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SPECIAL PROPERTIES OF MODULES
OF GENERALIZED POWER SERIES

Renyu Zhao and Zhongkui Liu

Abstract. Let R be a ring, M a right R-module and (S, <) a strictly ordered
monoid. In this paper, a necessary and sufficient condition is given for modules
under which [[M S’S]][[Rs,gﬂ, the module of generalized power series with
coefficients in M and exponents in S is a reduced, Baer, PP. quasi-Baer
module, respectively.

1. INTRODUCTION

Throughout this paper all rings R are associative with identity and all modules
M are unitary right R-modules. The notation N < M means that NV is a submodule
of M, and M 2]y (resp. M[[z]] gjja)) or M[[2, 2~ ']] gi{z,5-1])) denotes polynomial
(resp. power series or Laurent power series) extension of Mp. For any nonempty
subset X of R, rr(X) (resp. [r(x)) denotes the right (resp. left) annihilator of X
in R. Any concept and notation not defined here can be found in [10-13, 15, 16].

A ring R is called reduced if R does not have nonzero nilpotent elements. The
notion of reduced rings has been studied by many authors. Some of the known
results on reduced rings can be recalled as follows: R is reduced if and only if R[z]
is reduced if and only if R[[z]] is reduced; if S is a torsion-free and cancellative
monoid and < is a strict order on S, then it is shown in [6, Lemma 2.1] that R is
reduced if and only if [[R%:<]], the ring of generalized power series with coefficients
in R and exponents in S, is reduced; if R is a reduced ring, then it is shown in
[1, Lemma 1] that R is an Armendariz ring where an Armendariz ring is any ring
R such that if (3", aixi)(zyzo bjz?) = 0 in R[z] then a;b; = 0 for all i and
j, if S is a torsion-free and cancellative monoid, < is a strict order on S and R
is a reduced ring, then it is shown in [6, Lemma 3.1] that R is an S-Armendariz
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ring where an S-Armendariz ring is any ring R such that if f, g in [[R%<]] satisfy
fg =0 then f(u)g(v) =0 for all u,v € S.

The concept of a reduced ring is very useful in the investigation of certain
annihilator conditions of polynomial extensions of a ring R. A ring R is called
Baer (resp. right PP) if the right annihilator of every nonempty subset (resp. every
element) is generated by an idempotent. A well-known result of Armendariz [1]
states that, for a reduced ring R, R is Baer (resp. right PP) if and only if so is R[z],
and there exist non-reduced Baer rings whose polynomial ring is not Baer. In the
sequel, this result has been extended in several directions by many authors, [2-9].

Recently, the notions of reduced, Armendariz, Baer, PP and quasi-Baer modules
were introduced in [10]. A module My is called reduced if, for any m € M
and any a € R, ma = 0 implies mR N Ma = 0. A module Mp is called
Armendariz if, whenever m(z)f(x) = 0 where m(z) = > ;_,m;z* € M|x] and
f(x) = Y’ ga;x? € Rlx], then m;a; = 0 for all i and j. A module Mp is
called Armendariz of power series type if, whenever m(x) f(z) = 0 where m(x) =
Sicomia’ € M([z]] and f(z) = Y272 a2’ € R[[z]] , then we have m;a; = 0
for all < and j. A module Mg is called Baer if, for any nonempty subset X of
M, rr(X) = eR where ¢ = e € R. A module Mg is called PP if, for any
m € M, rr(m) = eR where ¢ = ¢ € R. A module Mg, is called quasi-Baer if,
for any right R-submodule X of M, rr(X) = eR where € = ¢ € R. Clearly, R
is reduced (resp. Armendariz, Baer, right PP, quasi-Baer) if and only if Rp is a
reduced (resp. Armendariz, Baer, PP, quasi-Baer) module. And various results on
reduced (resp. Baer, right PP, quasi-Baer) rings were extended to modules in [10].
It was proved that every reduced module is an Armendariz module of power series
type [Lemma 1.5]; and that Mp is reduced if and only if M[z]g,) is reduced if
and only if M{[z]]g[) is reduced if and only if M{[x, m_l]]R[[m,m-q] is reduced
[Theorem 1.6]. If Mg is an Armendariz module, then it was proved that Mg is Baer
if and only if M[z]g,) is Baer [Corollary 2.7 (1)]; and that Mg is PP if and only
if M[z] Ry is PP [Corollary 2.12 (1)]. If Mg is an Armendariz module of power
series type, then it was proved that Mg is Baer if and only if M [[z]] (. is Baer if
and only if M [z, ]| gy 17 is Baer [Corollary 2.7 (2)]; and that M [[z]] ()] is
PP if and only if M{[z, 2~ ']] gz .1 is PP if and only if for any countable subset
X of M, rr(X) = eR where e = e € R [Corollary 2.12 (2)]. For quasi-Baerness,
it was proved that Mp is quasi-Baer if and only if M([z]pg(, is quasi-Baer if and
only if M|[z]]g(i) is quasi-Baer if and only if M{[[z, 2™ "]] gz -1} is quasi-Baer
[Corollary 2.14].

