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NORM-ONE PROJECTIONS IN BANACH SPACES

Beata Randrianantoanina

Abstract. This is a survey of results about norm-one projections and 1-
complemented subspaces in Köthe function spaces and Banach sequence spaces.
The historical development of the theory is presented from the 1930s to the
newest ideas. Proofs of the main results are outlined. Open problems are also
discussed. Every effort has been made to include as complete a bibliography
as possible.
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1. INTRODUCTION

One of the main topics in the study of Banach spaces has been, since the
inception of the field, the study of projections and complemented subspaces. Here
by a projection we mean a bounded linear operator P satisfying P 2 = P , and by a
complemented subspace we mean a range of a bounded linear projection P .

Banach [8] posed several problems about projections and complemented sub-
spaces. Some of the most famous ones are:

Problem 1.1. Does every complemented subspace of a space with a basis have
a basis?
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Problem 1.2. Does every complemented subspace of a space with an uncon-
ditional basis have an unconditional basis?

Problem 1.3. Does every Banach space X admit a nontrivial bounded linear
projection?

Here nontrivial means that dimP (X) = ∞ and dim X/P (X) = ∞; notice
that the Hahn-Banach theorem guarantees that for every Banach space X and every
subspace Y ⊂ X with dim Y < ∞, there exists a bounded linear projection with
P (X) = Y .

These problems proved to be very elusive. In fact, Problem 1.2 is still open,
even for subspaces of Lp, despite the intensive work of many people in the area.

Problems 1.1 and 1.3 were both answered negatively more than 50 years after
they were posed. Problem 1.1 was solved by Szarek in 1987 [149] and Problem 1.3
was solved by Gowers and Maurey in 1993 [79].

The work, of more than 50 years, on Problems 1.1, 1.2 and 1.3 has led to signif-
icant developments in Banach space theory and also to many intriguing questions.

In this survey we want to concentrate on the developments of the theory of
projections of norm one in Banach spaces. It seems that this theory, being of
isometric rather than isomorphic nature, should be much less complicated than the
theory of bounded projections of arbitrary norm.

Note, however, that any Banach space can be equivalently renormed so that the
given bounded projection P has norm one on X . Thus, without loss of generality,
one can rephrase Problems 1.1 and 1.2 to ask for the 1-complemented subspaces
with the additional properties as stated there. Maybe this is the reason why the
theory of norm-one projections still has many open problems.

One of the most interesting of them is the isometric version of Problem 1.2:

Problem 1.4. Does every 1-complemented subspace of a space X with a 1-
unconditional basis have an unconditional basis (with any constant C)?

This problem has the affirmative answer if space X is over C [90] (and then
constant C = 1), but it is open if space X is real; see Section 7 (it is known that
C = 1 does not work in the real case). We will discuss also some other interesting
open problems related to Problem 1.3; see Questions 7.3 and 7.4.

Norm-one projections are important because they are one of the most natural
generalizations of the concept of orthogonal projections from Hilbert spaces to ar-
bitrary Banach spaces.

Another very natural generalization of orthogonal projections are metric projec-
tions (also called proximity mappings, nearest point mappings; cf. Definition 2.10),
which play a very important role in the theory of best approximation.
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Metric projections are usually set-valued and one of the major research direc-
tions in the area is to determine when a metric projection admits a continuous or
linear selection (see, e.g., [144, 53]). Not surprisingly contractive projections and
metric projections as two natural generalizations of orthogonal projections are in-
trinsically related to each other and there are results about linear selections of metric
projections using characterizations of norm-one projections as well as results giving
characterizations of contractive projections using facts about metric projections (see
Section 5.e).

It is striking that despite the intensive work of many authors on contractive
projections (our bibliography includes over 120 items and probably is not complete),
the full characterization of norm one projections is known only in Lp-spaces among
nonatomic Köthe function spaces.

There are examples demonstrating that 1-complemented subspaces of general
Banach spaces other than Lp cannot be described purely in isomorphic or isometric
terms (in Lp a subspace X is 1-complemented if and only if X is isometrically
isomorphic to an Lp-space, possibly on a different measure space). Thus it seems
that the 1-complementability of a subspace Y in X in fact depends on the way
that Y is embedded in X and that norm one projections are best described in terms
of conditional expectation operators in both nonatomic Köthe function spaces and
sequence Banach spaces; see Conjectures 5.26 and 7.9.

This survey is organized as follows. We start from recalling well-known facts
about the abundance of contractive projections in Hilbert spaces and the charac-
terizations of Hilbert spaces through existence of enough contractive projections
(Section 3).

Next we divide the survey into two parts. Part I is about nonatomic function
spaces and Part II is about sequence spaces. Each part starts with the section devoted
to Lebesgue spaces Lp and �p, respectively (Sections 4, 6). Sections 5 and 7 are
devoted to a variety of partial results valid in Köthe function spaces and in sequence
spaces.

In the present survey we limit ourselves to the theory of contractive projections
in Köthe function spaces and sequence spaces, which are not M -spaces. There
exists a vast literature on contractive projections in spaces of continuous functions,
vector-valued function spaces, noncommutative Banach spaces as well as nonlinear
contractive projections, so we could not possibly cover everything here. We refer
the interested reader to surveys [120, 65] of some of these topics; some additional
references are also mentioned in the text below.

Throughout the survey we use standard notations as may be found, e.g., in [103,
104]. For the convenience of the reader we collect in Section 2 some of the most
important definitions that we use.
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2. DEFINITIONS

As indicated in the Introduction, throughout the paper we use standard defin-
itions and notations as may be found, e.g., in [103, 104]. In this section, for the
convenience of the reader, we collect some of the most important definitions that
we use. Throughout the main body of the paper we will refer to these definitions
whenever we use them.

Definition 2.1. [104, Definition 1.b.17]. Let (Ω, Σ, μ) be a complete σ-finite
measure space. A Banach spaceX consisting of equivalence classes, modulo equal-
ity almost everywhere, of locally integrable functions on Ω is called a Köthe function
space if the following conditions hold:
(1) If |f(w)| ≤ |g(w)| a.e. on Ω, with f measurable and g ∈ X , then f ∈ X

and ‖f‖X ≤ ‖g‖X.
(2) For every A ∈ Σ with μ(A) < ∞, the characteristic function χ

A of A belongs
to X .

Definition 2.2. We say that a Köthe function space X is order-continuous if
whenever fn ∈ X with fn ↓ 0 a.e. then ‖fn‖X ↓ 0.

Definition 2.3. The Köthe dual X ′ of X is the Köthe space of all g such that∫
Ω |f |‖g| dμ < ∞ for every f ∈ X . X ′ is equipped with the norm

‖g‖X ′ = sup
‖f‖X≤1

∫
Ω

|f |‖g|dμ.

Köthe dual X ′ can be regarded as a closed subspace of the dual X∗ of X . If
X is order-continuous, then X ′ = X∗.

Definition 2.4 [104, Definition 2.a.1]. Let (Ω, Σ, μ) be one of the measure
spaces [0, 1], [0,∞) or {1, 2, . . .} (with the natural measure). A Köthe function
space X on (Ω, Σ, μ) is said to be a rearrangement invariant space (r.i. space) if
the following conditions hold:
(1) If τ is a measure-preserving automorphism of Ω onto itself and f is measurable

function on Ω, then f ∈ X if and only if f ◦ τ ∈ X and ‖f‖X = ‖f ◦ τ‖X .
(2) X ′ is a norming subspace of X∗.
(3) If A ∈ Σ and μ(A) = 1, then ‖χA‖X = 1.

R.i. spaces are also sometimes called symmetric spaces, especially when Ω =
{1, 2, . . .}.
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The most commonly used r.i. spaces, besides the Lebesgue spaces Lp and �p,
are Orlicz and Lorentz spaces.

Definition 2.5 (see, e.g., [103, Definition 4.a.1]). An Orlicz function ϕ is a left-
continuous, nondecreasing convex function ϕ : [0,∞) → [0,∞] such that ϕ(0) = 0
and limt→∞ ϕ(t) = ∞. We will also additionally assume that ϕ(1) = 1.

Let (Ω, Σ, μ) be one of the measure spaces {1, 2, . . .}, [0, 1] or [0, ∞) (with
the natural measure). The Orlicz space Lϕ(Ω, Σ, μ) is the space of all (equivalence
classes of) measurable functions f on Ω so that∫

Ω

ϕ

( |f(t)|
λ

)
dμ < ∞

for some λ > 0. The space Lϕ is equipped with the norm

‖f‖ϕ = inf

⎧⎨
⎩λ > 0 :

∫
Ω

ϕ

( |f(t)|
λ

)
≤ 1

⎫⎬
⎭ .

‖ · ‖ϕ is called a Luxemburg norm.
Sometimes Lϕ is considered with a different equivalent norm ‖ ·‖ϕ,O which can

be described as follows:

‖x‖ϕ,O = inf
λ>0

1
λ

⎛
⎝1 +

∫
Ω

ϕ(λ‖xn‖)dμ

⎞
⎠ .(1)

‖ · ‖ϕ,O is called an Orlicz norm and (1) is called an Amemiya formula for the
Orlicz norm.

Orlicz functions were introduced by Birnbaum and Orlicz [23] and Orlicz spaces
were first considered by Orlicz [114, 115]. Since then they were extensively studied
by many authors and became a source of many examples and counterexamples in
Banach space theory. There are many monographs devoted to Orlicz spaces (see,
e.g., [93, 131, 49]).

The other natural extensions of Lebesgue spaces Lp and �p are Lorentz spaces
Lw,p and �w,p introduced by Lorentz [106] in connection with some problems of
harmonic analysis and interpolation theory. In this paper we do not use Lorentz
function spaces, so we just recall the definition of Lorentz sequence spaces �w,p.

Definition 2.6 (see, e.g., [103, Definition 4.e.1]). Let 1 ≤ p < ∞ and let
w = {wn}∞n=1 be a nonincreasing sequence of nonnegative numbers such that
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w1 = 1 and limn→∞ wn = 0. The Banach space of all sequences of scalars
x = (x1, x2, . . . ) for which

‖x‖w,p = sup
π

( ∞∑
n=1

‖aπ(n)‖pwn

) 1
p

< ∞,

where π ranges over all permutations of the integers, is called a Lorentz sequence
space and is denoted by �w,p (or d(w, p)).

Note that ‖ · ‖w,p can also be computed as follows:

‖x‖w,p =

( ∞∑
n=1

(x∗
n)pwn

) 1
p

,

where x = (x1, x2 · · · ) ∈ �w,p and {x∗
n}∞n=1 is a nonincreasing sequence obtained

from {‖xn‖}∞n=1 by a suitable permutation of the integers. {x∗
n}∞n=1 is called a

nonincreasing rearrangement of the sequence {xn}∞n=1.

Definition 2.7. Let X be a Banach space. We define a duality map J from X

into subsets of X∗ by the condition that f ∈ J(x) ⊂ X∗ if and only if ‖f‖X∗ =
‖x‖X and 〈f, x〉 = ‖x‖2

X .
If J(x) contains exactly one functional, then element x is called smooth in X .
If every element x ∈ X is smooth in X , then X is called smooth.

Definition 2.8. We say that the norm in the Banach latticeX is strictly monotone
if ‖x + y‖X > ‖x‖X whenever x, y ≥ 0 and y 
= 0.

Definition 2.9. A Schauder basis {xi}i forX is calledmonotone if supn ‖Pn‖ =
1, where Pn are the natural projections associated to the basis, i.e.,

Pn

( ∞∑
i=1

aixi

)
=

n∑
i=1

aixi.

If supn ‖I −Pn‖ = 1 (where I denotes the identity operator), the basis is called
reverse monotone.

If for all scalars (ai)i we have

‖
∞∑
i=1

aixi‖X = ‖
∞∑
i=1

|ai|xi‖X ,

then the basis {xi}i is called 1-unconditional.
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Most commonly studied examples of spaces with 1-unconditional bases include
�p, Orlicz and Lorentz spaces.

Definition 2.10 Let X be a real or complex normed linear space and M a
subset of X . The metric projection onto M is the mapping PM : X → 2M which
associates with each x in X its (possibly empty) set of nearest points in M , i.e.,

PM(x) = {m ∈ M : ‖x− m‖ = inf{‖x − y‖ : y ∈ M}}
Other terms for metric projections used in the literature include best approxi-

mation operator, nearest point map, Chebyshev map, proximity mapping, normal
projection, projection of minimal distance.

Some authors use the term metric projection for a particular selection of the
set-valued mapping PM (cf. Definition 2.12).

Definition 2.11. A subset M of a normed linear space X is called proximinal
(resp. Chebyshev) if for each x ∈ X, PM(x) contains at least one (resp. exactly
one) element of M .

Definition 2.12. Let Q : X → 2Y be a set-valued map. A selection for Q is
any map q : X → Y such that q(x) ∈ Q(x) for all x ∈ X .

3. HILBERT SPACES

The first results about norm one projections were proven in the setting of Hilbert
spaces.

It is well-known that Hilbert spaces contain many norm-one projections. Namely,
orthogonal projections are contractive and for every subspace Y of a Hilbert space
H there exists an orthogonal projection whose range is precisely Y . In fact this
property characterizes Hilbert spaces as was proven by Kakutani [88] (see also
[122]) in the case of real spaces, and by Bohnenblust [26] in the complex case (cf.
[120]). This was later refined by James [86] and Papini [117] (see also [133]). We
have:

Theorem 3.1 (cf. [3]). For a Banach space X with dim X ≥ 3, the following
statements are equivalent:
( i ) X is isometrically isomorphic to a Hilbert space,
( ii ) every 2-dimensional subspace of X is the range of a projection of norm 1;
(iii) every subspace of X is the range of a projection of norm 1;
(iv) (James [86]) every 1-codimensional subspace of X is the range of a projec-

tion of norm 1;
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( v ) (Papini [117], de Figueiredo, Karlovitz [71] for the case when dimX < ∞
and X is strictly convex) for some 2 ≤ n ≤ dimX − 1, every n-dimensional
subspace of X is the range of a projection of norm 1,

(vi) (Papini [117]) for some 1 ≤ n ≤ dim X−2, every n-codimensional subspace
of X is the range of a projection of norm 1.

Note also that in Hilbert spaces every subspace is isometrically isomorphic to
a Hilbert space and therefore the equivalence (i) ↔ (iii) in Theorem 3.1 can be
restated as follows:

Proposition 3.2. Let X be a Hilbert space. Then Y ⊂ X is contractively
complemented if and only if Y is isometrically isomorphic to a Hilbert space.

