα)−1+2r/αxα−2.

We have for α > 0,

(λ + xα)−1+2r/αxα−2 =
{

O(x2(r−1)) as x → +∞,
O(xα−2) as x → 0+,

(5.4)

and for α < 0

(λ + xα)−1+2r/αxα−2 =
{

O(xα−2) as x → +∞,

O(x2(r−1)) as x → 0+.
(5.5)

Hence, the first term in (5.1) doesn’t create any problems. Let us consider first the

case with α > 0. By (5.2), the multiplying function (λ+xα)−1−2r/α is O(x−α−2r)
as x → ∞, and bounded as x → 0+. Since u should be integrable with the weight
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x1+α, we see that it is necessary to require that C = 2
∞∫
0

f(s)(λ+sα)−1+2r/αsα−1ds

and the solution takes the form

u =
f

λ + xα
+

2r

(λ + xα)1+2r/α

∞∫

x

f(s)(λ + sα)−1+2r/αsα−1ds.(5.6)

Let us suppose now that α < 0. The multiplying function (λ + xα)−1−2r/α is

O(x−α−2r) as x → 0+, and bounded away from zero as x → +∞. We have to
have u ∈ X1, and thus as above the only way to ensure this is to make the bracket

in (5.1) vanish at infinity, which produces the same solution given by (5.6).

Thus we introduce the operators

Rα,r(λ)f = R1(λ)f + R2(λ)f =
f

λ + xα

+
2r

(λ + xα)1+2r/α

∞∫

x

f(s)(λ + sα)−1+2r/αsα−1ds.

(5.7)

In all the considerations below we assume that λ > 0.

Lemma 5.1. The operators Rα,r(λ) extend to bounded operators on X1.

Proof. We need to focus only on R2. Changing the order of integration, we

obtain

‖R2(λ)f‖ ≤
∞∫

0




s∫

0

x

(λ + xα)1+2r/α
dx


 |sf(s)|(λ + sα)−1+2r/αsα−2ds.

We shall analyse the behaviour of the inner integral for cases α > 0 and α < 0
separately. Let first α > 0. Then the inner integrand behaves as x close to zero and

as x−α−2r+1 as x → ∞. Thus for small s the inner integral is of order of s2, and

since by (5.4) the kernel (λ + sα)−1+2r/αsα−2 behaves there as sα−2, we obtain

the integrability at zero. For large s, the inner integral is of order of s−α−2r+2 and

since the kernel behaves as s2r−2, we obtain that the integral is finite.

Let us look now at α < 0. The inner integrand is of order of x−α−2r+1 as x
is close to zero, and thus the integral is of order of s−α−2r+2. Since by (5.5) the

kernel is of order of s2r−2 at zero, the product is of order of s−α and bounded, as

α < 0; thus we obtain the integrability at zero. Next, for large x the inner integrand
behaves as x; thus the integral increases as s2, but the kernel is of order of sα−2.

Hence again the product is bounded and the integral is finite.
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Lemma 5.2. For each 0 < r ≤ 1 and all α, the operator Rα,r(λ) is a left
inverse of λ − Kα,r.

Proof. We have to prove that for any u ∈ Dα we haveRα,r(λ)(λ+Aα−rBa)u =
u. Clearly, R1(λ)(λ + Aα)u = u. After some calculations, we obtain

−rR2(λ)Bαu=
−4r2

(λ + xα)1+2r/α

∞∫

x

sα−1(λ + sα)−1+2r/α




∞∫

s

yα−1u(y)dy


ds

=
−2r

(λ + xα)1+2r/α

∞∫

x

yα−1u(y)
(
(λ + yα)2r/α − (λ + xα)2r/α

)
dy

= −R2(λ)(λ + Aα)u + R1(λ)(rBα)u.

