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APPROXIMATION OF COMMON FIXED POINTS
OF FAMILIES OF NONEXPANSIVE MAPPINGS*

L. C. Ceng1, P. Cubiotti2 and J. C. Yao3,+

Abstract. Let X be a reflexive and smooth Banach space which has a weakly
sequentially continuous duality mapping. We consider in this paper the iter-
ation scheme xn+1 = λn+1y + (1 − λn+1)Tn+1xn for infinitely many non-
expansive maps T1, T2, T3, ... in X as well as for finitely many nonexpansive
retraction. We establish several strong convergence results which generalize
[10, Theorem 3.3] and [10, Theorem 4.1] from Hilbert space setting to Banach
space setting.

1. INTRODUCTION

In 1967 for N nonexpansive maps T1, T2, ..., TN, Halpern [7] first introduced
the iteration scheme

xn+1 = λn+1y + (1 − λn+1)Tn+1xn

in which he considered the case when y = 0 and N = 1; i.e., one map T. He proved
that the conditions limn→∞ λn = 0 and

∑∞
n=1 λn = ∞ were necessary conditions

for the convergence of the iterates to a fixed point of T. In 1977 Lions [9] considered
the above scheme with the additional assumption limn→∞(λn − λn+1)/λ2

n+1 = 0
on the parameters and proved convergence of the iterates. In 1983 Reich [13] posed
the following problem:
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In a Banach space, what conditions on the sequence {λn} of parameters will
ensure convergence of the iterates?

In 1992 Wittmann [19] proved convergence of the iterates in a Hilbert space
under the assumption that the parameters satisfy

∑∞
n=1 |λn−λn+1| < ∞ in addition

to the above two necessary conditions. In 1994 under the assumption that the
parameters satisfy the two necessary conditions and are decreasing, Reich [12]
proved strong convergence of the iterates for the case of a single map (i.e., N = 1)
in a uniformly smooth Banach space which has a weakly continuous duality map.
In 1996 Bauschke [1] generalized Wittmann’s result to finitely many maps where
Tn := TnmodN . The additional condition imposed by him on the parameters was∑∞

n=1 |λn − λn+N | < ∞. He also provided an algorithmic proof which has been
used successfully with modifications by many authors [4, 15, 23]. In 1997 Shioji and
Takahashi [17] extended Wittmann’s result to a Banach space. This paper provides
some answers to the problem posed by Reich [13] by introducing a new condition on
the parameters limn→∞ λn/λn+N = 1 in the framework of a Hilbert space. Shimizu
and Takahashi (see [15, Theorem 1]) in 1997 considered the above iteration scheme
with the necessary conditions on the parameters and some additional conditions
imposed on the mappings. In 2003 O’Hara, Pillay and Xu [10] established the
following strong convergence result in a Hilbert space which generalizes Theorem
1 of Shimizu and Takahashi [15].

Theorem 1.1. [10, Theorem 3.3]. Let {λn} ⊂ (0, 1) satisfy limn→∞ λn = 0
and

∑∞
n=1 λn = ∞. Let C be a nonempty, closed and convex subset of a Hilbert

space H and let Tn : C → C(n = 1, 2, 3, ...) be nonexpansive mappings such that

F :=
∞⋂

n=1

Fix(Tn) �= ∅

where Fix(Tn) = {x ∈ C : x = Tnx}, n = 1, 2, 3, .... Assume that V1, ..., VN :
C → C are nonexpansive mappings with the property: for all k = 1, 2, ..., N and
for any bounded subset C̃ of C, there holds

lim
n→∞ sup

x∈C̃

‖Tnx − Vk(Tnx)‖ = 0.

For x0 ∈ C and y ∈ C define

(1) xn+1 = λn+1y + (1− λn+1)Tn+1xn n ≥ 0.

Then {xn} converges strongly to Py where P is the projection from H onto⋂N
k=1 Fix(Vk).
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Furthermore for the same iteration scheme (1) with finite many maps T1, T2, ..., TN,

O’Hara, Pillay and Xu [10] established the following complementary result to The-
orem 3.1 of Bauschke [1] with condition

∑∞
n=1 |λn − λn+N | < ∞ replaced by

condition limn→∞ λn/λn+N = 1.