As a generalization of generalized power series rings, Varadarajan introduced
the notion of modules of generalized power series in [15]. Thus a natural question
of characterization of reduced (Baer, PP, quasi-Baer, respectively) property of gen-
eralized power series modules is raised. In this paper, a necessary and sufficient
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condition is given for modules under which [[M <] ((rs-<|> the module of general-
ized power series with coefficients in Mz and exponents in .S, is a reduced (Baer,
PP, quasi-Baer, respectively) module. If S is a torsion-free and cancellative monoid
and < a strict order on S, we will show that: if Mg is a reduced module, then
Mp, is an S-Armendariz module; Mp is reduced if and only if [[MS’SH[[RS,SH is
reduced; M, is a quasi-Baer module if and only if [[M S’S]][[ rs.<]] is a quasi-Baer
module. If (S, <) is a strictly ordered monoid and My an S-Armendariz module,
we will show that: My is a Baer module if and only if [[MS’SH[[RS,S]] is a Baer
module; [[M S’S]][[ rs.<]] is @ PP-module if and only if for any S-indexed subset X
of Mpg, there exists an idempotent e € R such that rz(X) = eR. And many other
results are obtained, which unify and extend non-trivially many of the previously
known results.

2. PRELIMINARIES

Let (S, <) be an ordered set. Recalled that (S, <) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S, <) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let .S be a commuta-
tive monoid. Unless stated otherwise, the operation of S shall be denoted additively,
and the neutral element by 0. The following definition is due to [11-13].

Let (S, <) be a strictly ordered monoid (that is, (S, <) is an ordered monoid
satisfying the condition that, if s,s’,¢t € S and s < &/, then s+t < s’ +1), and R
a ring. Let [[R%=]] be the set of all maps f : S — R such that supp(f) = {s €
S| f(s) # 0} is artinian and narrow.

With pointwise addition, [[R*<]] is an abelian group.

For every s € S and f, g € [[R¥S]], let X4(f,g) = {(u,v) € S xS |u+v=
s, f(u) # 0,g9(v) # 0}. It follows from [11, 4.1] that X (f, g) is finite. This
allows to define the operation of convolution:

(fos)= > flugv).

(U,U)EXs(f,g)

With these operations, [[R*<]] becomes an associative ring, with unit element
e, namely e(0) = 1,e(s) = 0 for every s € S, s # 0, which is called the ring of
generalized power series with coefficients in R and exponents in S.

In [15, 16], Varadarajan introduced the concept of modules of generalized power
series. Let M be a right R-module, (S, <) a strictly ordered monoid. Let [[M><]]
denotes the set of all mapping ¢ : S — M with supp(¢) artinian and narrow, where
supp(¢) = {s € S| ¢(s) # 0}.

With pointwise addition, [[A=]] is an abelian group.
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For each s € S, f € [[R¥S]] and ¢ € [[M5=]], let Xs(¢, f) = {(u,v) €
SxS|ut+v=s,0¢(u)#0,f(v)#0}. Then by analogy with [11, 4.1], Xs(¢, f
is finite. This allows to define the operation of convolution:

@Ns) = > dwf(v).

(U,U)EXS(¢,f)

With these operations, [[M*<=]] becomes a right [[R*<]] -module, which is
called the modules of generalized power series with coefficients in M and exponents
inS.