However, as we will see in the sequel, the statement in Proposition 3.2 does not
characterize Hilbert spaces.

Part 1. Nonatomic Function Spaces

4. LEBESGUE FUNCTION SPACES Lp

It follows from Theorem 3.1 that in spaces other than Hilbert space there are
many subspaces which are not 1-complemented. But even before the results of
Kakutani (1939) and Bohnenblust (1942), Murray [109] showed, answering a ques-
tion of Banach [8], that if 1 < p < ∞, p 
= 2, then there exist subspaces of Lp and
of �p which are not complemented. This appears to be the first result indicating that
not every subspace of Lp is 1-complemented.

4.a. Conditional expectation operators. In 1933, in the treatise on the founda-
tions of probability [92], Kolmogorov introduced conditional expectation operators,
which are very important examples of norm-one projections in Lp and other Banach
spaces. Moreover conditional expectation operators play a crucial role in describing
general contractive projections, so we start from recalling their definitions and basic
properties.

Definition 4.1 [92, 58]. Let (Ω, Σ, μ) be a σ-finite measure space and Σ0 ⊂ Σ
be a σ-subalgebra of Σ such that μ restricted to Σ0 is σ-finite (i.e., so that Σ0

does not have atoms of infinite measure). By the Radon-Nikodym Theorem, for
every f ∈ L1(Ω, Σ, μ) + L∞(Ω, Σ, μ) there exists a unique, up to an equality a.e.,
Σ0-measurable locally integrable function EΣ0f so that∫

Ω
gEΣ0fdμ =

∫
Ω

gfdμ
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for every bounded, integrable, Σ0-measurable function g. The function EΣ0f is
called the conditional expectation of f with respect to Σ0.

Basic properties of conditional expectations are as follows [92, 58]:
(1) EΣ0 is a linear mapping,
(2) EΣ0 is positive, i.e., EΣ0(f) ≥ 0 whenever 0 ≤ f ∈ L1(Ω, Σ, μ)+L∞(Ω, Σ, μ),

(3) EΣ0(f) = f if and only if f ∈ L1(Ω, Σ0, μ) + L∞(Ω, Σ0, μ); in particular,
EΣ0(1) = 1 (here 1 denotes a function on Ω constantly equal to 1),

(4) ‖EΣ0f‖1 ≤ ‖f‖1 for all f ∈ L1(Ω, Σ, μ) (this follows easily since if f ≥ 0
then ‖EΣ0f‖1 = ‖f‖1 and by the positivity of EΣ0 we have ‖EΣ0(f)‖ ≤
EΣ0(‖f‖) which gives the desired conclusion),

(5) (cf. [108]) if p ≥ 1 then ‖EΣ0(f)‖p ≤ EΣ0(‖f‖p) almost everywhere so
‖EΣ0(f)‖p ≤ ‖f‖p for all f ∈ Lp(Ω, Σ, μ),

(6) EΣ0 satisfies the averaging identity, i.e.,

EΣ0(f · EΣ0(g)) = EΣ0(f) · EΣ0(g)

for all f ∈ L∞(Ω, Σ, μ) and g ∈ L1(Ω, Σ, μ) + L∞(Ω, Σ, μ).

These properties can be summarized as follows:

Theorem 4.2 (for p = 1 implicit in [92], for p > 1 see [58, 108]). If p ≥ 1
and (Ω, Σ, μ) is a σ-finite measure space and Σ0 is a σ-subalgebra of Σ, then
the conditional expectation operator EΣ0 is a positive contractive projection from
Lp(Ω, Σ, μ) onto Lp(Ω, Σ0, μ), that leaves the constants invariant.

Several authors have investigated whether any subset of properties (1)-(6) char-
acterizes conditional expectation operators. For the most recent results in this di-
rection as well as a nice account of the literature, we refer the reader to [57].

In this survey we will concentrate on the papers that deal directly with the
converse of Theorem 4.2.

First such results go back to the ’50s [108, 7, 140, 138, 34]. These papers
dealt with the converse of Theorem 4.2 under some additional assumptions on the
contractive projection operator.

4.b. Main characterizations. In 1965, Douglas [62] gave a complete characteriza-
tion of contractive projections on L1(Ω, Σ, μ) when (Σ, μ) is a finite measure space.
In the following year, Ando [4] extended this characterization to Lp(Ω, Σ, μ) on a
finite measure space for arbitrary p, 1 ≤ p < ∞, p 
= 2. They proved that every
norm-one projection on Lp(Ω, Σ, μ), 1 < p < ∞, p 
= 2, which leaves constants
invariant is a conditional expectation operator (when p = 1 this is true for most
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norm-one projections; for the precise statement, see the following Theorem 4.3).
Moreover, if the norm-one projection P does not leave constants invariant, i.e., if
P1 = h is an arbitrary function in Lp(Ω, Σ, μ), then h has a maximum support
among functions from the range of P , the range of P is isometrically isomorphic to
a weighted Lp-space (with weight h) and the projection P is a, so-called, weighted
conditional expectation operator. The precise statement of their results is given
below:

Theorem 4.3 [62, 4]. Let 1 ≤ p < ∞, p 
= 2 and let (Ω, Σ, μ) be a finite
measure space. Then P : Lp(Ω, Σ, μ) −→ Lp(Ω, Σ, μ) is a contractive projection if
and only if there exists a σ-subalgebraΣ0 ⊂ Σ and a function h ∈ Lp(Ω, Σ, μ) such
that the support B of h is the maximum element of Σ0 and for all f ∈ Lp(Ω, Σ, μ),
P is represented in the form:

Pf =
h

EΣ0(|h|p) · EΣ0(f · h̄p−1) + V f,

where, when p 
= 1, V = 0 and when p = 1, V is a contraction such that V 2 = 0,
PBV = V, V PB = 0 and V f/h is Σ0-measurable (here PB denotes the projection
defined by PBf = f · χB, where χ

B is the characteristic function of set B).

The method of Douglas and Ando depends on studying positive projections
and projections whose range is a sublattice. Subsequently, as we will discuss in
Section 5, many of the key steps leading to Theorem 4.3 were generalized to other
spaces. Thus we will present these key steps here:

Proposition 4.4 (related to results of [7, 34, 108]). Suppose that Y ⊂ L1 is a
closed sublattice of L1(Ω, Σ, μ). Then there exists a σ-subalgebra Σ0 ⊂ Σ and a
weight function k such that Y = k · L1(Ω, Σ0, μΣ0). Moreover, the pair (Σ0, k) is
unique. (The measure μΣ0 is the restriction of μ to Σ0.)

Proposition 4.5. If P is a positive contractive projection on L1(Ω, Σ, μ), then
R(P ) is a closed sublattice of L1(Ω, Σ, μ). (Here R(P ) denotes the range of P .)

This follows from the fact that if f ∈ R(P ) then we have

f+ ≥ f =⇒ P (f+) ≥ P (f) = f

and therefore P (f+) ≥ f+ ≥ 0.
Thus

‖P (f+) − f+‖1 =
∫

Ω
(P (f+) − f+)dμ = ‖P (f+)‖1 − ‖f+‖1 ≤ 0.
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Hence ‖P (f+)−f+‖1 = 0, i.e., P (f+) = f+ so f ∈ R(P ) implies f+ ∈ R(P )
and the conclusion of Proposition 4.5 follows easily.

Theorem 4.6. For a linear operator P : L1(Ω, Σ, μ) → L1(Ω, Σ, μ), the
following are equivalent:
(a) P is a contractive projection with P (1) = 1;
(b) P is a conditional expectation operator, i.e., there exists a unique σ-subalgebra

Σ0 ⊂ Σ such that P = EΣ0 .

A very elegant and short proof of this theoremwas given recently by Abramovich,
Aliprantis and Burkinshaw [1], so we will not reproduce it here. The main idea is to
first show that every contraction T in L1 with T (1) = 1 is positive (first proven by
Ando [4]) and then use Propositions 4.5 and 4.4 to see that R(P ) = L1(Ω, Σ0, μΣ0)
for some σ-subalgebraΣ0 ⊂ Σ (with Ω ∈ Σ0). In particular, we see that Pχ

A = χ
A

for all A ∈ Σ0, and Theorem 4.6 quickly follows (see [1]).
Next Douglas notices that in L1 there exist contractive projections of a certain

“irregular” form, which is impossible in Lp with p > 1; namely, we have:

Lemma 4.7. Let Σ0 ⊂ Σ be a σ-subalgebra with a maximal element B � Ω.
Let V : L1(Ω, Σ, μ) → L1(Ω, Σ, μ) be a contractive linear operator such that
V 2 = 0, PBV = V and V PB = 0. Then the operator P = EΣ0 + V is a
contractive linear projection from L1(Ω, Σ, μ) onto L1(B, Σ0, μΣ0).

Sketch of Proof. It is not difficult to check that P 2 = P and

Pf = P (fχ
B + fχ

Bc)

= EΣ0(fχB) + V (fχB) + EΣ0(fχBc) + V (fχBc)

= EΣ0(fχ
B) + 0 + 0 + V (fχ

Bc).

Thus
‖Pf‖1≤ ‖EΣ0(fχB)‖1 + ‖V (fχBc)‖1

≤ ‖fχB‖1 + ‖fχBc‖1 = ‖f‖1.

So P is contractive.

Moreover, Ando showed:

Theorem 4.8. A contractive projection P in Lp (1 < p < ∞, p 
= 2) with
P1 = 1 is contractive with respect to the L1-norm.

The final step in the proof of Theorem 4.3 is to drop the assumption that P1 = 1
in Theorem 4.6. (So far any attempts to generalize this final step to spaces other
than Lp have failed; see the discussion in Section 5).
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Theorem 4.3 can be restated as follows:

Theorem 4.9 [4, Corollary 1]. A contractive projection P in Lp is isometrically
equivalent to a conditional expectation (with respect to a measure), if 1 < p < ∞,

or if p = 1 and PPB = P, where B is the maximum support of elements of the
range of P .

Also as a corollary one immediately obtains an analogue of Proposition 3.2.
Namely, we have:

Theorem 4.10 (Douglas, Ando, see [19, Theorem 4.1] for general measures).
(A) For a subspace Y of Lp(Ω, Σ, μ), the following statements are equivalent:

(A1) Y is the range of a positive contractive projection,
(A2) Y is the closed sublattice of Lp(Ω, Σ, μ),
(A3) there exists a positive isometrical isomorphism from Y onto some Lp

(B, Σ0, ν).

(B) For a subspace Y of Lp(Ω, Σ, μ), the following statements are equivalent:
(B1) Y is the range of a contractive projection,
(B2) there exists a function φ on Ω, with ‖φ‖ = 1 a.e., such that φ ·Y is the

closed sublattice of Lp(Ω, Σ, μ),
(B3) Y is isometrically isomorphic to some Lp(B, Σ0, ν).

4.c. Characterizations of Lp through contractive projections. In 1969, Ando [5]
showed that Theorem 4.10 does characterize Lp among Banach lattices of dimension
bigger or equal than 3. He proved:

Theorem 4.11. Let X be a Banach lattice with dimX ≥ 3. Then X is order
isometric to Lp(μ), for some 1 ≤ p < ∞ and measure μ, or to c0(Γ), for some
index set Γ, if and only if there is a contractive positive projection from X onto
any closed sublattice of it.

For expositions of this theorem, see, e.g., [95], [94, §16], [104, Section 1.b].
Theorem 4.11 has been strengthened in a series of articles by Calvert and Fitzpatrick
(1986-1991) which will be discussed in Section 6. Here we just mention one of
their theorems which directly applies to nonatomic function spaces.

As Calvert and Fitzpatrick indicate, in the following statement, they had in mind
A being a set of characteristic functions of measurable sets:

Theorem 4.12 [42, Theorem 4.4]. Let X be a Banach lattice and suppose A =
{ei}i∈I is a set of positive elements of X such that e, f ∈ A implies (e− f)+ ∈ A



48 Beata Randrianantoanina

and (e− f)+ ∧ f = 0. Suppose X is the closed span of A, and dim(spanA) ≥ 3.
Suppose that any two-dimensional sublattice of X containing any ei, i ∈ I\{i0}
(where i0 ∈ I is a fixed arbitrary element of I) is the range of a contractive
projection. Then X is an Lp-space (1 ≤ p < ∞) or an M -space.

4.d. Extensions of the main characterizations to general measure spaces. Ear-
lier, in 1955, Grothendieck [80] showed part of Theorem 4.10, namely, he showed
that when p = 1 and (Ω, Σ, μ) is a general measure space then a range of a con-
tractive projection in L1(Ω, Σ, μ) is isometrically isomorphic to another L1-space.

In 1970, Wulbert [151] extended Theorem 4.3 to arbitrary measure spaces under
the additional assumption that projection P is contractive both in Lp-norm and L∞-
norm. At the same time, Tzafriri [150] extended Theorem 4.10 to Lp-spaces on
arbitrary measure spaces.

Dinculeanu and M. M. Rao studied generalizations of Theorems 4.2 and 4.3
to Lp(Ω, Σ, μ), where Σ is not assumed to be a σ-algebra but only a δ-ring, i.e.,
Σ is closed under finite unions, differences and countable intersections and μ is a
finitely additive general measure (not necessarily finite). Dinculeanu [54] showed
that Theorem 4.2 still holds in this more general setting, and Dinculeanu and Rao
[55] obtained analogues of Theorem 4.3 under additional assumptions that projection
P besides being contractive is also positive, or the range of P equals Lp(Λ) for
some sub-δ-ring Λ ⊂ Σ, or P satisfies the averaging identity (6).

In 1974, Bernau and Lacey [19] (see also [95, 94]) gave new unified presentation
of the proof of Theorem 4.3 and Theorem 4.10 generalized to arbitrary measure
spaces. When 1 < p < ∞, their approach does not rely on the reduction to the case
of L1, but instead they use duality arguments depending on the smoothness of Lp

and Lq = (Lp)∗. Their proof uses the following two key lemmas:

Lemma 4.13 [4, Lemma 1; 19, Lemma 2.2]. Suppose 1 < p < ∞ and let
P be a contractive projection on Lp(Ω, Σ, μ). Then f ∈ R(P ) if and only if
J(f) ∈ R(P ∗) (here J denotes the duality map in Lp, see Definition 2.7).

Sketch of Proof. Let f ∈ R(P ). Notice that we have

‖f‖2
p = 〈f, J(f)〉 = 〈Pf, J(f)〉
= 〈f, P ∗(J(f)〉 ≤ ‖f‖p · ‖P ∗(J(f))‖q

≤ ‖f‖p · ‖J(f)‖q = ‖f‖2
p.