Thus

Rα,r(λ)(λ + Aα − rBα)u

= R1(λ)(λ + Aα)u− R1(λ)(rBα)u + R2(λ)(λ + Aα)u− R2(λ)(rBα)u

= u − rR1(λ)Bαu + R2(λ)(λ + Aα)u − (−rR1(λ)Bαu + R2(λ)(λ + Aα)u

= u

and the lemma is proved.

Proposition 5.1. For any α ∈ R and 0 < r ≤ 1, the operator Rα,r(λ) is the
resolvent of the generator of the semigroup (Gα,r(t))t≥0. Thus we have

Tα,r = λ − (Rα,r(λ))−1.(5.8)

Proof. For r < 1 the statement is clear as rBα is the Miyadera perturbation of

Aα. In particular,

Kα,r = Tα,r = λ − (Rα,r(λ))−1.

Let now r = 1. As in the proof of Theorem 2.1 (or [13]), the semigroup (Gα(t))t≥0

can be obtained as

Gα(t)f = lim
r→1−

Gα,r(t)f, f ∈ X1.

Moreover, for r ≤ r′ we have Gα,r(t) ≤ Gα,r′(t) for any t ≥ 0. This implies
immediately that for f ∈ X1,+,

Rα,r′(λ)f =

∞∫

0

e−λtGα,r′(t)fdt ≥
∞∫

0

e−λtGα,r(t)fdt = Rα,r(λ)f,
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so that by (5.7) the resolventsRα,r(λ)f monotonically converge for all f to Rα(λ)f .
Using again the monotonicity we obtain

‖Rα,r′(λ)f − Rα(λ)f‖X1 =

∞∫

0

((Rα(λ)f)(x)− (Rα,r′(λ)f)(x))xdx,

and the right-hand side tends to zero by the Lebesgue monotone convergence theo-

rem. Thus, for any f ∈ X1,+, Rα,r(λ)f → Rα(λ)f as r → 1− inX1 norm. On the

other hand, it is clear that the resolvents Rα,r(λ)f converge to the resolvent R(λ)
of (Rα(t))t≥0 in X1. Thus, R(λ)f = Rα(λ)f for all positive f and by linearity
this extends to the whole of X1.

Lemma 5.3. For 0 < r < 1 and all α we have

Rα,r(λ)X1 = Dα.(5.9)

If r = 1 and α 6= 0,, then

Rα(λ)X1 6= Dα.(5.10)

Moreover, there exists a dense subspace X̂1 ⊂ X1 such that Rα(λ)X̂1 ⊂ Dα.

Proof. Let first r < 1. Then from Proposition 5.1 we see that Kα,r defined

on Dα is surjective. Since Rα,r(λ) is a left inverse of λ − Kα,r, it must be the

resolvent and (5.9) is proved.

Let us consider now the case r = 1 and α > 0. Suppose 0 ≤ f ∈ X1; then we

obtain as above

‖xαR2(λ)f‖X1 =

∞∫

0




s∫

0

x1+α

(λ + xα)1+2/α
dx


 (sf(s))(λ + sα)−1+2/αsα−2ds.

(5.11)

It is easy to see that for large s the inner integral behaves as ln s. As in (5.4) we

see that

(λ + sα)−1+2/αsα−2 = (λs−α + 1)−1+2/α → 1, as s → ∞.

Thus it is bounded away from zero for large s. Therefore, there exist functions in
X1 for which the above integral is divergent (for example, one can take sf(s) =
1/(s ln2 s)). Since all the functions are nonnegative, the original integral is also
divergent by Tonelli’s theorem. It is also clear that if f has the support in [0, n],



Kato-Voigt Perturbation Theorem 187

n < ∞, then the above integral is convergent. Therefore there exists a dense
subspace X̂1 such that Rα(λ)X̂1 ⊂ Dα.