For example, if S = N, and < is the usual order, then [[M™=]];pn<) =
M][z]] g[[z)) the power series extension of M. If S = Z, and < is the usual order,
then HMZ’SH[[RZ,SH > M([x, 2 "]] gjjz,s-1]]» the Laurent power series extension of

3. REDUCED MODULES

Following from [10], a module My is called reduced if, for any m € M and
any a € R, ma = 0 implies mR N Ma = 0. It is easy to see that R is a reduced
ring if and only if Ry is a reduced module. The following result appeared in [10,
Lemma 1.2].

Lemma 3.1. The following conditions are equivalent:

1) Mpg is reduced.
2

) For any m € M and any a € R, the following conditions hold:
a) ma = 0 implies mRa = 0.
)

(
(
(
(b) ma® = 0 implies ma = 0.

Rege and Chhawchharia in [14] introduced the notion of an Armendariz ring.
They defined a ring R to be an Armendariz ring if whenever polynomials f(z) =
ag+arz+---+apz™, g(x) =bg+bix+-- -+ by € Rx] satisfy f(z)g(x) =0,
then a;b; = 0 for each 4, j. Let (S, <) be a strictly ordered monoid. Recall from
[6] that R is an S-Armendariz ring if whenever f, g in [[R™<]] satisfy fg = 0,
then f(u)g(v) = 0 for all u,v € S. We call a module My is S-Armendariz if
whenever f € [[R¥S]] and ¢ € [[M*=]] satisfy ¢f = 0, then ¢(u)f(v) = 0 for
each u,v € S. Clearly, R is S-Armendariz if and only if Rg is S-Armendariz. It
was proved in [6, Lemma 3.1] that if .S is a torsion-free and cancellative monoid, <
a strict order on S and R is a reduced ring then R is S-Armendariz. The following
proposition extends this result to modules.
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Proposition 3.2. Ler S be a torsion-free and cancellative monoid, < a strict
order on S and Mg a reduced module. Then Mg is an S-Armendariz module.

Proof. Let 0 # f € [[R><]] and 0 # ¢ € [[M=]] satisfy ¢f = 0. By [11],
there exists a compatible strict total order <’ on .S, which is finer than < (that is,
for all s,t € S,s <t implies s <’ t). We will use transfinite induction on the
strictly totally ordered set (.S, <') to show that ¢(u)f(v) = 0 for any u € supp(Q)
and v € supp(f). Let s and ¢ denote the minimum elements of supp(¢$) and
supp(f) in the < order, respectively. If u € supp(¢) and v € supp(f) are such
thatu +v=s+t thens<'wvandt < v. Ifs<uthens+t < u+v=s+t,
a contradiction. Thus v = s. Similarly, v = t. Hence 0 = (¢f)(s + ) =
S e S () = S (D).

Now suppose that w € S is such that for any u € supp(¢) and v € supp(f)
with v + v <" w, ¢(u)f(v) = 0. We will show that ¢(u)f(v) = 0 for any
u € supp(¢) and v € supp(f) with u+ v = w. We write X, (¢, f) = {(u,v) €
SxS|ut+v=w¢(u)#0,f(v)#0}as {(u,v;) | i =1,2,...,n} such that
uy <" ug <" -+ <" u,. Since S is cancellative, u; = ug and u; +v; = Us+v9 = W
imply v; = vy. Since <’ is a strict order, u; <" ug and uy +v; = ug + vy = w
imply vy <’ v1. Thus we have v, <’ -+ <’ vy <’ v1. Now,

(1) 0=(@NHw) = >  dufl)= Z¢(ui)f(vi)-

(uav)exw(¢af)

Forany 1 <i <n-—1,u; +v, < u; + v; = w, and thus, by induction hypothesis,
we have ¢(u;) f(v,) = 0. Since M is reduced, then ¢(u;)Rf(v,) = 0 by Lemma
3.1. Hence, multiplying (1) on the right by f(v,), we obtain

Z¢(uz‘)f(vz‘)f(vn) = ¢(un) f(vn) f(vn) = 0.

Since M is reduced, then by Lemma 3.1 we have ¢(u,)f(v,) = 0. Now (1)
becomes

n—1

(2) > (ui) f(vi) = 0.

=1

Multiplying f(v,—1) on (2) from the right-hand side, we obtain ¢(u,—1) f(vp—1) =
0 by the same way as the above. Continuing this process, we can prove ¢(v;) f(v;) =
0 fori = 1,2,...,n. Thus ¢(u)f(v) = 0 for any u € supp(¢) and v € supp(f)
with u + v = w.
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Therefore, by transfinite induction, ¢(u)f(v) = 0 for any u € supp(¢$) and
v € supp(f).