Since Lp, 1 < p < ∞, is smooth, we conclude that
P ∗(J(f)) = J(f),

i.e.,
J(f) ∈ R(P ∗).
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Since Lq = (Lp)∗ is also smooth, we similarly obtain that J(f) ∈ R(P ∗)
implies J(J(f)) = f ∈ R(P ∗∗) = R(P ).

Notice that this proof is valid not only in Lp, but in any smooth, reflexive
Banach space X with a smooth dual.

Lemma 4.14 [19, Lemma 2.3(i)]. Suppose 1 < p < ∞, p 
= 2. Let P be a
contractive projection on Lp(Ω, Σ, μ). If f, g ∈ R(P ), then |f |sgn g ∈ R(P ).

Idea of Proof. [19, Lemma 2.3(i)]. The proof of this important lemma is
somewhat technical. It involves an inductive procedure as follows:

Set k0 = g. Then, by Lemma 4.13, J(f), J(f +λk0) ∈ R(P ∗) for every λ ∈ R.
It is then shown that

lim
λ→0

1
λ

(J(f + λk0) − J(f))

exists a.e. and is in Lq.
Set

g0 = lim
λ→0

1
λ

(J(f + λk0)− J(f)),

k1 = J−1(g0).

Then g0 ∈ R(P ∗) and, by Lemma 4.13, k1 ∈ R(P ). Define inductively

kn+1 = J−1( lim
x→0

1
λ

(J(f + λkn) − J(f))).

Then Bernau and Lacey show that limn→∞ kn exists in Lp and that

lim
n→∞ kn = |f |sgng.

Since kn ∈ R(P ) for each n, the lemma is proven.

By Lemma 4.14, it is not difficult to deduce:

Lemma 4.15 [19, Lemma 3.1]. Suppose 1 < p < ∞, p 
= 2 and let P be a
contractive projection on Lp(Ω, Σ, μ). Define Σ0 = {suppf : f ∈ R(P )} ⊂ Σ.
Then Σ0 is a σ-subalgebra of Σ.

In the next step of the proof of Theorem 4.3, Bernau and Lacey show that there
exists a function h in R(P ) with maximal support and that R(P ) is isometrically
isomorphic to Lp(supph, Σ0, |h|pμΣ0 ), which leads them to the final conclusion.

4.e. Results coming from the approximation theory and the nonlinear ap-
proach. Contractive linear projections in Lp were also studied from the point of
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view of nonlinear analysis. This comes from the fact that the existence of a contrac-
tive linear projection onto a subspace is intrinsically related to the metric projection
onto a complementary subspace. In Section 5.e below we discuss this relationship
in greater detail. Here we just note the fact that was used (and observed) by de
Figueiredo and Karlovitz [71]:

Proposition 4.16. Let X be a normed space and P be a linear projection on
X with codimR(P ) = 1. Then P has norm one if and only if I − P is a metric
projection onto Ker(P ), i.e., for each x ∈ X and y ∈ Ker(P ), ‖x − (I − P )x‖ ≤
‖x − y‖ (see Definition 2.10).

Thus, if P is a norm-one projection, then there exists a linear selection of a
metric projection onto Ker(P ).

De Figueiredo and Karlovitz used this to obtain the following:

Proposition 4.17 [71, Proposition 3] (see also [15, Proposition 1]). Let 1 <

p < ∞, p 
= 2, and (Ω, Σ, μ) be a σ-finite nonatomic measure space. Then no
subspace of Lp(Ω, Σ, μ) of codimension one is the range of a linear projection of
norm one in Lp(Ω, Σ, μ).

This proposition, of course, also follows quickly from Theorem 4.3 (also for
p = 1) but the proof in [71] is significantly simpler. The proof in [15] is also an
application of Proposition 4.16. In fact, Beauzamy and Maurey obtained a somewhat
stronger result not limited to nonatomic measures:

Theorem 4.18 [15, Proposition 1] (cf . also [52, Theorem 5.2]). Let 1 <
p < ∞, p 
= 2, and let f ∈ Lq(Ω, Σ, μ), f 
= 0 ((1/p) + (1/q) = 1). Then the
hyperplane f−1(0) is the range of a norm-one linear projection in Lp(Ω, Σ, μ) if
and only if f is of the form f = αχA + βχB , where A and B are atoms of μ and
α, β are scalars.

Proposition 4.17 for p = 1 was proven using the methods of L-summands [82,
Corollary IV.1.15].

Contractive projections in Lp were used to construct monotone and unconditional
bases in Lp. Such constructions depend on the study of increasing sequences of
contractive projections (we say that a sequence of projections {Pj}∞j=1 is increasing
if PiPj = Pmin{i,j} for all i, j ∈ N); see [61, 121, 35, 64] and the survey [63] for
the discussion of different unconditionality properties for contractive projections.
We are not aware of any generalizations of these constructions to spaces other than
Lp, maybe because contractive projections are not well understood in spaces other
than Lp (see Section 5).
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4.f. Bibliographical remarks. There are many papers that deal with different
properties of contractive projections in Lebesgue spaces Lp in the situation when
the projection satisfies some additional conditions. We do not have the space here
to describe all the relevant results, we just list the papers that the author of this
survey is aware of: [37, 36, 18, 20, 17, 147, 148, 125].

5. NONATOMIC KÖTHE FUNCTION SPACES

To this day, there are no classes of Köthe function spaces other than Lp where
the form of contractive projections is fully characterized. In this section we present
the history of different partial results describing different properties of norm-one
projections and 1-complemented subspaces of different Köthe function spaces.

5.a. Results related to the ergodic theory. The first general results about the
existence of norm-one projections are the consequence of the classical Mean Ergodic
Theorem (see [66, Section VIII.5]. This theorem goes back to 1930s; see the
excellent bibliographical notes in [66, Section VIII.10, p. 728]). We have:

Theorem 5.1. Let X be a reflexive Banach space and T be a norm-one operator
on X . Then the operators

AT,n =
1

n + 1

n∑
j=0

T j

converge strongly to a norm-one projection onto the space FT = {x ∈ X : T (x) =
x}.

Also Lorch [105] studied monotone sequences of projections {Pn}∞n=1 whose
norm has a common bound (i.e., ∃K ∈ R such that ‖Pn‖ ≤ K for all n ∈ N).

Definition 5.2. We say that a sequence of projections {Pn}∞n=1 is increas-
ing (resp. decreasing) if for all n, m ∈ N, PnPm = Pmin(n,m) (resp., PnPm =
Pmax(n,m)).

Lorch showed in particular that:

Theorem 5.3. Suppose that X is a reflexive Banach space. Let {Pn}∞n=1 be a
monotone sequence of contractive projections. Then

(a) if the sequence {Pn}∞n=1 is increasing, then Y =
∞⋃

n=1
R(Pn) is 1-complemented

in X ;

(b) if the sequence {Pn}∞n=1 is decreasing, then Y =
∞⋂

n=1
R(Pn) is 1-complemented

in X .
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(Recall that R(P ) denotes the range of the projection P .)
The study of contractive projections in connection with the ergodic theory is

still very active. It includes in particular a study of Korovkin sets and Korovkin
approximations; see, e.g., [18, 152, 46, 134] and their references ([46, Section VI]
contains a short overview of related results).

5.b. Other general results. The next result illustrates that 1-complemented sub-
spaces can be very rare and unstable (see also Theorem 6.2 and Section 7.a). Lin-
denstrauss [101] showed the following striking fact:

Theorem 5.4. There exist Banach spaces Z ⊃ X with dim Z/X = 2 such that

(1) for every ε > 0, there is a projection with norm ≤ 1 + ε from Z onto X ;
(2) for every Y with Z � Y � X, there is a projection of norm one from Y onto

X ;

(3) there is no projection of norm one from Z onto X .

Thus there does not exist any limiting process that can be applied to obtain
1-complemented subspaces out of (1 + ε)-complemented subspaces.

Results similar to Theorem 5.3 were considered in the context of nonlinear pro-
jections and with emphasis on what kind of sequences of (both linear and nonlinear)
contractive projections and products of contractive projections converge to a con-
tractive projection, see [81] for a study of products of projections in Hilbert space,
and [33, 133, 68] for the initial results on products of contractive projections in
reflexive Banach spaces (see also the survey [69]). The literature on this subject
continues to grow but the discussion of the results in this direction is beyond the
scope of the present survey.

The next result that we want to mention here is the following fact observed by
Cohen and Sullivan in 1970 [51]:

Theorem 5.5. A subspace of a smooth space X can be the range of at most
one projection of norm one.

The question of uniqueness has been subsequently studied in spaces which are
not necessarily smooth; see [110, 111, 112, 113].

5.c. Characterizations using the duality map. In 1975, Calvert proved a very
important characterization of 1-complemented subspaces of a reflexive Banach space
X with X and X∗ strictly convex. He showed:

Theorem 5.6 [38]. Suppose that X is a strictly convex reflexive Banach space
with strictly convex dual X∗. Let J : X → X∗ be the duality map (i.e., ‖Jx‖ =



Norm-One Projections in Banach Spaces 53

‖x‖, 〈Jx, x〉 = ‖x‖2; see Definition 2.7). Then a closed linear subspace M of
X is the range of a linear contractive projection if and only if J(M) is a linear
subspace of X∗.

Implication “=⇒” in Theorem 5.6 is fairly immediate. Indeed, this really is the
statement of Lemma 4.13, which says that if M = R(P ), where P is a contractive
projection, then J(M) = R(P ∗) and thus J(M) is a linear subspace of X∗. It is
easy to check that the proof of Lemma 4.13 is valid not only in Lp (1 < p < ∞), but
in any smooth reflexive Banach space with smooth dual (cf. also [51, Theorem 8]).

Implication “⇐=” follows from the following generalization of Proposition 4.16
(cf. Section 5.e):

Proposition 5.7 [38; 15, Lemma 8]. Suppose that X is reflexive, smooth and
strictly convex. Let P be a projection on X . Then I −P has norm one if and only
if P is the metric projection (cf. Definition 2.10).

Theorem 5.6 proved extremely useful in describing the form of 1-complemented
subspaces in various Banach spaces. We already saw that the proof of Bernau and
Lacey in Lp was based on one part of this theorem (the key Lemma 4.13) and it will
be used frequently in the results described in Section 7. In fact, Theorem 5.6 is so
important that it was proved again (with different methods) by Arazy and Friedman
as a starting point for their study of contractive projections in Cp [6].

In 1977, Calvert extended Theorem 5.6 to general Banach spaces without the
assumption of reflexivity or strict convexity. He proved:

Theorem 5.8 [39]. Let X be a Banach space over C or R. Let M be a
closed linear subspace of X . M is the range of a contractive projection if and
only if there exists a weak∗-closed linear subspace L of X∗ with M ⊂ J−1(L) and
L ⊂ J(M)

‖·‖X∗
.

This appears to be the most general characterization of contractively comple-
mented subspaces known.

5.d. Characterizations obtained from the nonlinear approach. Contractive pro-
jections were also studied in the nonlinear theory of Banach spaces. We do not have
the necessary space here to describe all the interesting results concerning nonlinear
contractive projections (see, e.g., the survey [116] and the excellent exposition in
[141]) but we do want to mention a couple of results concerning linear projections
which were proven as a “side bonus” of the nonlinear approach.

We start from the collection of facts when the existence of a nonlinear contractive
projection from X onto a linear subspace Y ⊂ X implies the existence of a linear
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contractive projection from X onto Y (these facts are listed in [141, Proposition 2.1]
and are described as “folklore” or “should be folklore”).

Proposition 5.9. Let X be a Banach space and Y be a closed linear subspace
of X .
(a) If codimY = 1 and there exists a nonlinear contractive projection from X

onto Y, then Y is 1-complemented (linearly) in X .
(b) If X is smooth and if P : X −→ Y is a contractive retraction onto Y, then

P is a linear contractive projection.

We also have the following deep fact:

Theorem 5.10 [100]. Let X be a Banach space and Y be a closed linear
subspace of X such that there exists a nonlinear contractive projection from X

onto Y . If Y is a conjugate space then Y is 1-complemented (linearly) in X .

Beauzamy [13] introduced the following notions:

Definition 5.11. Let M be a subset of a Banach space X . A point x ∈ X is
called minimal with respect to M if for all y ∈ X \ {x} there exists at least one
m ∈ M with ‖m− y‖ > ‖m − x‖.

A set of all points minimal with respect to M is denoted min(M). Clearly
M ⊂ min(M). A set M is called optimal if M = min(M).

Beauzamy and Maurey proved that this notion is closely related to contractive
projections.

Theorem 5.12 ([15; see also [14] for the “=⇒” direction). Suppose that X is
reflexive, strictly convex and smooth. Then the closed subspace Y ⊂ X is optimal
if and only if Y is the range of a linear norm-one projection on X .

The proof uses Proposition 5.7.
Theorem 5.12 has been extended by Godini, who weakened the conditions on

X , but considered a slightly more restrictive definition of minimal sets.

Definition 5.13. Let X be a real normed linear space and Y a linear subspace
of X . To each nonempty subsetM ⊂ Y we assign a subset MY,X ⊂ X defined as
follows:

MY,X = {x ∈ X : for all y ∈ Y \{x} there existsm ∈ M such that ‖y−m‖ >
‖x − m‖}.

Thus the set min(M) defined by Beauzamy and Maurey equals MX,X .

Godini proved that
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Theorem 5.14 [78, Theorem 2]. Let X be a normed linear space and Y a
closed linear subspace of X . A necessary, and if every element of Y is smooth in
X also sufficient, condition for the existence of a norm-one linear projection P of
X onto Y is that YY,X = Y . If every element of Y is smooth in X, then there
exists at most one norm one linear projection of X onto Y .

Godini used this result to characterize spaces X which are 1-complemented in
X∗∗, provided every element of X is smooth in X∗∗.

5.e. Relations with metric projections. As we mentioned a few times above there
is a fruitful line of investigating contractive linear projections in connection with
metric projections. Both norm-one projections and metric projections (see Defini-
tion 2.10) are natural generalizations of orthogonal projections from Hilbert spaces
to general Banach spaces. Thus, not surprisingly, there is an intrinsic connection
between them. We have the following very clear but important fact:

Proposition 5.15. Let X be a normed linear space and M a linear subspace
of X . Then for all x ∈ X and any y ∈ PM (x),

‖x− y‖ ≤ ‖x‖
and

‖y‖ ≤ 2‖x‖.
In this proposition we do not assume that PM (x) has a linear selection (see De-

finition 2.12). The earliest explicit reference that we could find for Proposition 5.15
is [142] (cf. [144, Theorem 4.1]). However, different (usually weaker) versions of
Proposition 5.15 were observed on many occasions by different authors; see Propo-
sitions 4.16, 5.7 above and the excellent exposition of this topic with full references
in [144] (cf. also [53]). For us, the most important is the following corollary of
Proposition 5.15.

