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(p, 9)-PROPERTIES OF A GENERALIZED RIESZ POTENTIALS
GENERATED BY THE GENERALIZED SHIFT OPERATORS

Hiuseyin Yildirim and Mehmet Zeki Sarikaya

Abstract. In this paper, the inequality of Hardy-Littlewood-Sobolev type is
established for the generalized Riesz potentials generated by the generalized

shift operator with the functions in Sobolev spaces W, (R.}).

1. INTRODUCTION

It is well known that the fractional integrals I f = C), o f * |2|*™" are bounded
operators from L,(R,) to Ly(R,,) for % = % — = (see [10]). (p, q)—properties of
the classical Riesz potentials were reported in [2,3,6]. Moreover, the generalized
Riesz potentials, generated by the generalized shift operator, are bounded operators
from Ly, (R}) to Ly, (R;)) for ;=1 — (110

Sobolev functions play a significant role in many fields of analysis. In recent
years, the Lebesgue spaces L, and the corresponding Sobolev spaces W)™ have
attraction more and more attention, in connection with the study of elasticity, fluid
mechanics and differential equations. One of the most important results for Sobolev
functions is so-called Sobolev’s embedding theorem[1,3-5,8,9]. (p, ¢, !)—properties
of the Riesz potentials on the Sobolev spaces W;”(R;L ) were studied in [4]. The aim
of this work is to define the generalized Riesz potentials generated by the generalized
shift operator which acts on functions in the Sobolev spaces WI%(RI ) and to study
its (p, ¢)-properties for these potentials. These properties can be described as a
theorem of the Hardy-Littlewood-Sobolev type [10].

Now, we give some notations and definitions. L, , = Ly ,(R;}) and W}" (R,})

n
are defined with respect to the Lebesgue measure <H x?”’) dx as below:
i=1
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1
P

Lyw=LpoRY) =S [ Ifll,. = / [f ()P (Hw2> dr | <oop,
T i=1

W (Ry) = {f € Lige(RY) = I f

- /‘Dkf(x)‘p<f[1x?”i>dx <oy,

0<|k|<mpy

where 1 < p < 00, v = (V1,..,0), V1 > 0,50, > 0, 0] = v1 + ... + vy,
oL J— k| = k1 + ... + kp and R} = {z: 2= (21,...,2), 71

Ba:]fl 8&:52...81‘5]‘ ’
> 0,...,x, > 0}.
We will say that the linear operator G, acting on Sobolev space W} (R} ), has
a weak type (p, ¢, m) if for any positive p the inequality
q
1l >

1

mes {x c R} :|Gf(x)] > M} < Cpgmw <

holds, where mesE denote the Lebesgue measure of a set £ and Cp 4, is a

constant independent from f.
Denote by 7Y the generalized shift operator acting according to the law

™ ™
TYf(x) :Cv/.../f <\/x%+y%—2x1y1 cosal,...,\/x%—i—y%—anyncosan)
0 0

n
X <H sin?vi—1 ()éz‘d()éz‘) ,
=1

where z,y e R}, C, = [[ ———= [5].
v U e rg P

The convolution operator determined by the 7Y is as follows,
n
m (Feo)w) =0 [ 2o [T
R+ i=1

The convolution (1) known as a B-convolution. We note the following properties
of the B-convolution and operator 7Y as described in [7, 11].

(i) fro=px*f
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-1

S =

(i) [ *@lly, < W1l -l L<p,r<oo, +

(i) T¥.1 =1
(iv) If f(x),g(z) € C(R}) , g(z) is a bounded function all z € R} and

/\f <Hw2vl> dx < oo,

/ Té’f(x)g(y)( 2v’ dy—/ FTYg( Hy%
R:{
W) [T f(2)l < sup|f(a)].

Let . be a natural number, «y, are real numbers and 0 < «p < n for multi
index k such that 0 < |k| < m, where |k| = k1 + k2 + ... + kj,. Let also accept
feWn(R}) .1 <p< oo and consider the integral,

D=
Q=

then

2)  (Ramof) (z Z Ck/ [Dkf(y)} TY | ox— 2l Hyzvz

O<lkl<m gy

where € R} and C, are real constants.

It is obvious that the R, f is the generalized Riesz potential generated by
the generalized shift operator for m = 0. In addition, the integral R, . f is the
classical Riesz potential when m =0, || =0 and cosa; =1, i =1,2,...,n

Lemma 1. Let f € L,,(R}), 1 < p < oo. Then, we have the following
inequality

TYf@)P <TV|f@)P . for  — 4+ =1

1
v

= |-

Proof. Let

Fla,z,y)=f <\/x% + y? — 231Y1 COS Q5 ooy /T2 + Y2 — 22,y COS an) .

From Holder’s inequality, we obtain

Cv/.../F(a,x,y)H(sin%i_l a;da)
0 0 i=1

p

TV f ()"

IN

Cv/.../\F(a,x,y)\pH(sin%i_l a;da;)
0 0 i=1
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Cv]---]ﬁ(81n2vi_l Oéz‘d()cz‘)
0o o =t
<TY(|f()IF).

Lemma 2. Let f € L, ,(R;}) and 1 < p < oo. Then, we have

T fllp0 < 1510 -

1P

p/

Proof. From Lemma 1, we have

ITvsiE, = / TV ()P Hy%z
/ T | f(2)P Hy%z

R}

If we consider the properties (iii) and (iv) of the operator 7Y, then we have the
following inequality

1T £l < (f IF @I ( Hy2”’)dy> =1/l -

We prove the following Hardy-Littlewood Sobolev type theorem for (2).