Let us consider now the case with r = 1 and α < 0. Then

‖xαR2(λ)f‖X1 =

∞∫

0

xα+1

(λ + xα)1+2/α

∞∫

x

(sf(s))(λ + sα)−1+2/αsα−2dsdx,(5.12)

and we see that the term xα+1/(λ+xα)1+2/α behaves as x−1 at zero (and as xα+1

at infinity) and therefore the above integral is divergent unless at least
∞∫
0

(sf(s))(λ+

sα)−1+2/αsα−2ds = 0.

Lemma 5.4. For arbitrary α ∈ R, if for some f ∈ X1 we have Rα(λ)f ∈ Dα,
then (λ− Kα)Rα(λ)f = f . Therefore,

(a) if α > 0, then the range of (λ − Kα, Dα) is dense in X1, and

(b) if α < 0, then the range of (λ−Kα, Dα) is not closed; its closure is a subspace
of X1 of codimension 1.

Proof. From Lemma 5.3 we know that have Rα(λ) is a left inverse to λ−Kα.

Thus, if Rα(λ)f ∈ Dα, then

Rα(λ)(λ− Kα)Rα(λ)f = Rα(λ)f.

From Proposition 5.1, we know that Rα(λ) is a resolvent, and hence it is an injective
operator, which yields (λ− Kα)Rα(λ)f = f .

Let r = 1 and α > 0. In Lemma 5.3, we showed that there exists a dense
subspace X̂1 for which we have Rα(λ)X̂1 ⊂ D(Kα). The first part of this lemma
gives (λ − Kα)Rα(λ)X̂1 = X̂1 ⊂ Rg(λ− Kα) (the range of (λ − Kα, Dα)), and
consequently the range of λ− Kα is dense in X1 (and not equal to X1).

Finally, let us consider the case with α < 0 and r = 1. Suppose f ∈ Rg(λ−
Kα), then f = (λ−Kα)g for some g ∈ Dα. Lemma 5.2 implies then thatRα(λ)f ∈

Dα, but by Lemma 5.3 we must have
∞∫
0

(sf(s))(λ+sα)−1+2/αsα−2ds = 0. In fact,

since the function (sf(s))(λ+ sα)−1+2/αsα−2 is integrable on [0,∞[, the function

F (x) =
∞∫
x

(sf(s))(λ + sα)−1+2/αsα−2ds is continuous and therefore it has a limit

at zero, F (0). If this limit is nonzero, then by continuity F (x) is of constant sign
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at some interval [0, δ], and since xα+1(λ + xα)−1−2/α is positive and of order of

x−1 as x is close to zero, we obtain that the integral

∞∫

0

xα+1

(λ + xα)1+2/α
F (x)dx(5.13)

diverges. Thus F (0) = 0 or, in other words, for f to belong to Rg(λ− Kα), it is

necessary that
∞∫
0

(sf(s))(λ + sα)−1+2/αsα−2ds = 0. Hence, f must belong to the

subspace of codimension 1 which is annihilated by the functional generated by the

function (λ + sα)−1+2/αsα−1; this subspace will be denoted by X̃1. (Note that for

α < 0 this function belongs to X∗
1 = {f ; f measurable, x−1f ∈ L∞([0,∞[)}).

However, X̃1 6= Rg(λ−Kα). This can be established by noting that if F (x) behaves

as 1/ lnx at zero, then the integral in (5.13) diverges as
0.5∫
0

(1/x lnx)dx = −∞.

On the other hand, we can prove that X̃1 = Rg(λ− Kα). Firstly, we observe that
if f ∈ X̃1 is continuous at x = 0, then f ∈ Rg(λ− Kα). In fact, in this case F ′

is continuous at zero and the claim follows from

δ∫

0

1
x

F (x)dx =

δ∫

0

F (x) − F (0)
x

dx < +∞

for sufficiently small δ > 0. Having this in mind, for a given f ∈ X̃1 we construct
the sequence

fn(x) =





f(x) for x > n−1,

−2n(λ + xα)1−2/αx−α+1
∞∫

n−1

f(s)(λ + sα)−1+2/αsα−1ds for (2n)−1 ≤ x ≤ n−1,

0 for 0 ≤ x < (2n)−1.