Proposition 5.16. Let X be a normed linear space. Let P be a linear projection
on X . Then ‖P‖ = 1 if and only if I −P is a selection of a metric projection onto
KerP ⊂ X . (here I denotes the identity operator on X).

In particular, if ‖P‖ = 1 then there exists a linear selection of a metric pro-
jection onto KerP .

We include the simple proof below:

Proof (cf., e.g., [71]). Suppose that P is a linear projection onX with ‖P‖ = 1.
Then for each x ∈ X and y ∈ KerP,

‖x− (I − P )x‖ = ‖Px‖ = ‖P (x − y)‖ ≤ ‖x − y‖.
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Thus KerP is a proximinal subspace of X (cf. Definition 2.10) and I − P is a
selection of a metric projection onto KerP .

Conversely, if I − P is a selection of a metric projection onto KerP then for
each x ∈ X ,

‖Px‖ = ‖x− (I − P )x‖ ≤ ‖x − 0‖ = ‖x‖.
Hence ‖P‖ = 1.
The proof is finished by noting that if P is linear so is I − P .

As we illustrated above, Proposition 5.16 is a very important tool in obtaining
characterizations of contractive projections (Proposition 4.17, Theorems 4.18, 5.6,
5.12, 5.14, 5.38, 5.39, 5.40). Proposition 5.16 was also used to obtain character-
izations of subspaces of Lp which admit a linear selection of a metric projection
through the analysis of known results about norm-one projections in Lp-spaces [97,
146].

5.f. Relations with a notion of orthogonality. Contractive projections may be
treated as a generalization of orthogonal projections from Hilbert spaces to general
Banach spaces. This has been explored by Papini [117], Faulkner, Huneycutt [70],
Campbell, Faulkner, Sine [46] and Kinnunen [91], who considered the following
extension of orthogonality to general Banach spaces:

Definition 5.17 [3, §4]. Let X be a real Banach space and x, y ∈ X . We
say that x is orthogonal to y in the sense of Birkhoff-James (or simply x is BJ-
orthogonal to y), denoted by x ⊥ y, if

‖x‖ ≤ ‖x + λy‖
for all λ ∈ R.

The notion of BJ-orthogonality was introduced by Birkhoff [22] and developed
by James [84, 85, 86]; cf. also [3].

In general, x ⊥ y does not imply y ⊥ x. Thus we introduce two notions of
orthogonal projections:

Definition 5.18. A projection P on X is called left-orthogonal (resp. right-
orthogonal) if for each x ∈ X,

Px ⊥ (x− Px)

(resp. (x − Px) ⊥ Px).

Papini [117] obtained characterizations of Hilbert spaces among general Banach
spaces using these notions (see Theorem 3.1).
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In real Banach spaces we have the following:

Theorem 5.19 [70, 91]. Let X be a real Banach space andM a complemented
linear subspace of X . Let P be a linear projection from X onto M . Then:
(a) ‖P‖ = 1 if and only if P is left-orthogonal.

(b) P is (a selection of) a metric projection if and only if P is right-orthogonal.

(c) If ‖P‖ = 1, then M ⊥ KerP .
(d) If P is (a selection of) a metric projection then KerP ⊥ M .

(e) If M ⊥ KerP and X = M ⊕ KerP then ‖P‖ = 1.

(f) If KerP ⊥ M and X = M ⊕ KerP, then P is (a selection of) a metric
projection.

In particular, as a corollary Kinnunen obtained another proof of Proposition
5.16. Also, as an application of Theorem 5.19, he obtained a characterization of
norm-one projections of a finite rank. For this we need the following definition:

Definition 5.20 [143]. Let {xn} be a basis of a Banach space X . Then the
sequence of coefficient functionals {fn} associated to the basis {xn} is defined by

fj(xk) = δjk

for all j, k, where δjk denotes the Kronecker delta.
A basis {xn} is called normal if ‖xn‖X = ‖fn‖X∗ = 1 for all n.

By [143, Theorem II.2.1], a basis {xn} is normal if and only if ‖xn‖ = 1 and
xn ⊥ span{x1, · · · , xn−1, xn+1, · · · } for each n.

Further, by [143, Theorem II.2.2] every finite-dimensional Banach space has a
normal basis. Kinnunen proved the following characterization of norm-one projec-
tions in terms of normal bases:

Theorem 5.21 [91, Theorem 5.3]. Let X be a real Banach space, M be a
1-complemented linear subspace of X with dimM = n < ∞, and P : X

onto−→ M

be a norm-one projection. Then P is of the form:

Px =
n∑

k=1

fk(x)uk

for all x ∈ X, where {uk}n
k=1 is a normal basis of M and {fk}n

k=1 ⊂ X∗ are
norm-one functionals such that fk(ui) = δki for all k, i = 1, · · · , n.
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The problem of describing the basis structure of 1-complemented subspaces in
general real Banach spaces is still open; see Section 7 for the discussion of known
results in both real and complex Banach spaces.

5.g. Relations with isometries. Here we consider the following question:

Question 5.22. Let X be a Banach space and T
into−→ X be an isometry. Is the

range of T, Y = T (X), 1-complemented in X?

This question has an affirmative answer in Hilbert spaces (see Proposition 3.2)
and in Lp, 1 ≤ p < ∞ (see Theorem 4.11(B3)).

Question 5.22 for reflexive Banach spaces was posed by Faulkner and Huneycutt
[70]. It is known that in C[0, 1] a range of an isometry does not have to be even
complemented [56].

Question 5.22 was considered by Campbell, Faulkner and Sine [46], who proved:

Theorem 5.23. Let X be a reflexive Banach space and T be an isometry on
X . If the range of T, Y = T (X), is 1-complemented in X, then T is a Wold
isometry.

Here “Wold isometry” is defined as follows:

Definition 5.24. Let T be an injective linear map on a Banach space X . Then
T is called a unilateral shift provided there exists a subspace L of X for which

X =
∞⊕

n=0

T n(L).

An isometry T on X is called a Wold isometry providedX = M∞⊕N∞, where
M∞ =

⋂∞
n=1 T n(X) and N∞ =

∑∞
n=0 ⊕T n(L), where L is a complement for the

range of T , T (X), in X .
Then T |N∞ is a shift and T |M∞ is a surjective isometry (sometimes referred

to as a unitary operator).

This definition was introduced in [70] and used to study extensions to reflexive
Banach spaces of the Wold Decomposition Theorem, which says that every isometry
on a Hilbert space is the direct sum of a unitary operator and copies of the unilateral
shift.

Campbell, Faulkner and Sine [46] also gave an example of a C(K) space and a
Wold isometry T on C(K) such that the range of T is 2-complemented but not 1-
complemented in C(K) (in this example, the range of T is even finite-codimensional
in C(K)).

It is not known whether every isometry in a reflexive Banach space is a Wold
isometry and thus Question 5.22 is still open (see also Remark in Section 6.c).
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5.h. Characterizations in terms of the conditional expectation operators. Next
came a series of results which studied the form of a contractive projection in terms
of the conditional expectation operators. We have the following generalization of
Theorem 4.2 from Lp to general rearrangement invariant spaces.

Theorem 5.25 [104, Theorem 2.a.4]. Let X be a rearrangement invariant
function space (see Definition 2.4) on the interval I, where I = [0, 1] or I = [0,∞).
Then, for every σ-subalgebra Σ0 of measurable subsets of I so that the Lebesgue
measure restricted to Σ0 is σ-finite, the conditional expectation operator EΣ0 is
a projection of norm one from X onto the subspace XΣ0 of X consisting of all
Σ0-measurable functions in X .

As Lindenstrauss and Tzafriri pointed out, Theorem 5.25 is a consequence of
Theorem 4.2 and general interpolation theorem (although they do give a direct proof
of it), and thus it is really valid in any interpolation space between L1 and L∞.

Remark. The statement of Theorem 5.25 appears explicitly in [67, Section 11.2];
we do not know whether or not this is the first reference for it.

Similarly as in the case of Lp, a lot of effort has been put into proving the
converse of Theorem 5.25, i.e., into proving the following conjecture, which would
generalize Theorem 4.3 for Lp:

Conjecture 5.26. Let X be a rearrangement invariant function space on the
interval [0, 1] (so X contains constant functions). Suppose that P is a contractive
projection on X with P (1) = 1. Then there exists a σ-algebra Σ0 of measurable
subsets of [0, 1] so that P is the conditional expectation operator EΣ0 .

In fact, many extend Conjecture 5.26 to any function space X for which Theo-
rem 5.25 is valid, i.e., to spaces X with 1 ∈ X and where conditional expectation
operators are norm-one projections (Bru and Heinich [30] call spaces X with this
property invariant under conditioning).

Duplissey [67, Theorem II.2.1] showed that arbitrary conditional expectation
operators are contractive in a Köthe spaceX if and only if all conditional expectation
operators with finite-dimensional range are contractive onX . Duplissey also studied
Conjecture 5.26 but with the additional assumption that P is contractive in L∞-norm
as well as in norm of X . He proved:

Theorem 5.27 [67, Theorem II.5.5]. Let X be a strictly monotone Köthe
function space on a σ-finite measure space (Ω, Σ, μ). Then the following are
equivalent:
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(a) If μ(Ω) is not finite, then for each A ∈ Σ such that 0 
= χA ∈ X and
μ(A) < ∞, the element χA is smooth in X and

J(χA) =
‖χA‖X

μ(A)
· χA.

If μ(Ω) is finite, then 1 is a smooth point of X and J(1) = (‖1‖X/μ(Ω)) ·1.
(b) Each positive contractive projection on X such that ‖Pf‖∞ ≤ ‖f‖∞ for all

f ∈ X is a conditional expectation operator.

First developments in the study of Conjecture 5.26 without any additional as-
sumptions on a contractive projection are due to Bru and Heinich, [30, 31] and Bru,
Heinich and Lootgieter [32]. We will outline here the results in [31] which contain
and expand on earlier work [30, 32]. The authors start from generalizing the crucial
Lemma 4.14, which was used in the proof of Bernau and Lacey in Lp. They prove:

Proposition 5.28 [31, Proposition 8] (cf. [30, Proposition 7]. Let X be an
order continuous Köthe function space such that conditional expectation operators
are contractive on X . Assume that the norm of X is twice differentiable at 1 and
‖1‖X = 1. If X ⊂ X∗, then there exists a constant k ≥ 0 such that for all f ∈ X,

lim
ε→0

1
ε
(J(1 + εf) − 1) = k(f − (

∫
I

f(t)dt) · 1),

where the limit is taken in norm of X∗, and recall that J : X → X∗ denotes the
duality map (see Definition 2.7).

The statement of Proposition 5.28 captures the most essential element of the
proof of Lemma 4.14, but its proof is much less technical; it makes an elegant use
of differentiability of ‖ · ‖X and J(·) at 1.

To generalize the exact statement of Lemma 4.14, Bru and Heinich introduce
the following definition:

Definition 5.29. Let X be an order continuous, smooth Köthe function space
with 1 ∈ X and ‖1‖X = 1. Then X is called D-concave (Bru and Heinich use D
to denote the duality map which in this survey is denoted by J , following most of
English-language literature; so it would be natural for us to use “J-concave”) if
(i) X∗ ⊂ X, the inclusion map is continuous and

lim
c→∞ sup{‖f · χ{|f |>c}‖ : f ∈ X∗, ‖f‖X∗ = 1} = 0

(i.e., the unit ball of X∗ is X-equiintegrable),
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(ii) J(J(f)) = f ⇐⇒ f = sgn(f)/‖sgn(f)‖X∗.

X is called D-convex if X∗ is D-concave.

Notice that Lp[0, 1], 1 < p < 2, are D-concave and Lp[0, 1], 2 < p < ∞, are
D-convex.

Now we are ready to state the generalization of Lemma 4.14.

Proposition 5.30 (cf. [31, Theorem 11]). Let X be aD-concave Köthe function
space, and let P be a contractive projection on X with P (1) = 1. Then if
f ∈ R(P ) then sgn(f) ∈ R(P ).

Then using the analogue of Lemma 4.15, Bru and Heinich obtain the general-
ization of Theorem 4.3 for constant-preserving contractive projections:

Theorem 5.31 [31, Theorem 13 and its Corollary]. Suppose that X is a D-
concave Köthe function space such that the norm of X∗ is twice differentiable at
1, or X is a D-convex Köthe function space such that the norm of X is twice
differentiable at 1. Let P be a contractive projection on X with P (1) = 1. Then
P is a conditional expectation operator.

As a corollary, they obtain a characterization of constant preserving contractive
projections on special Orlicz spaces:

Theorem 5.32 [31, Proposition 28]. Let ϕ be an Orlicz function which is twice
differentiable on R+ and such that ϕ′′ is either strictly increasing to infinity or ϕ′′

is strictly decreasing to 0. Then every contractive projection P with P (1) = 1 on
the Orlicz function space with Luxemburg norm Lϕ, or with Orlicz norm Lϕ,O is
a conditional expectation operator.

They also obtain the same conclusion under the assumption that the Orlicz
function ϕ has a continuous strictly increasing derivative ϕ′ so that ϕ′ is of the
concave type (i.e. there exist constants γ, t0 > 0 so that for all λ, 0 < λ ≤ 1,
and all t ≥ t0, ϕ′(λx)/(λx) ≥ γ(ϕ′(x)/x); for all t, 0 < t < 1, ϕ′(t) > t; for all
t > 1, ϕ′(t) < t; ϕ′ is differentiable at t = 1 and lim

t→∞ϕ′(t) = ∞) or the inverse
(ϕ′)−1 is of the concave type [30, Theorem 4], [32, Application].

One might say that the restrictions on Köthe function space X in Theorem 5.31
and on the Orlicz function in Theorem 5.32 are somewhat severe; however, these
results are the most general results known about the form of contractive projection
P with P (1) = 1. Nothing, outside of Lp, is known about contractive projections
which do not satisfy P (1) = 1. In particular, it is not known which functions in
X can be the image of 1.
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Next development in the study of contractive projections in terms of conditional
expectation operators is due to P. Dodds, Huijmans and de Pagter [57], who obtained
very general results under the assumption that the contractive projection P is positive
or that the range of P is a sublattice. They extended Theorem 4.6 to very general
lattices, but under the restriction that P is positive.