Theorem 1.2. [10, Theorem 4.1]. Let Cbe a nonempty, closed and convex
subset of a Hilbert space H and let T 1, T2, ..., TN be nonexpansive self-mappings
of C with F :=

⋂N
i=1 Fix(Ti) �= ∅. Assume that

F = Fix(TN ...T1) = Fix(T1TN ...T2) = · · · = Fix(TN−1TN−2...T1TN).

Let {λn} ⊂ (0, 1) satisfy the following conditions:

(1) limn→∞ λn = 0;

(2)
∑∞

n=1 λn = ∞;
(3) limn→∞ λn/λn+N = 1.

Given points x0, y ∈ C, the sequence {xn} ⊂ C is defined by

xn+1 = λn+1y + (1− λn+1)Tn+1xn n ≥ 0.

Then {xn} converges strongly to PF y where PF is the projection of C onto F.

Let X be a reflexive Banach space which has a weakly sequentially continuous
duality map. For example, every lp (1 < p < ∞) space has a weakly sequentially
continuous duality map with gauge function ϕ(t) = tp−1. In this paper the iteration
scheme (1) is considered for infinitely many nonexpansive maps T1, T2, T3, ... in X.

Theorem 3.3 of O’Hara, Pillay and Xu [10] is extended to the setting of Banach
spaceX and it is shown that the sequence of iterates converges strongly to Py where
P is some sunny and nonexpansive retraction. For this same iteration scheme (1)
with finitely many nonexpansive maps T1, T2, ..., TN in X, Theorem 4.1 of O’Hara,
Pillay and Xu [10] is also extended to the setting of Banach space X under the
same conditions imposed by them on the sequence {λn} of parameters. The iterates
converge strongly to Py where P is the sunny and nonexpansive retraction onto the
intersection of the fixed point sets of the Ti, i = 1, 2, ..., N .

2. PRELIMINARIES

Throughout this paper let X be a real Banach space and X ∗ be its dual space.
Let C be a nonempty subset of X and T : C → C be a mapping of C into itself. T
is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. The fixed point
set of T is denoted by Fix(T ) := {x ∈ C : Tx = x}. The notation⇀ denotes weak
convergence and the notation → denotes strong convergence. By a gauge function
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we mean a continuous strictly increasing function ϕ defined on R+ := [0,∞) such
that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The mapping Jϕ : X → 2X∗ defined by

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ X

is called the duality mapping with gauge function ϕ. In particular the duality map-
ping with gauge function ϕ(t) = t denoted by J is referred to as the normalized
duality mapping. Browder [2] initiated the study of certain classes of nonlinear
operators by means of the duality mapping Jϕ. Set for every t ≥ 0,

Φ(t) =
∫ t

0
ϕ(r)dr.

Then it is known [8, p. 1350] that Jϕ(x) is the subdifferential of the convex
functional Φ(‖ · ‖) at x. Thus it is easy to see that the normalized duality mapping
J(x) can also be defined as the subdifferential of the convex functional Φ(‖x‖) =
‖x‖2/2, that is

(2) J(x)=∂Φ(‖x‖)={f ∈ X∗ : Φ(‖y‖)−Φ(‖x‖)≥〈y−x, f〉 ∀y∈X} ∀x∈X.

We will use the following properties of duality mappings.

Proposition 2.1. [22, p. 193-194].

(i) J = I (i.e., the identity mapping of X) if and only if X is a Hilbert space.
(ii) J is surjective if and only if X is reflexive.
(iii) Jϕ(λx) = sign(λ)(ϕ(|λ| · ‖x‖)/‖x‖)J(x) ∀x ∈ X \ {0}, λ ∈ R where R is

the set of all real numbers; in particular J(−x) = −J(x), ∀x ∈ X.