We see that
∞∫

0

fn(x)(λ + xα)−1+2/αxα−1dx = 0.

Moreover, since fn(x) = 0 for 0 ≤ x ≤ (2n)−1, fn ∈ Rg(λ−Kα). We shall prove
that fn → f in X1 as n → ∞. We have

‖f − fn‖X1 ≤
n−1∫

0

x|f(x)|dx

+2n




∫

(2n)−1

n−1x(λ + xα)1−2/αx−α+1dx







∞∫

n−1

|f(s)|(λ + sα)−1+2/αsα−1ds


 .
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The first term tends to zero since f ∈ X1. In the second term we see that the

integrand x(λ+xα)1−2/αx−α+1 is bounded for x close to zero, and thus the product

tends to zero due to the behaviour of
∞∫

n−1

|f(s)|(λ + sα)−1+2/αsα−1ds. Hence,

Rg(λ− Kα) = X̃1. This ends the proof of the lemma.

Corollary 5.1. Let α 6= 0. The operator Kα is closable but not closed. If

α > 0, then the extension Tα of Kα which generates the semigroup of (Gα(t))t≥0

is given by

Tα = Kα.

If α < 0, then Tα is a proper extension of Kα.

Proof. It is clear that Kα is densely defined. By the comment before Corollary

2.1, we know that Kα is dissipative for any α. Thus from [5, Proposition II.3.14

(iii-iv)] and the lemma above, we infer that Kα is closable but not closed. Hence,

for neither α 6= 0, Kα is the generator of a semigroup.

Assume now that α > 0. Since we have proved that Rg(λ − Kα) is a proper
dense subspace of X1, using Corollary 2.1 we obtain that Tα = Aα + Bα is the

generator.

Consider next the case α < 0. Using again Proposition II.3.14 (iv) of op. cit,
we see that Rg(λ− Kα) = Rg(λ−Kα). By the lemma above, Rg(λ− Kα) 6= X1.

Hence in this case Kα cannot be m-dissipative and therefore the generator Tα must

be a proper extension of Kα.

In the last step we shall prove that the semigroup (Gα(t))t≥0, α < 0, is not a
stochastic semigroup. This result could also be proved by modifying an argument

of [6]. but in our opinion the direct proof offered here has some instructive values.

Proposition 5.2. Let α < 0. For any f ∈ X1,+, f 6= 0, there exists t > 0 such
that

‖Gα(t)f‖ 6= ‖f‖.(5.14)

Therefore, (Gα(t))t≥0 is not a stochastic semigroup.

Proof. Let f ∈ X1,+, f 6= 0. If in (5.14) there was an equality for all t ≥ 0,
then using the additivity of the L1 norm we would have

‖Rα(1)f‖ =

∞∫

0

e−t‖Gα(t)f‖dt = ‖f‖.(5.15)
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On the other hand,

‖Rα(1)f‖ =

∞∫

0

xf(x)dx

1 + xα
+ 2

∞∫

0


 x

(1 + xα)1+2/α

∞∫

x

f(s)(1 + sα)−1+2/αsα−1ds


dx.

(5.16)

Evaluating the second integral, we obtain

2

∞∫

0


f(s)(1 + sα)−1+2/αsα−1

s∫

0

x

(1 + xα)1+2/α
dx


ds

=

∞∫

0

f(s)(1 + sα)−1+2/αsα−1

(
s2

(1 + sα)2/α
− 1

)
ds

=

∞∫

0

f(s)(1 + sα)−1sα+1ds −
∞∫

0

f(s)(1 + sα)−1+2/αsα−1ds.

Inserting the above into (5.16) and simplifying, we obtain

‖Rα(1)f‖ =

∞∫

0

xf(x)dx−
∞∫

0

f(x)(1 + xα)−1+2/αxα−1dx < ‖f‖,

which contradicts (5.15).
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