Theorem 5.33 [57, Proposition 4.7]. Let X be a Köthe function space on a
finite measure space (Ω, Σ, μ) and let P : X → X be a linear map. Then the
following statements are equivalent:
(a) There exists a σ-algebra Σ0 ⊂ Σ such that P is the conditional expectation

operator EΣ0 .
(b) P is a positive order continuous projection with P (1) = 1 and P ′(1) = 1

(here P ′ : X ′ → X ′ denotes the dual mapping to P defined on the Köthe
dual X ′).

Corollary 5.34 [57, Corollary 4.9]. Let X be a Köthe function space such that
the norm on X is smooth at 1 and ‖1‖X · ‖1‖X ′ = μ(Ω). If P is a positive order
continuous contractive projection with P (1) = 1, then there exists a σ-subalgebra
Σ0 ⊂ Σ such that P = EΣ0 .

This corollary is a significant extension of Theorem 5.27.
Next P. Dodds, Huijmans and de Pagter obtain characterizations of contractive

projections onto a sublattice.

Theorem 5.35 [57, Corollary 4.14]. Let X be a Köthe function space with an
order continuous norm and let P be a contractive projection in X such that R(P )
is a sublattice. If R(P ) contains some strictly positive functions and if the norm X

is smooth at all such strictly positive functions, then P is a weighted conditional
expectation operator, i.e., there exists a σ-subalgebra Σ0 ⊂ Σ, 0 ≤ w ∈ X ′ and
0 < k ∈ L1(Ω, Σ, μ) with

EΣ0(wk) = EΣ0(k) = 1

such that
Pf = kEΣ0(wf)

for all f ∈ X .

Theorem 5.36. Let X be a Köthe function space with order continuous norm
such that the norm is smooth at 1 and ‖1‖X‖1‖X ′ = μ(Ω). If P is a contractive
projection in X such that R(P ) is a sublattice and 1 ∈ R(P ), then P is a
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conditional expectation operator, i.e., there exists a σ-subalgebra Σ0 ⊂ Σ so that
P = EΣ0 .

The paper [57] contains also many very interesting results about what conditions
on positive operators T (which are not necessarily projections nor contractive) assure
that they will be conditional expectation operators, but these results will not be
summarized here. We finish the account of the work in [57] with results which
relate when a contractive projection P on a Banach lattice X is positive and when
the range of P is a sublattice of X .

Theorem 5.37. Let X be a Banach lattice and P be a contractive projection
on X .
(a) [57, Lemma 4.5; 67, Theorem II.3.2(i)]. If X is strictly monotone and P is

positive, then R(P ) is a sublattice.
(b) [57, Remark after Lemma 4.5]. There exists X not strictly monotone (e.g.,

X = �3∞) and P positive with R(P ) not a sublattice.
(c) [57, Proposition 4.10]. If X is smooth and R(P ) is a sublattice, then P is

positive.
(d) [57, Example 4.11]. There exists X nonsmooth (dimX = 3, ball of X is

a dodecahedron, thus X is also non-strictly monotone, but it is symmetric)
and non-positive P with R(P ) a sublattice.

(e) [57, Proposition 4.13]. If X is order continuous and R(P ) is a sublattice
such that R(P ) contains some strictly positive functions from X and the
norm of X is smooth at all strictly positive functions in R(P ), then P is
positive.

(f) [57, Proposition 4.15]. If X is order continuous and R(P ) is a sublattice
such that there exists a strictly positive function w ∈ R(P ) so that the norm
of X is smooth at w and J(w) is strictly positive then P is positive (this is
satisfied, for example, if 1 ∈ R(P ) and the norm of X is smooth at 1).

5.i. Nonexistence of 1-complemented subspaces of finite codimension. We finish
this section with results about nonexistence of contractive projections onto subspaces
of finite codimension in a Köthe function space X , which extend Proposition 4.17.
We have:

Theorem 5.38 [89, Theorem 4.3] (cf. also [127, Theorem 2]). Suppose that
X is a separable, real, order-continuous Köthe function space on (Ω, Σ, μ), where
μ is nonatomic and finite. Then the hyperplane M = f−1(0), (f ∈ X∗) is 1-
complemented if and only if there exists a nonnegative measurable function w with
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suppw = B = supp f, so that for any x ∈ X with suppx ⊂ B,

‖x‖X =
(∫

|x|2wdμ

)1
2

,

i.e., there are no 1-complemented hyperplanes in X unless X contains a band
isometric to L2.

Around the same time a similar result was obtained by Franchetti and Semenov
for rearrangement-invariant function spaces, but without the restriction of separa-
bility:

Theorem 5.39 [76, Theorem 1]. Let X be a real rearrangement-invariant
function space on (Ω, Σ, μ), where μ is nonatomic and μ(Ω) = 1. Denote by S a
rank-one projection

Sx =

⎛
⎝∫

Ω

x(s)dμ(s)

⎞
⎠1.

Then ‖I −S‖ = 1 if and only if X is isometric to L2(Ω, Σ, μ); i.e., the hyperplane
f−1(0), where f(x) =

∫
Ω x(s)dμ(s) for all x ∈ X, is 1-complemented in X if and

only if X = L2(Ω, Σ, μ).

Next the author of this survey extended Theorem 5.38 to subspaces of any finite
codimension:

Theorem 5.40 [127, Theorem 4]. Suppose μ is nonatomic and X is a real
separable rearrangement-invariant space on [0, 1] not isometric to L2. Then there
are no 1-complemented subspaces of any finite codimension in X .

The proofs of Theorems 5.38, 5.39 and 5.40 all use the classical Liapunoff
Theorem (see, e.g., [139]) and facts related to Proposition 5.16. Moreover, in [89,
127] the following fact is used:

Proposition 5.41 (cf. [89, 136]). Let X be a real Banach space and P be a
projection in X . Then ‖I − P‖ = 1 (where I denotes the identity operator) if and
only if for all x ∈ X there exists x∗ ∈ X∗ with x∗ ∈ J(x) and 〈x∗, Px〉 ≥ 0. (X
does not have to be smooth, see Definition 2.7).

The proof of this fact uses the theory of numerical ranges [27, 28] and it relates
contractive projections to accretive operators in real Banach spaces. Proposition 5.41
is very useful in characterizing contractive projections in Banach spaces with 1-
unconditional bases; see Section 7.
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Remark. A careful reader may have noticed that, despite our effort to have as
complete a bibliography as possible, there are several papers concerning contractive
projections in function spaces by M. M. Rao that have not been referenced here.
The reason for this omission is that, regrettably, many of the results in those papers
are not valid in the full generality as stated there, but the methods are in fact limited
only to the Lp-case; see [19, 83, 107].

Part 2. Sequence Spaces

6. LEBESGUE SEQUENCE SPACES �p

In this section, we discuss the development of the study of contractive projections
in the case of the Lebesgue sequence spaces �p.

6.a. General results. The first result about 1-complemented subspaces of �p is
due to Bohnenblust who considered finite-dimensional spaces �n

p :

Theorem 6.1 [25, Theorem 3.2]. A subspace S of an n-dimensional space �n
p

is 1-complemented in �n
p if and only if S is spanned by disjointly supported vectors.

The method of the proof of Theorem 6.1 is technically very complicated; it
involved conditions of Plücker Grassmann coordinates of the subspace S (we will
not present the definition here). However the proof, in addition to Theorem 6.1, gives
also a characterization of 1-complemented subspaces of n-dimensional subspaces
S ⊂ �n

p . As a corollary Bohnenblust showed that there exist subspaces of �n
p which

do not have any 1-complemented subspaces (see also Section 7).

Theorem 6.2 [25, Theorem 3.3]. Let 1 < p < ∞, p not an integer and let
l ∈ N be such that 2(2l − 3) < n. Then there exist l-dimensional subspaces Sl of
�n
p such that only Sl and subspaces of dimension one are 1-complemented in Sl.

The case of infinite-dimensional �p is simpler than the case of general Lp-spaces;
however the original proofs of Douglas and Ando do not cover it (as they work only
on finite measure spaces). Subsequent generalizations by Tzafriri and Bernau, Lacey
do not consider this case separately. The simple proof specifically for �p is included
in [103, Theorem 2.a.4]. We quote the statement of this theorem below because it
illustrates the geometric properties of 1-complemented subspaces which we will try
to transfer to other sequence spaces.

Theorem 6.3 [103]. Let 1 ≤ p < ∞, p �= 2, and F ⊂ �p be a closed linear
subspace of �p. Then the following conditions are equivalent:
(1) F is 1-complemented in �p,
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(2) F is isometric to �dimF
p ,

(3) there exist vectors {uj}dimF
j=1 of norm one and the form

uj =
∑
k∈Sj

λkek,

with Sj ⊆ N, Sj ∩ Si = ∅ for j �= i, and such that F = span{uj}dimF
j=1 (here

{ek}k∈N denotes the usual basis of �p).

Moreover, if these conditions are satisfied then the norm-one projection P :
�p
onto−→ F is given by

Px =
dimF∑
j=1

u∗
j(x)uj,

where {u∗
j}dimF

j=1 ⊂ X∗ satisfy ‖u∗
j‖ = u∗

j (uj) = 1 (i.e., u∗
j = J(uj)).

Sketch of Proof. The proof of Theorem 6.3 (1) =⇒ (3) presented in [103]
follows the essential steps of the proof of Bernau and Lacey for general Lp, i.e., it
also rests on the key Lemma 4.14. However the finishing step to reach the final
conclusion is now much simpler than in Lp.

Indeed, let Σ0 = {suppf : f ∈ F = R(P )} ⊂ P(N). Then Lemma 4.14
implies that if A, B ∈ Σ0 then A ∩ B ∈ Σ0. Thus, for each i0 ∈ N such that
i0 belongs to the support of Pf , for some f ∈ �p, there is a set Ai0 ∈ Σ0 which
is minimal in Σ0 and such that i0 ∈ Ai0 . Let Ai0 = supp fi0 , where fi0 ∈
R(P ), and consider a subspace of F = R(P ) consisting of all functions g so that
supp g ⊂ Ai0 = suppfi0 . We claim that this subspace of R(P ) is one-dimensional.
Indeed, if it was not one dimensional then there would exist g ∈ F = R(P ) linearly
independentwith fi0 and such that supp g ⊂ Ai0 . For any i ∈ Ai0\{i0}, we now can
find a linear combination of g and fi0 so that (ag+bfi0)(i) = 0. Since ag +bfi0 ∈
F = R(P ), we get supp (ag + bfi0) ∈ F = R(P ) and supp (ag + bfi0) ⊆ Ai0 ,
which contradicts the minimality of Ai0 . Now let ui0 ∈ F be the unique vector
with suppui0 = Ai0 and ‖ui0‖p = 1. It is easy to see that (3) holds.

The final statement of Theorem 6.3 about the form of the projection P follows
from the uniqueness of this projection.

The precursor of Theorem 6.3 was proved in 1960 by Pel-czyński [118], who
showed that in �p (1 < p < ∞) the subspaces that are isometric to �p are 1-
complemented in �p.

Theorem 6.3 explicitly relates the one-complementability of the subspace F with
the property that F is spanned by disjointly supported vectors. In the next section
we will analyze such a relation in other sequence spaces.
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6.b. 1-complemented subspaces of finite codimension. Contractive projections
in �p were also investigated from the approximation theory point of view, as part of
the study of minimal projections.

Definition 6.4. A projection P : X
onto−→ Y is called minimal if ‖P‖ =

inf{‖Q‖ : Q : X
onto−→ Y , Q projection}.

Results on minimal projections appeared in the 1930s, in connection with geom-
etry of Banach spaces, and they have many applications in numerical analysis and
approximation theory; see the survey [50] for the early results, and [113] for the
book length presentation of more modern developments. Here we will just give a
brief account of results on contractive projections (which clearly are always mini-
mal). We start with a result of Blatter and Cheney, who studied minimal projections
onto hyperplanes (i.e., subspaces of codimension 1) in �1 and c0 [24]. In particular,
they proved:

Theorem 6.5 [24, Theorem 3]. Let 0 �= f ∈ �∞. The hyperplane Y =
f−1(0) ⊂ �1 is a range of a norm-one projection in �1 if and only if at most two
coordinates of f are different from 0. The norm-one projection onto Y is unique if
and only if exactly two coordinates of f are different from 0.

Precisely the same characterization is valid for all p, 1 ≤ p < ∞, p �= 2, as
shown by Beauzamy and Maurey [15]; see Theorem 4.18; exept when p > 1, all
norm-one projections are unique, see Theorem 5.5.

These results have been generalized by Baronti and Papini to subspaces of
arbitrary finite codimension and to arbitrary p, 1 ≤ p < ∞. They proved:

Theorem 6.6 [10, Theorem 3.4; 12, Theorem 5.5]. Let Y be a subspace of
�p (1 ≤ p < ∞, p �= 2) of finite codimension codimY = n ∈ N. Then Y is
1-complemented in �p if and only if Y is the intersection of n 1-complemented
hyperplanes, i.e., if and only if there exist functionals f1, · · · , fn ∈ (�p)∗ such
that for each j ≤ n at most two coordinates of fj are different from 0 and Y =
n⋂

j=1
f−1
j (0).

The proof of this theorem depends on Theorem 5.6 and is slightly simpler than
the proof of Theorem 6.3 since it is restricted to subspaces of finite codimension.
Notice that the descriptions given in Theorems 6.3 and 6.6 are equivalent. This is
an intuitively straightforward fact but since we have not seen it in the literature we
present the full proof below. Unfortunately, the proof is somewhat techinical. We
have:
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Proposition 6.7. Let X be a Banach space with basis {en}n∈N and Y be a
subspace of X with codim = n. Then the following conditions are equivalent:
( i ) there exist vectors {uj}j∈N of the form uj =

∑
k∈Sj

ujkek with Sj ⊆ N, Sj ∩
Si = ∅ for j �= i and such that Y = span{uj}j∈N.

(ii) there exist functionals f1, · · · , fn ∈ X∗ such that

fj =
∑
k∈Fj

fjke
∗
k

with card(Fj) ≤ 2 for each j = 1, · · · , n and such that Y =
n⋂

j=1
f−1
j (0).

Proof. (i) =⇒ (ii): It is easy to see that since Sj
′s are mutually disjoint,

codimY =
∞∑

j=1

(card(Sj) − 1).

Since codimY = n, all vectors {uj}j∈N, except at most n of them, have a singleton
support.

After reordering of {uj}j∈N if necessary, let m ≤ n be such that card(Sj) ≥ 2
for j ≤ m and card(Sj) = 1 for j > m.