Recall that a Banach space X is said to satisfy Opial’s condition [11] if for any
sequence {xn} in X the condition that {xn} converges weakly to x ∈ X implies
that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X, y �= x. It is known [18] that any separable Banach space can be
equivalently renormed so that it satisfies Opial’s condition. Recall also that X
is said to have a weakly sequentially continuous duality mapping if there exists a
gauge function ϕ such that the duality mapping Jϕ is single-valued and continuous
from the weak topology to the weak∗ topology; i.e., for any sequence {xn} in X ,
if xn → x in X , then Jϕ(xn) → Jϕ(x) in the weak∗ topology of X . A space with
a weakly sequentially continuous duality mapping is easily seen to satisfy Opial’s
condition; see [2] for more details. Every lp space (1 < p < ∞) has a weakly
sequentially continuous duality mapping with gauge function ϕ(t) = tp−1.
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Let U = {x ∈ X : ‖x‖ = 1}, the unit sphere of X. The norm of X is said to
be Gâteaux differentiable if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. In this case X is said to be smooth. It is known [24] that
X is smooth if and only if the normalized duality mapping J is single-valued. In
this case, the normalized duality mapping J is continuous from the strong topology
to the weak∗ topology. Moreover, if X admits a weakly sequentially continuous
duality mapping, then X satisfies Opial’s condition and X is smooth, see Lemma
1 in [25].

In the sequel we will use the following concepts and lemmas.

Lemma 2.1. (see [6, Lemma 4]). Let X be a Banach space satisfying Opial’s
condition and let C be a nonempty, closed and convex subset of X. Let T : C → C
be a nonexpansive mapping. Then (I − T ) is demiclosed at zero, i.e., if {x n} is
a sequence in C which converges weakly to x and if the sequence {xn − Txn}
converges strongly to zero, then x − Tx = 0.

Lemma 2.2. Let ϕ be a continuous strictly increasing function such that
ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞, and let

Φ(t) =
∫ t

0
ϕ(r)dr.

Then there holds the following inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x + y)〉, ∀x, y ∈ X,

where jϕ(x + y) ∈ Jϕ(x + y).

Proof. The proof of this lemma is essentially due to Lim and Xu [8]. For the
completeness, we give its proof. Indeed it is known that Jϕ(x) is the subdifferential
of the convex function Φ(‖ · ‖) at x, that is,

Jϕ(x) = ∂Φ(‖x‖) = {f ∈ X∗ : Φ(‖y‖)− Φ(‖x‖) ≥ 〈y − x, f〉 ∀y ∈ X}.

Consequently, it follows that for each x, y ∈ X

Φ(‖x‖)− Φ(‖x + y‖) ≥ 〈x − (x + y), jϕ(x + y)〉 ∀jϕ(x + y) ∈ Jϕ(x + y).

The conclusion follows from the above inequality.
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Let C be a convex subset of X, K be a nonempty subset of C and let P be a
retraction from C onto K, i.e., Px = x for each x ∈ K. P is said to be sunny if
P (Px + t(x − Px)) = Px for each x ∈ C and t ≥ 0 with Px + t(x − Px) ∈ C.

If there is a sunny and nonexpansive retraction from C onto K, K is said to be
a sunny and nonexpansive retract of C. For a sunny and nonexpansive retraction,
there exists the following useful characterization.

Lemma 2.3 [16, Proposition 4, p. 59]. Let C be a convex subset of a smooth
Banach space X, K be a nonempty subset of C and let P be a retraction from C
onto K. Then P is sunny and nonexpansive if and only if for all x ∈ C and y ∈ K,

〈x− Px, J(y − Px)〉 ≤ 0.

Hence there is at most one sunny and nonexpansive retraction from C onto K.
More information regarding sunny and nonexpansive retractions can be found in [5,
14].

Remark 2.1. If X = H is a real Hilbert space and C is a nonempty, closed
and convex subset of H, then every nearest point projection of H onto C is a sunny
and nonexpansive retraction of H onto C where the mapping PC : H → C is
defined as follows: for each x ∈ H, PCx is the unique element of C that satisfies
‖x − PCx‖ = d(x, C) := infy∈C ‖x − y‖. Indeed it is easy to see that PC is a
retraction of H onto C. Moreover it follows from Lemma 2.3 in [10] that for all
x ∈ H and y ∈ C,

〈x − PCx, PCx − y〉 ≥ 0.

According to Lemma 2.3, we know that PC is a sunny and nonexpansive retraction
of H onto C.

Lemma 2.4. (see [1]). Let {λn} be a sequence in [0, 1) such that limn→∞ λn =
0. Then ∞∑

n=1

λn = ∞ ⇔
∞∏

n=1

(1− λn) = 0.