Lee-Zhou introduced the notion of an Armendariz module of power series type
in [10]. They defined a module My to be an Armendariz module of power series
type if, whenever m(z) f(x) = 0 where m(x) = > o0, m;z’ € M([[z]] and f(z) =
> 520 ajz! € R[[«]], then mja; = 0 for all i and j. Letting (S, <) = (N, <), the
natural number set with usual order, yields the following result.

Corollary 3.3. Let Mg be a reduced module. Then Mp is an Armendariz
module of power series type.

In [1, Lemma 1], it was proved that if R is a reduced ring, then R is an
Armendariz ring. Here we have

Corollary 3.4. Let R be a reduced ring. Then R is an Armendariz ring of
power series type.

Let m € M and § € S. Define a mapping d$, € [[M*=]] as follows:
ds.(s) =m, d;,(t)=0, s#teS.

Proposition 3.5. Let (S, <) be a strictly ordered monoid and Mg an S-
Armendariz module. If ¢ € [[MS=<]] and fi, fa,- -, fn € [[R*=]] are such that

Of1fa- - fn =0, then ¢(u) f1(v1) f2(ve)..., fr(vn) =0 for all u,vy,va,...,v, € S.

Proof. Suppose ¢ f1fo -+ fr = 0. Then from ¢(fif2 -+ fn) = 0 it follows that
o(uw)(fife -+ fu)(v) =0 for all u,v € S. Thus (dg(u)flfg -+ fn)(v) = 0 for any
v € S, and so dg(u)f1f2 -+ fn = 0. Now from (dg(u)fl)(fg -+ fn) = 0 it follows
that <d9¢(u fl)(’l)l)(fg- . fn) (w) = 0 for all v;,w € S. Since (dg(u)fl)(’l)l) =

¢(u) fi(vy) for any w,v; € S, we have ¢(u)fi(v1)(fe-- - fn)(w) = 0 for all
u,v1,w € S. Hence dg(u) Fi(or) fo---fn = 0. Continuing in this manner, we

see that ¢(u) f1(v1) fa(ve) - -+ frn(vy,) = 0 for all u, vy, ve, ..., v, € S.
Now, combining proposition 3.2 we have

Corollary 3.6. Let S be a torsion-free and cancellative monoid, < a strict
order on S and Mp a reduced module. If ¢ € [[M>=]] and fi, fo, ..., fn €

[[R=]] are such that ¢ f1fo--- fn = 0, then ¢(u)fi(v1)fa(va) -+ fulvn) = 0 for
all u,v1,v9,...,v, € 5.

Let » € R. Define a mapping C,. € [[R%<]] as follows:
C,(0) =, Cr(s) =0, 0#s€S.
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It was proved in [10, Theorem 1.6] that M, is reduced if and only if M [x] gy
is reduced if and only if M{[[x]] gy is reduced if and only if M [z, 2™ "]] gz -1
is reduced. Here we have

Theorem 3.7. Let S be a torsion-free and cancellative monoid and < a strict
order on S. Then Mp, is reduced if and only if [[M 5=])gs.< is reduced.

Proof. Let Mp be reduced. Suppose that f € [[R¥S]] and ¢ € [[M><]]
satisfy ¢f = 0 and ¢pg = 1 f, where o € [[M®<]] and g € [[R><]]. It suffices
to show that ¢ f = 0. By Proposition 3.2, ¢(s)f(¢t) = 0 for any s,t € S. Thus
¢(s)Rf(t) =0 for any s,t € S by Lemma 3.1. Then

(¢gf)(s) = ST b(ugw)f(w)=0

(u,v,w)E€Xs(h,9,f)

for any s € S. Thus ¢ f2 = ¢gf = 0. Then by Corollary 3.6, ¥(u) f(v)f(w) =0
for any u,v,w € S. Thus ¥ (u)f(v)? = 0 for any u,v € S. Then v (u)f(v) = 0
for any u,v € S by Lemma 3.1, and which implies that ¢ f = 0.