For each j ≤ m, select ϕ(j) ∈ Sj , and for each k ∈ Sj\{ϕ(j)}, set
fk = ujke∗ϕ(j) − ujϕ(j)e

∗
k.

Then ⋂
k∈Sj\{ϕ(j)}

f−1
k (0) = span({uj} ∪ {ei}i/∈Sj

).(2)

Indeed, for each k ∈ Sj\{ϕ(j)},
f−1
k (0) = span({ei}i�=k,ϕ(j) ∪ {ujϕ(j)eϕ(j) + ujkek}),

so uj ∈ f−1
k (0) and {ei}i/∈Sj

⊂ f−1
k (0) for each k ∈ Sj\{ϕ(j)}. By the equality

of codimensions, we obtain (2).
Further,

Y = span{uj}j∈N

= span({uj}m
j=1 ∪ {ei : i /∈

m⋃
j=1

Sj})

=
m⋂

j=1

span({uj} ∪ {ei : i /∈ Sj})

=
m⋂

j=1

⋂
k∈Sj\{ϕ(j)}

f−1
k (0)
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and (ii) is proven.
(ii) =⇒ (i) : Suppose that there exist k > 1 and 1 ≤ i1 < i2 < · · · <

ik ≤ n such that card(
k⋃

ν=1
Fiν ) ≤ k. Since functionals {fiν}k

ν=1 are linearly

independent, the matrix of their coefficients (fiν ,j)k
ν=1,j∈∪k

ν=1Fiν
has rank k. Thus

card(
k⋃

ν=1
Fiν ) ≥ k.

If card(
k⋃

ν=1
Fiν ) = k, then, again by the linear independence of the functionals

{fiν}k
ν=1, there exists an isomorphism which transforms the k × k matrix of the

coefficients of {fiν}k
ν=1 into an identity matrix (of size k × k), that is, there exist

functionals {giν}k
ν=1 so that for all ν = 1, · · · , k we have card(supp giν ) = 1 and

k⋂
ν=1

g−1
iν

(0) =
k⋂

ν=1

f−1
iν

(0).

Thus without reducing the generality, we will assume that sets {Fj}n
j=1 satisfy

the following property:

For each subset S ⊂ {1, · · · , n} with card(S) > 1, card(
⋃
i∈S

Fi) > card(S).(3)

After reordering of {Fj}n
j=1, if necessary, let m, 0 ≤ m ≤ n, be such that

card(Fj) = 2 for all j ≤ m,

card(Fj) = 1 for all j > m.

Then (
m⋃

j=1
Fj) ∩ (

n⋃
j=m+1

Fj) = ∅ and

n⋂
j=m+1

f−1
j (0) = span{ek : k /∈

n⋃
j=m+1

Fj}.(4)

We introduce a relation ∼ on a set of indices {1, · · · , m} as follows: i ∼ j

if there exists t ≤ m and k1, · · · , kt ∈ {1, · · · , m} such that i = k1, j = kt and
Fks ∩ Fks+1 �= ∅ for all 1 ≤ s < t.

Clearly, ∼ is an equivalence relation. Let S ⊂ {1, 2, · · · , m} be a class of
equivalence of ∼, and set AS =

⋃
j∈S

Fj .

Notice that

card(AS) = card(S) + 1.(5)



70 Beata Randrianantoanina

Indeed, since S is a class of equivalence of ∼, there exists a bijection σ :
{1, · · · , cardS} → S such that Fσ(i) ∩ Fσ(i+1) �= ∅ for each i < card(S). Thus for
k < card(S), we have

card(
k+1⋃
i=1

Fσ(i))≤ card(
k⋃

i=1
Fσ(i)) + 1

≤ card(Fσ(1)) + k = 2 + k.

Thus

card(AS) = card(
card(S)⋃

i=1

Fσ(i)) ≤ card(S) + 1.

On the other hand, by (3), if card(S) > 1, then

card(AS) > card(S).

Thus card(AS) = card(S) + 1 if card(S) > 1.
If card(S) = 1, then S = {s} for some s ∈ {1, . . . , m} and AS = Fs, so

card(AS) = card(Fs) = 2, and (5) holds.
Now we are ready to show that for each class of abstraction of ∼, S, there exists

a vector uS ∈ X with suppuS ⊂ AS such that⋂
j∈S

f−1
j (0) = span(uS ∪ {ek : k /∈ AS}).(6)

To see this, notice that, clearly, if k /∈ AS then ek ∈ ⋂
j∈S

f−1
j (0). Next let us

consider u with supp (u) ⊂ AS , say,

u =
∑
i∈AS

uiei.

Then u ∈ ⋂
j∈S

f−1
j (0) if and only if {ui}i∈AS

is a solution of a system of

linear homogenous equations (fj(u) = 0, j ∈ S), where the number of equations
is card(S) and the number of variables is card(AS). But by (5), card(AS) =
card(S) + 1 and the functionals {fj}j∈S are linearly independent, so this system
has exactly one solution, which we will denote by uS and (6) holds. Combining (6)
with (4), we obtain

n⋂
j=1

f−1
j (0) = span{{ek : k /∈

n⋃
j=1

Fj} ∪ {uS : S ⊂ {1, · · · , m},

S class of abstraction of ∼},
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so (i) is proven.

6.c. Characterizations of �p through 1-complemented subspaces. We finish
this section with results that generalize Ando’s characterization of Lp-spaces among
Banach lattices (Theorem 4.11) which were obtained by Calvert and Fitzpatrick in
a series of papers [41, 42, 43, 44, 40, 45, 72, 73, 74]. The first result shows that
Theorem 6.6 characterizes �p and c0:

Theorem 6.8 [41, Theorem 1]. Let {ei}∞i=1 be a Schauder basis for a Banach
lattice X with ei ∧ ej = 0 if i �= j. Suppose each hyperplane F which contains
all but two of the basis vectors (i.e., F = f−1(0) for some functional f with at
most two coordinates different from 0) and which is a sublattice is the range of a
contractive projection. Then X = �p (1 ≤ p < ∞) or X = c0.

Next they obtained a generalization of Ando’s theorem about 1-complementability
of two-dimensional sublattices [5], [94, Theorem 16.4]:

Theorem 6.9 [42, Theorem 4.2] (cf. also [43, Theorem 2]). Let X be a Banach
lattice and A = {ei}i∈I be a set of elements of X with ei ∧ ej = 0 for i �= j and
such that span{ei}i∈I is dense in X . Let i0 ∈ I be any fixed element of I . Suppose
that any two-dimensional sublattice of X which contains some ei, i ∈ I\{i0}, is
the range of a contractive projection. Then X is linearly isometric and lattice
isomorphic to �p(I) (p ∈ [1,∞]) or c0(I).

Calvert and Fitzpatrick also show that in the assumptions of the above theorem
one cannot exclude two elements of the index set I , i.e., there exists a Banach lattice
X �= �p(I), c0(I) and i0, i1 ∈ I , i0 �= i1, such that every 2-dimensional sublattice
of X containing some ei, i ∈ I\{i0, i1}, is 1-complemented [42, Example 4.].

Further, Calvert and Fitzpatrick obtained a result analogous to Theorem 6.9
where the assumption about X being a lattice is replaced by the assumption of the
existence of enough smooth points in X .

Theorem 6.10 [44, Theorem C]. Let X be a real Banach space with dim(X) ≥
3. Let {ei}i∈I be a linearly independent set of smooth points in X with span{ei}i∈I

= X . Suppose that every two-dimensional subspace of X intersecting {ei}i∈I is
the range of a nonexpansive projection. Then X is isometrically isomorphic to
�p(I), 1 ≤ p ≤ ∞ or c0(I).

Finally in [45], Calvert and Fitzpatrick studied extensions of Theorems 6.9 and
6.10 for spaces which are not lattices and without the assumption of the existence
of a linearly dense set of smooth points in X (like in Theorem 6.10). They showed
that there exist 3-dimensional real Banach spaces X , X �= �p(3), which have two
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linearly independent elements e1, e2 such that every 2-dimensional subspace of X

containing either e1 or e2 is 1-complemented in X . Moreover, they gave a complete
characterization of 3-dimensional real Banach spaces X with the above property. In
particular, as a corollary of [45] one obtains the following:

Corollary 6.11. Let X be a real symmetric Banach space with dim(X) = 3
such that X contains two linearly independent elements e1, e2 such that every
2-dimensional subspace of X containing either e1 or e2 is 1-complemented in X .
Then X is isometrically isomorphic to �p(3), 1 ≤ p ≤ ∞.

We do not know whether this corollary can be extended for symmetric spaces
X with dim X > 3.

Remark. It seems that the property like in Theorem 6.3(2), i.e.,

an infinite-dimensional subspace Y ⊂ X is 1-complemented

in X if and only if Y is isometrically isomorphic to X,
(7)

does not characterize �p. Indeed, Gowers and Maurey [79] constructed spaces
which have very few complemented subspaces, and we believe that these spaces
can be slightly modified so that they would satisfy property (7) vacuously (cf. also
Sections 7.a and 5.g).

6.d. Bibliographical remarks. Other papers containing results about contractive
projections in �p include [91, 11, 9]. Contractive projections in �p for 0 < p < 1
were studied in [123, 124].

7. SEQUENCE BANACH SPACES

7.a. General nonexistence results. The situation about the existence of con-
tractive projections in Banach spaces with bases is somewhat ambivalent. That
is, one may say that there is an abundance of contractive projections since every
infinite-dimensional Banach space with a basis has a conditional basis, which can
be renormed so that the projections associated with this conditional basis are all
contractive [143, p. 250]. Moreover, Lindenstrauss proved the following property
of nonseparable reflexive Banach spaces illustrating the richness of 1-complemented
subspaces:

Theorem 7.1 [99]. Let X be any reflexive Banach space. For any separable
subspace Y ⊂ X there exists a separable subspace Z ⊂ X such that Y ⊂ Z and
Z is 1-complemented in X .



Norm-One Projections in Banach Spaces 73

On the other hand, we mentioned above a striking example of Lindenstrauss
illustrating the claim that norm-one projections are very rare; see Theorem 5.4.
Also, Bohnenblust showed that there are subspaces S of �n

p which do not have any
nontrivial 1-complemented subspaces (Theorem 6.2 above). Moreover, Bosznay and
Garay [29] showed:

Theorem 7.2. Let X be a finite-dimensional real Banach space. Then for any
ε > 0, there exists a norm ||| · ||| on X such that

(1− ε)‖x‖X ≤ |||x||| ≤ (1 + ε)‖x‖X

and such that (X, ||| · |||) does not have any nontrivial 1-complemented subspaces.

Here, we say that a 1-complemented subspace F of X is nontrivial if F � X
and dimF > 1 (clearly, by the Hahn-Banach theorem all 1-dimensional subspaces
are 1-complemented in all Banach spaces).

Thus, in the case of finite dimensional real spaces, the property of having 1-
complemented subspaces is highly unstable. It seems clear that there should exist
infinite-dimensional Banach spaces with no nontrivial 1-complemented subspaces
(we believe that an appropriate modification of a hereditarily indecomposable space
constructed in [79] would do the job). However the following questions are open:

Question 7.3. Let (X, ‖ · ‖) be a Banach space. Does there exist an equivalent
renorming (X, ||| · |||) of X so that (X, ||| · |||) has no nontrivial 1-complemented
subspaces?

Theorem 7.2 says that when X is finite-dimensional then the answer to this
question is positive in the very strong sense that one may require the new norm
||| · ||| to be arbitrarily close to the original norm ‖ · ‖.

Question 7.4. Let X be a Banach space. Does there exist a subspace Y ⊂ X
so that Y does not have nontrivial 1-complemented subspaces?

As mentioned above, by a result of Bohnenblust, Question 7.4 has a positive
answer if X = �n

p , p ∈ (1,∞)\Z, n ≥ 7, and therefore also if X = Lp or X = �p.
We suspect that the answer is positive for all Banach spaces which are not isometric
to a Hilbert space.

7.b. More negative results concerning the inheritance of the isomorphic struc-
ture. Here we will concentrate on the search of characterizations of 1-complemented
subspaces and norm one-projections in classical types of spaces (with their usual
norms) in the spirit of Theorem 6.3. However we have to start from the following
two negative results:
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Theorem 7.5 [119]. Let X be any finite-dimensional Banach space (dimX =
n). Then
(a) there exists a Banach space Y with dimY = n2 such that Y has a basis

with basis constant ≤ 1 + n−1/2 and X is 1-complemented in Y .
(b) there exists a Banach space Y such that Y has a monotone basis (i.e., basis

constant equals 1; cf. Definition 2.9) and X is 1-complemented in Y (here
dimY could be infinite).

Theorem 7.6 [102; 103, Theorem 3.b.1]. Every spaceX with a 1-unconditional
basis is 1-complemented in some symmetric space X .

These results are very negative because they show that 1-complemented sub-
spaces do not have to inherit the isomorphic structure of the space. In particular,
it follows from Theorem 7.6 that there is no hope of extending Proposition 3.2
to general symmetric spaces (Proposition 3.2 does have an analogue in �p, Theo-
rem 6.3(2)).

Moreover, very shortly after Theorem 7.6 it was established that in fact the
isomorphic structure of X is not inherited by 1-complemented subspaces even in
the most natural symmetric spaces, i.e., in Orlicz spaces and Lorentz spaces (cf.
Definitions 2.5 and 2.6). We have:

Theorem 7.7 [98, 2]. There exists a class of Orlicz spaces �ϕ [98] and a class
of Lorentz spaces �w,p [2] such that if X belongs to either of these classes then X

has an infinite-dimensional 1-complemented subspace Y which is not isomorphic
with X .

Thus it seems that there is no hope of giving any sort of characterization of
1-complemented subspaces in terms of isomorphisms. However the analogue of
Theorem 4.2 still holds:

Theorem 7.8. Let X be a symmetric sequence space with basis {ei}i∈I (I ⊆
N). Let {fj}j∈J be a block basis with constant coefficients of any permutation of
{ei}i∈I, i.e., there exists a permutation σ of I, an increasing sequence {pj} ⊆ N

and scalars {θi}i with |θi| = 1 for all i ∈ I such that

fj =
pj+1∑

k=pj+1

θkeσ(k).

Then Y = span{fj}j∈J ⊂ X is a 1-complemented in X and the averaging projec-
tion P : X

onto−→ Y is a norm-one projection.
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In fact, all examples presented in the proofs of Theorems 7.6 and 7.7 were of
the form described in Theorem 7.8. We postulate that Theorem 7.8 is the right form
of the description of 1-complemented subspaces, i.e., that Conjecture 5.26 should
be valid also in Banach spaces with bases.