Lemma 2.5. [10, Lemma 2.2]. Let {λn} be a sequence in [0, 1] that satisfies
limn→∞ λn = 0 and

∑∞
n=1 λn = ∞. Let {an} be a sequence of nonnegative real

numbers that satisfies any one of the following conditions:

(a) For all ε > 0, there exists an integer N ≥ 1 such that for all n ≥ N,

an+1 ≤ (1− λn)an + λnε.

(b) an+1 ≤ (1− λn)an + λncn where lim supn→∞ cn ≤ 0.

Then limn→∞ an = 0.
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The proof of Lemma 2.5 can be found in [20].

3. STRONG CONVERGENCE BY IMPOSING CONDITIONS ON THE MAPPINGS

In this section we establish the following strong convergence result in a real
Banach space which generalizes Theorem 3.3 of O’Hara, Pillay and Xu [10].

Theorem 3.1. Let {λn} ⊂ (0, 1) satisfy limn→∞ λn = 0 and
∑∞

n=1 λn = ∞.
Let X be a reflexive Banach space which has a weakly sequentially continuous
duality mapping Jϕ with gauge function ϕ. Let C be a nonempty, closed and
convex subset of X and let Tn : C → C(n = 1, 2, 3, ...) be nonexpansive mappings
such that

F :=
∞⋂

n=1

Fix(Tn) �= ∅.

Assume that V1, ..., VN : C → C are nonexpansive mappings with the following
property: for all k = 1, 2, ..., N and for any bounded subsets C̃ of C, there holds

(3) lim
n→∞ sup

x∈C̃

‖Tnx − Vk(Tnx)‖ = 0.

For x0 ∈ C and y ∈ C define

xn+1 = λn+1y + (1− λn+1)Tn+1xn n ≥ 0.

If there exists a sunny and nonexpansive retraction P of C onto
⋂N

k=1 Fix(Vk),
then

lim sup
n→∞

〈y − Py, Jϕ(xn − Py)〉 ≤ 0.

Suppose additionally that Py lies in F. Then x n → Py.

Proof. The proof given below employs the same idea as in the proof of Theorem
3.3 [10]. We note that assumption (3) implies that

⋂N
k=1 Fix(Vk) ⊃ F. We proceed

with the following steps.

Step 1. We claim that for all n ≥ 0,

‖xn − f‖ ≤ max{‖x0 − f‖, ‖y − f‖} ∀f ∈ F.

Indeed we use an inductive argument. The result is clearly true for n = 0. Suppose
the result is true for n. Let f ∈ F. Then by the nonexpansivity of Tn+1,

‖xn+1 − f‖ = ‖λn+1y + (1− λn+1)Tn+1xn − f‖
= ‖λn+1(y − f) + (1 − λn+1)(Tn+1xn − f)‖
≤ λn+1‖y − f‖ + (1 − λn+1)‖Tn+1xn − f‖
≤ λn+1‖y − f‖ + (1 − λn+1)‖xn − f‖
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≤ λn+1max{‖x0 − f‖, ‖y − f‖}
+(1 − λn+1)max{‖x0 − f‖, ‖y − f‖}

= max{‖x0 − f‖, ‖y − f‖}.

Step 2. We claim that {xn} is bounded. Indeed for all n ≥ 0 and for any
f ∈ F,

‖xn‖ ≤ ‖xn − f‖ + ‖f‖
≤ max{‖x0 − f‖, ‖y − f‖} + ‖f‖.

Step 3. Step 3: We claim that {Tn+1xn} is bounded. Indeed for all n ≥ 0 and
for any f ∈ F,

‖Tn+1xn‖ ≤ ‖Tn+1xn − f‖ + ‖f‖
≤ ‖xn − f‖ + ‖f‖
≤ max{‖x0 − f‖, ‖y − f‖} + ‖f‖.

Step 4. We claim that xn+1 − Tn+1xn → 0. Indeed we have

‖xn+1 − Tn+1xn‖ = λn+1‖y − Tn+1xn‖
≤ λn+1(‖y‖+ ‖Tn+1xn‖)
≤ λn+1(‖y‖+ M) for some M.