. 1 l Omax
Theorem 1. Let 1 < p < g < 00, Opax = 0<n|r}€f|1§ oy and = 5 T st
Then,

(a) The integral (2) absolutely convergence for almost every x.
(b) If p> 1, then
[Remofllg < Cpamo | fllwy,
where C, q.m v IS the constant independent from f.
(c) If f € W (R,)), then for any > 0

1w \?
mes{x : |Ramuof| > 1} < Cpamu < ; fit

that is, the mapping f — Romof is of weak type (1,q,m).
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Proof. Let us define for any positive p, C(u) = 0<n|f}§|i§ (@~ Qmax Ok~ Omin )

where apax = max ap and oy, = min ag . Then it can be easy seen that,
0<|k[<m 0<|k|<m.

Cp) || =200 E o < o

(3) s =
Cp) la| o= =200 i 2] >
Now we can be define the following two kernels with 41 = . <n|f}§|i§ ar (Cr) C(p)
S m

Ay |z|fmin =20 e |2 < g
4 Ki(y) =

0 if 2] >

0 if |z| <p
(5) Koo(y) =

Ay |z|0man =20 g > g

From (3), (4) and (5), we have the following inequality

(Rl ()] < /D’“f S Hy%z
O<|k|<m
+ Y /D’ff TyK Hy%l
O<|k|<m

Applying the generalized Minkowsky inequality for integrals and using the properties
(iii) and (iv) of the operator 7Y, we obtain that

1illz,, < Al 1w, -

From the definition of K7, we have

n
(6) HK1HL1’U = Al / ‘x‘amin—n—2|’U| (H x?v’)dx = AQMami" < 00.

|| <p =1

Here, the constant A, consists the value of integral coordinates angles. Therefore,
Iy € L, and is finite almost everywhere.
For the integral Is we have the following inequality by the Holder inequality

I(@) < [[Koolly o 1 flvwpn, -
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From the definition of K, we have

1/p'
HKuﬂy::A1< J‘\wﬁ“ﬁfﬂ‘ﬂﬂwwllw?wdx>
=1

|Z/|AZM

— Agplcommx—n—2{o)p+n+2lo]

Here, since (amax — 1 — 2 [v|) p'+n+2 |v| < 0 (which is equal to ¢ < 00), [ Kool ,
is finite. This means that the integral I5 is also finite and the part (a) of the theorem
is proved.

¢. Assume without loss of generality that || f HWZ”U = 1 and rewrite the potential
Ry mof in the following form ’

(8) Romuof(T) = Rimvf(w) + Rimvf(x)
where R, ,,, ,f(z) and R2 ,, , f () are the potentials generated by the kernels 7 (z)
and ro(z) respectively

a2 o] <
(€)) ri(x) =

0 | > p

0 zl < p

ra() =
‘x‘ak—n—2|v| 7 ‘(L“ > 4.

Then for any positive A, we have the following inequality

(10) mes{z : |Ramof(x)] > A} < mes {x : |Ramvf(x)| > %}

+ mes {x : ’Rimvf(x)’

Denoting Ey = {z : |R} .. f(z)| > 2}, we see that

o,m,v

2p T oo,
(n mesty < 3 [ R ot @) ([] o2
2 i=1
Here, applying the generalized Minkowsky inequality for integrals and using the
definition of kernel 7 (z) we obtain

n

[ 18t @ [T s < g

=1
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where C* is a constant depend on C, and p. Using this inequality in (11) we have

L
(12) mesE; < EC ppemax,

Let Ey={x:|R%, .f(z)| >4} for the second term of (8). Then applying the

o,m,v

Holder inequality, we have

nt20v] ] 1 o
g p n+2 [v]

where M is a constant depending on oy, and p'. Therefore choosing

n+2|v|

(13) oMp @ =\

Thus, mes(E2) = 0 is obtained.
q
Choosing p > max (1, (24) "+2‘"‘> and using (12) and (13) in (10) we obtain

1
mes{x : [(Ramof)(®)] > A} < Cp.g.m.v <Tpv> '

Consequently, if 1 < p < g < oo, % = % - n—f‘fm, then (R, m.f) has a weak type

(W3 Lgw) in the sense of our definition.
b. To prove this part of theorem we use the Marcinkiewicz interpolation theorem

in [10]. We consider the following potential

n
(Zamag) @) = [ g kel =2 [T 2"y
Rt i=1
where g(y) = Y. CpDFf(y) € Ly,(R;). In the same way as in (a) and (c)
0<[k[<m
we can obtain the following inequality

91,0\
mes {(L‘ : ‘Za,m,vg‘ > M} < Cp,q,m,v < Mp7 )

which holds for any 4 > 0 and 1 < p < ¢ < oo. Using the Marcinkiewicz
interpolation theorem, we have the following inequality for this potential

1Zamwdllp.o < Cpgmo 19llg -
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From g(y) = Y. CpDFf(y), we have the following inequality

Now it is obvious that for f € W], (R.})

0<[k|<m

HZa,m,vgup,v < Cpgmw Z Ckaf(y) < Cpgmw Hf”Wg”U :

0<[k|<m »

n

‘Ra,m,vf(x)‘ S Za,m,vg(x)v

where g(y) = >, Cg |Dk f (y)| . Therefore we obtain the inequality

0<|k[<m

Omax

1 1
[Ramwfllg < Cogmu 1f ||y, for e p nxzpl

The proof of part (b) is completed.

10.
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