Conjecture 7.9. Let X be a strictly monotone Banach space with a 1-uncon-
ditional basis (sufficiently different from a Hilbert space). Then every norm-
one projection in X is a weighted conditional expectation operator and every
1-complemented subspace of X is spanned by mutually disjoint elements.

Below we present some results supporting this conjecture (see Theorem 7.23
and Corollary 7.24), but first we return to the chronological order of discoveries.

7.c. Some spaces whose 1-complemented subspaces do inherit the basis. The
next developments in the study of 1-complemented subspaces of sequence space
dealt with isometric versions of Banach’s Problems 1.1 and 1.2. In this section we
will discuss the isometric analogue of Problems 1.1, i.e.:

Problem 7.10. Does every 1-complemented subspace of a space with a monotone
basis have a monotone basis? (cf. Definition 2.9)

As we mentioned above, Pel-czyński [119] (see Theorem 7.5(b)) showed that the
answer to Problem 7.10 is negative. However, Dor [60] proved that the answer is
yes if we consider only finite-dimensional spaces:

Theorem 7.11. Let X be a finite-dimensional Banach space with a monotone
basis, and let Y be 1-complemented in X . Then Y has a monotone basis.

Chronologically, the next development related to describing bases in 1-comp-
lemented subspaces is due to Kinnunen [91] which we described in Section 5.f.

The next development concerning Problem 7.10 is due to Rosenthal [136], who
proved:

Theorem 7.12. Let Y be a reflexive Banach space which is isometric to a
contractively complemented subspace of a Banach space X with reverse monotone
basis. Then Y has a reverse monotone basis.

Here, a basis (bj) for a Banach space X is said to be reverse monotone if
‖I − Pj‖ = 1 for all j, where

Pjb =
j∑

n=1

cnbn if b =
∞∑

n=1

cnbn.
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Clearly, if X is finite-dimensional, then X has a reverse monotone basis if and
only if X has a monotone basis (simply reverse the order of the monotone basis
(bn)m

n=1 to (bn)1n=m).
Thus Theorem 7.12 generalizes Theorem 7.11 and also it illustrates that in

infinite dimensions the concept of a reverse monotone basis is very different from
a monotone basis (cf. Theorem 7.5(b)).

In [136], Rosenthal also studied the following concept:

Definition 7.13. A Banach spaceX has enough contractive projections (ECP )
provided every 1-complemented nonzero subspace Y of X contains a contractively
complemented subspace Z of codimension one in Y .

Property (ECP ) is clearly inherited by 1-complemented subspaces.

This property seems to be modeled on the definition of the reverse monotone ba-
sis (bn)n∈N where we require that every subspace of the form YM = span{bn}n≥M

(M ∈ N) has a 1-complemented subspace YM+1 = span{bn}n≥M+1 of codimen-
sion one in YM .

Rosenthal proved:

Theorem 7.14 [136, Theorem 1.8]. Every Banach space X with reverse
monotone basis has enough contractive projections (ECP ).

The proof of Theorem 7.14 is not trivial. It uses the theory of numerical ranges
(see [27, 28]) and Proposition 5.41.

On the other hand, Rosenthal suggests that there may exist reflexive separable
spaces with ECP but with no basis or even without finite-dimensional decomposi-
tion (FDD). This question is still open.

Rosenthal proved the following characterization of property (ECP ):

Theorem 7.15 [136, Theorem 2.1]. A reflexive Banach space X has (ECP )
if and only if X has a reverse monotone transfinite basis.

Here transfinite basis is the concept that generalizes bases by dropping the
assumption of countability (it was introduced by Bessaga [21]; see also [59]). It is
defined as follows:

Definition 7.16 [145, Definition 17.7]. Let η > 0 be an ordinal. A transfinite
sequence of elements (bα)α<η in a Banach space X is called a transfinite basis (of
length η) of X if for every x ∈ X there exists a unique transfinite sequence of
scalars (xα)α<η such that

∑
α<η xαbα converges to x.

For most recent developments related to further generalizations of Problem 7.10,
see Section 7.f.
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7.d. Preservation of the 1-unconditional basis in the complex case. Let us now
concentrate on the isometric version of Problem 1.2, i.e.:

Problem 7.17. Does every 1-complemented subspace of a space with a 1-
unconditional basis have a 1-unconditional basis?

Curiously, the situation is different depending whether we consider Banach
spaces over C or over R.

The first result concerns complex spaces and was proven implicitly by Kalton
and Wood [90] and explicitly explained in [75, 135]. We have

Theorem 7.18. Let X be a complex Banach space with 1-unconditional basis
and let Y be a 1-complemented subspace of X . Then Y has a 1-unconditional
basis.

The analogous result is false in real Banach spaces [96, 16]. Thus the answer
to Problem 7.17 is negative in the real case.

The proof of Theorem 7.18 is based on the theory of numerical ranges in Banach
spaces (see [27, 28]). We outline here the main elements of the proof.

Definition 7.19 [27]. Let X be a Banach space and T be a linear operator on
X . We say that operator T is hermitian if the numerical range of T is contained in
R, i.e.,

conv{〈f, Tx〉 : x ∈ X, f ∈ J(x)} ⊆ R.

Definition 7.20 [90]. An element x0 ∈ X is called hermitian if there exists
a hermitian rank-1 projection from X onto span{x0}, i.e., equivalently, if for all
x ∈ X , f ∈ J(x), f0 ∈ J(x0), we have

〈f, x0〉 · 〈f0, x〉 ∈ R.

The set of all hermitian elements of X is denoted H(X)
Let {Hλ : λ ∈ Λ} be the collection of maximal linear subspaces of H(X).

Then Hλ, λ ∈ Λ, are called Hilbert components of X .
A Hilbert component Hλ is called nontrivial if dim Hλ > 1.

Kalton and Wood showed that Hilbert components are well-defined and they
obtained the following characterization of hermitian elements in X :

Theorem 7.21 [90, Theorem 6.5]. Let X be a complex Banach space with a
normalized 1-unconditional basis {ei}i∈I . Then x0 ∈ X is hermitian if and only if

( i ) ‖y‖X = ‖y‖2 for all y ∈ X with suppy ⊂ supp x0, and
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(ii) for all y, z ∈ X with supp y ∪ suppz ⊂ suppx0 and for all v ∈ X with
suppv ∩ suppx0 = ∅, if ‖y‖X = ‖z‖X then ‖y + v‖X = ‖z + v‖X .

In (i) above, when we say ‖y‖2 we mean the �2-norm of y with respect
to the given 1-unconditional basis of X , i.e., if y =

∑
i∈I yiei then ‖y‖2 =

(
∑

i∈I |yi|2)1/2.
In particular, it is easy to see

Corollary 7.22. IfX is a complex Banach space with a normalized 1-unconditional
basis {ei}i∈I and x0 is hermitian in X, then

Sx0 = span{ei : i ∈ suppx0} ⊂ X

is a 1-complemented subspace of X and Sx0 is isometric to a Hilbert space.

Clearly, every element {ei}i∈I of the 1-unconditional basis is hermitian, and
Kalton and Wood proved that if P is a projection of norm one then also the elements
{Pei}i∈I are hermitian in R(P ) (see [75, Lemma 3]). This fact, together with
Theorem 7.21, leads to Theorem 7.18.

A refinement of this technique allowed the author of this survey to obtain a
strengthening of Theorem 7.18. Namely, we get a geometric description of the
1-unconditional basis of the 1-complemented subspace:

Theorem 7.23 [128, Corollary 3.2]. Suppose that X is a complex strictly
monotone Banach space with a 1-unconditional basis {ei}i and let P be a projection
of norm one in X . Suppose that Y = P (X) ⊂ X has no nontrivial Hilbert
components. Then there exist disjointly supported elements {yi} m

i=1 ⊂ Y (m =
dimY ≤ ∞) which span Y . Moreover, for all x ∈ X ,

Px =
m∑

i=1

y∗i (x)yi,

where {y∗i } m
i=1 ⊂ X∗ satisfy ‖y∗i ‖ = ‖yi‖X = y∗i (yi) = 1 for all i = 1, . . . , m.

The statement in Theorem 7.23 exactly parallels and extends the characterization
of 1-complemented subspaces of �p given in Theorem 6.3(3).

Remark. The assumption of X being strictly monotone cannot be omitted
(Blatter and Cheney [24] showed examples of 1-complemented hyperplanes in �3∞
that are not spanned by disjointly supported vectors). Also the assumption that Y
does not have nontrivial Hilbert components cannot be dropped (see examples in
[128]); the property of not having nontrivial Hilbert components is not necessarily
inherited by 1-complemented subspaces.
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As noted above (Theorem 7.7) one cannot hope to give any sort of isomorphic
description of 1-comp- lemented subspaces of X and we believe that the geometric
characterization of the position of Y in X as the span of a family of disjointly sup-
ported vectors is best possible. In fact, the examples of 1-complemented subspaces
Y nonisomorphic to the whole space X which were described in [2, 98] all satis-
fied the conclusion of Theorem 7.23 (in both complex and real cases); even more,
they in fact were spanned by disjoint elements with finite supports and constant
coefficients, i.e., were of the form

Y = span{vj}j∈N

where vj =
∑

ν∈Sj
eν , Sj ∩ Sk = ∅ whenever j �= k. So Y satisfies the condi-

tions of Theorem 5.25 and the norm-one projection onto Y is simply a conditional
expectation operator.

Thus it appears that it is not that the class of contractive projections is richer in
spaces other than �p, but rather that the isomorphic structure of subspaces of X is
much more varied. In fact, Theorem 7.23 can be rephrased as follows:

Corollary 7.24. Suppose thatX is a complex Banach space with 1-unconditional
basis and X does not contain a 1-complemented copy of a 2-dimensional Hilbert
space �2

2. Then every norm one projection in X is a weighted conditional expecta-
tion operator.

Proof. Theorem 7.23 and Corollary 7.22.

Remark. Recall that Calvert and Fitzpatrick showed that if all weighted con-
ditional expectation operators are contractive projections in X , then X has to be
isometric to �p or c0 (see Section 6).

7.e. The real case. One can immediately see that when X is a real Banach
space then all operators and all elements are hermitian, so above methods cannot be
applied. And, in fact, Theorem 7.18 fails in the real case.

As mentioned above, Lewis [96] and Benyamini, Flinn, Lewis [16] showed
examples of real Banach spaces without 1-unconditional bases which are 1-
complemented in a real space with a 1-unconditional basis:

Proposition 7.25 [16, Propositions 1 and 2]. The space En = {(xi) n
i=1 ∈

�n∞ :
∑n

i=1 xi = 0} is 1-complemented in a space with 1-unconditional basis and
if n ≥ 5, then En does not admit a 1-unconditional basis.

The proof of Proposition 7.25 is based on the following interesting observation:
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Proposition 7.26 (stated as “well-known” in [16]). A real Banach space X

embeds as a norm-one complemented subspace of some Banach space Z with 1-
unconditional basis if and only if the identity I on X can be written as

I =
∑

i

fi ⊗ xi

for some xi ∈ X, fi ∈ X∗ with

‖
∑

i

εifi ⊗ xi‖ ≤ 1

for all εi = ±1.

In Proposition 7.25, spaces En are not uniformly convex, but uniformly convex
examples are also possible.

It is easy to see that spaces En do have a 2-unconditional basis. The following
version of Problem 1.2 is open:

Problem 7.27. Let X be a real Banach space with a 1-unconditional basis and
let Y be 1-complemented in X . Does Y have to have an unconditional basis?

After the negative examples of Lewis and Benyamini, Flinn, Lewis, there were
few attempts to characterize 1-complemented subspaces of special real Banach
spaces. The first development is due to Rosenthal [137] who considered spaces
which are isometric to the direct sum of Hilbert spaces of dimension at least two
via a one-unconditional basis according to the following definition:

Definition 7.28 [137]. Let Γ be a nonempty set and (Xα)α∈Γ be a family of
nonzero Banach spaces. A Banach space X is said to be a functional unconditional
sum of the Xα’s if there exists a normalized 1-unconditional basis b = (bα)α∈Γ for
some Banach space B so that X is (linearly isometric to) (

∑
Γ
⊕Xα)b, i.e.,

X = {x = (xα)α∈Γ ∈
∏
α∈Γ

Xα :
∑
α∈Γ

‖xα‖Xαbα ∈ B}

and we define the norm on X by:

‖x‖X = ‖
∑
α∈Γ

‖xαbα‖B.

In case X is real and each Xα is a real Hilbert space of dimension at least two,
we call X a Functional Hilbertian Sum (FHS).
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It is clear that each complex Banach spaceX with a 1-unconditional basis (ei)i∈I

is isometrically isomorphic over reals to XR(�2
2), XR = {∑i∈I aiei ∈ X : where

(ai)i∈I ⊂ R} i.e., X can be considered over reals as an FHS, where B = XR,
b = (bi)i∈I := (ei)i∈I , and each (Xi)i∈I is a two-dimensional Hilbert space �2

2.
This similarity to the complex case allows to transfer some of the techniques related
to hermitian operators and hermitian elements. We will use the following notion:

Definition 7.29. LetB be a complex or real Banach space. We say that operator
T : B −→ B is skew-Hermitian if Ref(Tb) = 0 for all b ∈ B and f ∈ J(b) ⊂ B∗.

Using skew-Hermitian operators, Rosenthal gave a sufficient condition for a 1-
complemented subspace of a real Banach space with 1-unconditional basis to have
a 1-unconditional basis:

Theorem 7.30 [137, Theorem 3.15]. Let X be a real Banach space with a
1-unconditional basis and Y be a 1-complemented subspace of X . Suppose for
all y ∈ Y, there is a skew-Hermitian operator T on X such that Ty ∈ Y and
T 2y = −y. Then Y is FHS, so Y has a 1-unconditional basis.

As a corollary, Rosenthal obtains Theorem 7.18. The method of Rosenthal
is very similar in spirit to the method of Kalton and Wood [90], but Rosenthal’s
analysis of FHS spaces also involves deep considerations of Lie algebras of Banach
space X (the Lie algebra of X consists of skew-Hermitian operators on X).

Next, Rosenthal considers orthogonal projections on X which are defined as
follows:

Definition 7.31. Let X be a real or complex Banach space, and Y, Z be
subspaces ofX . Z is said to be an orthogonal complement of Y if Y +Z = X and if
for all y ∈ Y, z ∈ Z and all scalars α, β with ‖α‖ = ‖β‖ = 1, ‖y+z‖ = ‖αy+βz‖.