Since λn+1 → 0, we obtain xn+1 − Tn+1xn → 0.

Step 5. We claim that lim supn→∞〈y − Py, Jϕ(xn+1 − Py)〉 ≤ 0. Indeed,
since X is reflexive and {xn} is bounded by Step 2, there exists a subsequence
{xnj+1} of {xn} such that

xnj+1 ⇀ p

for some p ∈ C and

lim sup
n→∞

〈y − Py, Jϕ(xn+1 − Py)〉 = lim
j→∞

〈y − Py, Jϕ(xnj+1 − Py)〉.

By our assumption we have for any k = 1, 2, ..., N and for C̃ = {xn},

0 = lim
n→∞ sup

x∈C̃

‖Tn+1x − Vk(Tn+1x)‖ ≥ lim sup
n→∞

‖Tn+1xn − Vk(Tn+1xn)‖
≥ lim sup

j→∞
‖Tnj+1xnj − Vk(Tnj+1xnj )‖.
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Thus

lim
j→∞

‖Tnj+1xnj − Vk(Tnj+1xnj )‖ = 0 for all k = 1, 2, ..., N.

Therefore p ∈ Fix(Vk) for k = 1, 2, ..., N by Lemma 2.1; i.e., p ∈⋂N
k=1 Fix(Vk).

Thus we deduce from Lemma 2.3 that

lim sup
n→∞

〈y − Py, Jϕ(xn+1 − Py)〉 = lim
j→∞

〈y − Py, Jϕ(xnj+1 − Py)〉
= 〈y − Py, Jϕ(p − Py)〉 ≤ 0,

since p ∈ ⋂N
k=1 Fix(Vk).

Step 6. Suppose additionally that Py lies in F. Then we claim that xn → Py.

Indeed using Lemma 2.2, we obtain

Φ(‖xn+1 − Py‖)
= Φ(‖(1− λn+1)(Tn+1xn − Py) + λn+1(y − Py)‖)
≤ Φ(‖(1− λn+1)(Tn+1xn − Py)‖) + λn+1〈y − Py, Jϕ(xn+1 − Py)〉
≤ (1− λn+1)Φ(‖xn − Py‖) + λn+1〈y − Py, Jϕ(xn+1 − Py)〉.

Applying Lemma 2.5, we conclude that Φ(‖xn−Py‖) → 0; that is, ‖xn−Py‖ → 0.
Consequently, xn → Py. The proof is now complete.

4. STRONG CONVERGENCE BY IMPOSING CONDITIONS ON THE PARAMETERS

In 1996 Bauschke [1] defined the following control conditions on the parameters
{λn} :

[B1] limn→∞ λn = 0.

[B2]
∑∞

n=1 λn = ∞.

[B3]
∑∞

n=1 |λn − λn+N | < ∞.

In 2003 O’Hara, Pillay and Xu [10] replaced [B3] by the condition
[N3] limn→∞ λn

λn+N
= 1.

This condition also improves Lions’ condition [9] as follows
[L3] limn→∞

λn−λn+1

λ2
n+1

= 0.

Note that both [N3] and [B3] cover the natural candidate of λn = (n+1)−1 but [L3]
does not. However [B3] and [N3] are independent of each other (even coupled with
conditions [B1] and [B2]); see [20]. Theorem 4.1 given in [10] is a complementary
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result to Theorem 3.1 of Bauschke [1] with condition [B3] replaced by condition
[N3]. Its proof employs the same idea as in the proof of Theorem 3.1 [1]. We will
now extend Theorem 4.1 [10] to the setting of Banach space X under the same
conditions as those imposed on the parameters {λn} in [10, Theorem 4.1].

We consider N maps T1, T2, ..., TN. For n > N, set

Tn := TnmodN ,

where nmodN is defined as follows: if n = kN + l 0 ≤ l < N, then

nmodN :=

{
l, if l �= 0,

N, if l = 0.

Theorem 4.1. Let X be a reflexive Banach space which has a weakly sequen-
tially continuous duality mapping J ϕ with gauge function ϕ. Let C be a nonempty,
closed and convex subset ofX and let T 1, T2, ..., TN be nonexpansive self-mappings
of C with F :=

⋂N
i=1 Fix(Ti) �= ∅. Assume that

F = Fix(TN ...T1) = Fix(T1TN ...T2) = · · · = Fix(TN−1TN−2 · · · T1TN).