The projection P with range Y and kernel Z is called the orthogonal projec-
tion onto Y . Note that ‖P‖ = ‖I − P‖ = 1. We say that Y is orthogonally
complemented in X if Y has an orthogonal complement.

It is easy to see that any space with 1-unconditional basis is orthogonally com-
plemented in some FHS space. Rosenthal proved the converse:

Theorem 7.32 [137, Theorem 3.18]. Let X be an FHS space and Y be an
orthogonally complemented subspace of X . Then Y has a 1-unconditional basis.

Theorems 7.30 and 7.32 are the most general partial answers to Problem 7.27
known today.
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It is natural to ask whether the structures analogous to but weaker than 1-
unconditional bases are preserved by 1-complemented subspaces. Results of this
kind will be presented in Section 7.f below.

Next, results on 1-complemented subspaces of real Banach spaces with 1-
unconditional bases are due to the author of this survey. In [129] we considered an
extension of Theorem 6.6 from �p to a larger class of Banach spaces.

Definition 7.33 (cf. [104, Definition 1.d.3]). We say that a Banach lattice
X is one-p-convex (resp. one-p-concave) if for every n ∈ N and every choice of
elements {xi}n

i=1 in X we have

‖(
n∑

i=1

|xi|p)
1
p ‖ ≤ (

n∑
i=1

‖xi‖p)
1
p if 1 ≤ p < ∞,

or, respectively,

‖(
n∑

i=1

|xi|q)
1
q ‖ ≥ (

n∑
i=1

‖xi‖q)
1
q if 1 ≤ q < ∞.

This is the usual notion of p-convexity (resp. q-concavity) but with the additional
requirement that the constant is equal to 1. Clearly, spaces �p are both one-p-convex
and one-p-concave.

We have the following extension of Theorem 6.6.

Theorem 7.34 [129, Theorem 1]. Let X be a strictly monotone Banach space
with a 1-unconditional basis. Suppose that
(a) X is a one-p-convex, 2 < p < ∞, or
(b) X is a one-q-concave, 1 < q < 2, and smooth at each basis vector.

Then any 1-complemented subspace F of codimension n in X contains all but
at most 2n basis vectors of X, i.e., there exist functionals fn, · · · , fn ∈ X∗ such

that card(
n⋃

j=1
suppfj) ≤ 2n and F =

n⋂
j=1

f−1
j (0).

Notice that in a general Banach space X it does not have to be true that every
1-complemented subspace Y ⊂ X with codimY < ∞ is an intersection of 1-
complemented hyperplanes in X (as is the case when X = �p, by Theorem 6.6).
Indeed, Bohnenblust’s finite-dimensional examples from Theorem 6.2 do not have
1-complemented hyperplanes, while every 1-dimensional subspace is of finite codi-
mension and, of course, 1-complemented (moreover these spaces are one-p-convex
when 2 < p < ∞); see also Theorem 7.2.

We wish to note here that the condition in the conclusion of Theorem 6.6 does
not characterize �p among infinite dimensional Banach spaces with 1-unconditional
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basis (cf. [128, Theorem 5.1]). However, we believe that the following conjecture
is true:

Conjecture 7.35.
(a) Let X be a finite-dimensional Banach space such that every 1-dimensional

subspace of X can be represented as an intersection of 1-complemented
hyperplanes. Then X is isometric to �n

p for some p, 1 ≤ p ≤ ∞, n = dimX .
(b) There exists a finite-dimensional Banach space X, dimX = n, which is not

isometric to �n
p for any p, 1 ≤ p ≤ ∞, and such that every 1-complemented

subspace Y of X with dim Y ≥ 2 can be represented as an intersection of
1-complemented hyperplanes.

As a corollary of Theorems 7.34 and 5.38, we obtain the extension of Theo-
rem 4.18:

Corollary 7.36 [129, Corollary 3]. Suppose that X is a separable strictly
monotone real function space on (Ω, μ), where μ is finite on the nonatomic part of
Ω. Suppose that X is either one-p-convex for some 2 < p < ∞, or one-q-concave
for some 1 < q < 2 and smooth at χ

A for every atom A of μ. Let the hyperplane
F = f−1(0) be 1-complemented in X . Then there exist α, β ∈ R and A, B-atoms
of μ so that f = αχ

A + βχ
B.

Theorem 7.34 does not guarantee that the 1-complemented subspaces of finite
codimension in X are spanned by disjointly supported vectors, however we believe
that this should be the case in “most” spaces. In [130], we proved that this is the
case for most 1-complemented subspaces of finite codimension in Orlicz sequence
spaces and 1-complemented hyperplanes in Lorentz sequence spaces.

We need the following notation:

Definition 7.37. We say that the Orlicz function ϕ is similar to tp for some
p ∈ [1,∞) if there exist C, t0 > 0 so that ϕ(t) = Ctp for all t < t0.

We say that ϕ is equivalent to tp for some p ∈ [1,∞) if there exist C1, C2, t0 > 0
so that C1, t

p ≤ ϕ(t) ≤ C2t
p for all t < t0.

We obtained the following:

Theorem 7.38 [130, Theorem 7]. Let ϕ be an Orlicz function such that ϕ is
not similar to t2 and ϕ(t) > 0 for all t > 0. Consider the Orlicz space �ϕ with
either Luxemburg or Orlicz norm. Let F ⊂ �ϕ be a subspace of codimension n
with dimF > 1. If F contains at least one basis vector and F is 1-complemented

in �ϕ, then F can be represented as F =
n⋂

j=1
f−1
j (0), where card(suppfj) ≤ 2 for

all j = 1, . . . , n, i.e., F is spanned by disjointly supported vectors.
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Moreover, if ϕ is not equivalent to tp for any p ∈ [1,∞), then |fji| is either 1
or 0 for all i, j, i.e., F is a span of a block basis with constant coefficients.

If ϕ is equivalent but not similar to tp for some p ∈ [1,∞), then there exists
γ ≥ 1 such that {|fji| : j = 1, . . . , n, i ≤ dim �ϕ} ⊂ {γm : m ∈ Z} ∪ {0}.

In [130], we were unable to eliminate the condition that F has to contain at
least one basis vector of �ϕ for Theorem 7.38 to hold, even though we believe that
this condition is not necessary. It follows from Theorem 7.34 that this condition
will be automatically satisfied if dim(�ϕ) is large enough and �ϕ is one-p-convex
for some 2 < p < ∞ or one-q-concave for some 1 < q < 2. Very recently, we also
obtained a new result which eliminates this condition (as well as the requirement
that F is of finite codimension) provided that Orlicz function ϕ is smooth enough
[126]. The other conditions in the assumptions of Theorem 7.38 are all necessary.

In [130], we also considered characterizations of 1-complemented hyperplanes
in Lorentz sequence spaces. We obtained the following:

Theorem 7.39 [130, Theorem 3]. Let �w,p be a real Lorentz sequence space
with 1 < p < ∞ and w2 > 0. Suppose that Y = f−1(0) is 1-complemented in
�w,p and card(suppf) ≥ n > 2. Then p = 2 and 1 = w1 = w2 = · · · = wn.

Theorem 7.40 [130, Corollary 6]. Let �w,p be a real Lorentz sequence space
with 1 < p < ∞ and wk > 0 for all k, i.e., �w,p is strictly monotone. Suppose that
Y = f−1(0) is 1-complemented in �w,p and card(suppf) = 2, i.e., f = fie

k
i +fje

k
j

for some i �= j. Then |fi| = |fj| or �w,p = �p, i.e., wk = 1 for all k.

The main tool in the proofs of Theorems 7.38, 7.39 and 7.40 is Proposition 5.41,
which allows to transfer to the real space setting techniques analogous to hermitian
elements in complex spaces (see [89]).

Finally, we want to mention two results valid in complex and real Orlicz and
Lorentz sequence spaces, which characterize 1-complemented subspaces among the
subspaces spanned by a family of mutually disjoint vectors.

Theorem 7.41 [128, Theorem 6.1]. Let �ϕ be a real or complex Orlicz space
and let {xi}i∈I (I ⊆ N, card(I) > 1) be mutually disjoint elements in �ϕ with
‖xi‖ϕ = 1 for all i ∈ I . Suppose that X = span{xi}i∈I ⊂ �ϕ is 1-compelemented
in �ϕ. Then one of the three possibilities holds:

(1) for each i ∈ I, card(suppxi) < ∞ and |xij| = |xik| for all j, k ∈ suppxi;
or

(2) there exists p, 1 ≤ p ≤ ∞, such that ϕ(t) = Ctp for all t ≤ sup{‖xi‖∞ :
i ∈ I}; or
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(3) there exists p, 1 ≤ p ≤ ∞, and constants C1, C2, γ ≥ 0 such that C2t
p ≤

ϕ(t) ≤ C1t
p for all t ≤ sup{‖xi‖∞ : i ∈ I} and such that for all i ∈ I and

j ∈ suppxi,

|xij| ∈ {γk · ‖xi‖∞ : k ∈ Z}.

Theorem 7.42 [128, Theorem 6.3]. Let �w,p with 1 < p < ∞ be a real or
complex Lorentz sequence space and let {xi}i∈I(I ⊆ N, card(I) > 1) be mutually
disjoint elements in �w,p such that X = span{xi}i∈I is 1-complemented in �w,p.
Suppose, moreover, that wν �= 0 for all ν ≤ S

def
=
∑

i∈I card(suppxi) (≤ ∞).
Then:
(1) wν = 1 for all ν ≤ S, or
(2) |xik| = |xil| for all i ∈ I and all k, l ∈ suppxi.

Theorems 7.41 and 7.42 show that in Orlicz and Lorentz sequence spaces which
are sufficiently different from �p, a subspace spanned by a block basis {fj}j is 1-
complemented if and only if all elements of the block basis {fj}j have constant
coefficients, i.e., if they satisfy Theorem 7.8, about the most obvious form of 1-
complemented subspaces in symmetric spaces. We believe that in fact Theorem 7.8
provides not only a sufficient condition but also a necessary condition for a form of
a 1-complemented subspaces in sequence spaces sufficiently different from �p.

7.f. Preservation of approximation properties by norm-one projections. In
this final section, we mention briefly problems analogous to Problems 1.1 and 1.2,
but concerned with structures which are analogous to, but weaker than uncondi-
tional bases or bases, namely, finite dimensional decompositions and approximation
properties.

The approximation property appeared already in Banach’s book [8] and it plays
a fundamental role in the structure theory of Banach spaces; see [103] and the recent
[47] for the exposition of the development and open problems in the theory. Here
we just recall the definitions essential for the statement of the results below.

Definition 7.43 [48, 77] (see also [103, Sections 1.e and 1.g] and [47]). Let
X be a separable Banach space. We say thatX has the approximation property (AP
for short) if there is a net of finite-rank operators Tα so that Tαx −→ x for x ∈ X ,
uniformly on compact sets. We say that X has the bounded approximation property
(BAP for short) if this net can be replaced by a sequence Tn; alternativelyX has BAP
if there is a sequence of finite-rank operators Tn so that Tnx −→ x for x ∈ X and
supn ‖Tn‖ < ∞. A sequence Tn with these properties is called an approximating
sequence. If X has an approximating sequence Tn with limn→∞ ‖Tn‖ = 1 then
we say that X has the metric approximation property (MAP for short). If X has
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an approximating sequence Tn with limn→∞ ‖I − 2Tn‖ = 1 then we say that X

has the unconditional metric approximation property (UMAP for short) (here I
denotes the identity operator on X). If X has an approximating sequence Tn with
TmTn = Tmin(m,n) then we say thatX has a finite-dimensional decomposition (FDD
for short). Let 1 ≤ λ < ∞. An FDD is called λ-unconditional if ‖∑∞

n=1 θn(Tn+1−
Tn)‖ ≤ λ for every choice of signs (θn)∞n=1.

As mentioned above, we refer the reader to [47] for the analysis of these inter-
esting properties. Here we just want to note that, clearly, spaces with bases have AP
and FDD, spaces with monotone bases have MAP and spaces with 1-unconditional
bases have UMAP. It is a very nontrivial fact that the reverse implications do not
hold; see [103, 47].

It is very natural to consider the following analogue of Problems 1.1 and 1.2:

Problem 7.44. Let X be a separable Banach space with one of the approxi-
mation properties: AP, BAP, MAP, UMAP or FDD or a basis. Suppose that Y is
complemented in X . Which of the approximation properties must Y satisfy?

We note here that given any pair of Banach spaces X, Y such that Y ⊂ X and
Y is complemented in X , it is possible to introduce a new equivalent norm on X
so that Y is 1-complemented in X with the new norm. Thus Problem 7.44 can
be restated for 1-complemented subspaces Y of X without losing the isomorphic
nature of the problem. We refer the reader to [47] for an interesting account of what
is known about Problem 7.44. Here we just quote one sample result related to this
problem:

Theorem 7.45 [47, Theorem 3.13] (due to Pel-czyński [119] and Johnson,
Rosenthal, Zippin [87]). A separable Banach space Y has BAP if and only if Y is
isomorphic to a complemented (equivalently, 1-complemented) subspace of a space
with a basis.

Isometric versions of Problem 7.44 will necessarily deal with isometric versions
of approximation properties, i.e., MAP, UMAP, 1-unconditional FDD, monotone
basis, 1-unconditional basis, similarly as Problems 7.10 and 7.17.

Clearly, 1-complemented subspaces of spaces with MAP have MAP. Also, Gode-
froy and Kalton [77] observed that 1-complemented subspaces of spaces with UMAP
have UMAP. Moreover, they proved:

Theorem 7.46 [77, Corollary IV.4]. Let X be a separable Banach space. Then
X has UMAP if and only if for every ε > 0, X is isometric to a 1-complemented
subspace of a space Vε with a (1 + ε)-unconditional FDD.
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As far as we know, all other isometric versions of Problem 7.44 are open; see
also Section 7.c.

We have for example:

Problem 7.47. Does every 1-complemented subspace of a space with a 1-
unconditional FDD have a 1-unconditional FDD (or any unconditional FDD)?

But note that Read [132] gave examples of spaces without FDD which are
complemented (equivalently, 1-complemented) in a space with an FDD, or even in
a space with a basis (cf. [47]).
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Schwartz 1974-1975: Espaces Lp, Applications Radonifiantes et Géométrie des
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115. W. Orlicz, Über Raume (LM ). Bull. Intern. Acad. Pol., Sér. A, Cracovie, 1936.

116. P. L. Papini, Minimal and closest points, nonexpansive and quasinonexpansive retrac-
tions in real Banach spaces, in: Convexity and its applications, Birkhäuser, Basel,
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