Let {λn} ⊂ (0, 1) satisfy the following conditions:

[N1] limn→∞ λn = 0.

[N2]
∑∞

n=1 λn = ∞.

[N3] limn→∞ λn
λn+N

= 1.

Given points x0, y ∈ C, the sequence {xn} ⊂ C is defined by

xn+1 = λn+1y + (1− λn+1)Tn+1xn n ≥ 0.

If there exists a sunny and nonexpansive retraction P F of C onto F , then xn →
PF y.

Proof. Following the idea of the proof in [10, Theorem 4.1], we divide the
proof into several steps.

Step 1. ‖xn − f‖ ≤ max{‖x0 − f‖, ‖y− f‖} for all n ≥ 0 and for all f ∈ F.

Step 2. {xn} is bounded.
Step 3. {Tn+1xn} is bounded.
Step 4. xn+1 − Tn+1xn → 0.

Step 5. xn+N − xn → 0.
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Step 6. xn − Tn+N ...Tn+1xn → 0.

Step 7. lim supn→∞〈y − PF y, Jϕ(xn − PF y)〉 ≤ 0.

Step 8. xn → PF y.

At first it is easy to see that Steps 1-4 are the same as those in Theorem 3.1 and
the proofs are thus omitted. Nex we give the proofs of Steps 5-8, respectively.
Step 5: By Step 3, there exists a constant L > 0 such that for all n ≥ 1,

‖y − Tn+1xn‖ ≤ L.

Since for all n ≥ 1, Tn+N = Tn, we have

‖xn+N − xn‖ = ‖(λn+N − λn)(y − Tn+Nxn+N−1)

+(1 − λn+N )(Tnxn+N−1) − Tnxn−1‖
≤ L|λn+N − λn| + (1− λn+N )‖xn+N−1 − xn−1‖

= (1 − λn+N )‖xn+N−1 − xn−1‖ + λn+NL

∣∣∣∣1 − λn

λn+N

∣∣∣∣ .

By [N3] we have limn→∞ L|1 − λn
λn+N

| = 0 and so by Lemma 2.5,

xn+N − xn → 0.

Step 6: The proof of this step is taking from Step 4 in the proof of Theorem 3.2
[21]; see [21, p. 195]. Noting that each T i is nonexpansive and using Step 4, we
get the finite table

xn+N − Tn+Nxn+N−1 → 0,

Tn+Nxn+N−1 − Tn+NTn+N−1xn+N−2 → 0,

...

Tn+N ...Tn+2xn+1 − Tn+N ...Tn+1xn → 0.

Adding up this table yields

xn − Tn+N ...Tn+1xn → 0.

Step 7: By Step 2, {〈y − PF y, Jϕ(xn − PF y)〉} is bounded and hence

lim sup
n→∞

〈y − PF y, Jϕ(xn − PF y)〉
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exists. Thus we can pick a subsequence {ni} of {n} such that

lim sup
n→∞

〈y − PF y, Jϕ(xn − PF y)〉 = lim
i→∞

〈y − PF y, Jϕ(xni − PF y)〉

and xni ⇀ p for some p ∈ C.
The proof of p ∈ F given below is taking from Step 5 in the proof of Theorem

3.2 [21]; see [21, p. 195]. Since the pool of mappings {T i : 1 ≤ i ≤ N} is finite,
we may further assume (passing to a further subsequence if necessary) that for some
integer k ∈ {1, 2, ..., N},

nimodN ≡ k, ∀i ≥ 1.

Then it follows from Step 6 that

xni − Tk+N ...Tk+1xni → 0.

Hence by Lemma 2.1, we conclude that p ∈ Fix(Tk+N ...Tk+1) which implies that
p ∈ F from our assumption. Now by similar argument of Step 5 in the proof of
Theorem 3.1, we can show that

lim sup
n→∞

〈y − PF y, Jϕ(xn − PF y)〉 ≤ 0.

Finally Step 8 can be shown by the same argument of Step 6 in the proof of Theorem
3.1. The proof is now complete.
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