Conversely, suppose that ma = 0 and mr = na € mRN Ma where m,n € M
and r,a € R. Then d%,C, = 0. Since [[M*=]] is reduced, we have d2,[[R%=]] N
[M%=]]C, = 0. Thus d°C, = d°C, = 0, and so mr = na = 0. Hence Mg, is
reduced.

Corollary 3.8. ([8, Lemma 2.1]) Let S be a torsion-free and cancellative
monoid and < a strict order on S. Then R is reduced if and only if [[R*><]] is
reduced.

4. BAER MODULES

Recall that R is Baer if the right annihilator of every nonempty subset is gen-
erated by an idempotent. If R is a reduced ring, then it is shown in [2, Corollary
1.10] that R is Baer if and only if R[z] is Baer if and only if R[[x]] is Baer. If
R is commutative and (S, <) is a strictly totally ordered monoid, then it is shown
in [7, Theorem 7] that R is Baer if and only if [[R%<]] is Baer. Recall from [10]
that a right R- module M is Baer if, for any subset X of M, rr(X) = eR where
e? = e € R. Itis also shown in [10, Corollary 2.7(2)] that if M is an Armendariz
module of power series type, then My is Baer if and only if M[[z]]g. is Baer
if and only if M|[x,z7!]] R[[w,e—1)) 18 Baer. Next, we will extend these results to
generalized power series modules. First we have the following results on which our
discussion is based.

Let I be a right ideal of R. Let [[I%=]] = {f € [[R¥]] | f(s) € I for any
s € S}. Then it is easy to see that [[I*=]] is a right ideal of [[R*<]].
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Lemma 4.1. Let M be a right R-module and (S, <) a strictly ordered monoid.
Then the following conditions are equivalent:

(1) Mpg is an S-Armendariz module.

(2) For any X C [[M®=]), [[ra(X")%<]] = r(ps.<)(X), where X' = {¢(s) |
peX,se S}

Proof.  (2)=(1). Let ¢f = 0 where ¢ € [[M*><]] and f € [[R>=]]. Then
fe T[[Rs,g]](¢). By (2), f € HT'R(X/)S’SH where X’ = {¢($) ‘ S € S} . Take
f(s) € rr(X’) for any s € S. Thus ¢(t)f(s) = 0 for any s,¢ € S. This means
that M/ is an S-Armendariz module.

(1)=(2). Suppose that X C [[M><]]. Take X' = {¢(s) | ¢ € X,s € S}.
Let g € r(rs.<(X), then ¢g = 0 for any ¢ € X. By (1), ¢(s)g(t) = 0 for any
s,t € S. Thus g(t) € rr(X’) for any t € S. Thus g € [[rr(X")<]], and so
rirs<))(X) C [[rr(X "Y$<]]. The opposite inclusion is obviously.

Lemma 4.2. Let M be a right R-module and (S, <) a strictly ordered monoid.
Then for any X C M, [[rp(X)%<]] = Trs.<))(X'), where X' = {dS | m e X}.

Proof. The proof is straightforward.

Theorem 4.3. Let (S,<) be a strictly ordered monoid and Mg an S-
Armendariz module. Then the following conditions are equivalent:

(1) Mpg is a Baer module.
(2) [[MS’SH[[RS,SH is a Baer module.

Proof. (1)=(2). Let X C [[M><]]. Since My is an S-Armendariz module,
by Lemma 4.1, ryps.<)(X) = [[rr(X')>=]] where X' = {¢(s) | ¢ € X,s € S}.
Since My is a Baer module, there exists an idempotent e> = e € R such that
rr(X') = eR. Thus r(zs.<)(X) = [rr(X")¥=]] = [[(eR)><]] = C.[[R*<]], and
which implies [[M'<]] is a Baer module.

(2)=(1). Let X C M. Then by Lemma 4.2, [[rp(X)*=]] = rgs.<;(X),
where X’ = {d?, | m € X}. Since HMS’SH[[RS,S]] is a Baer module, there exists an
idempotent f2 = f € [[R%<]] such that [[rr(X)><]] = r(ps.<;(X’) = FI[R*=]].
We will show that rzr(X) = f(0)R and f(0) = f(0)2. From f € [[rr(X)><]]
it follows that f(s) € rgr(X) for any s € S. Especially, f(0) € TR(X), and
so f(O)R C rp(X). Conversely, let r € rx(X). Then C, € [[rr(X)>S]] =
FI[R®S]]. Thus C, = fC,. Then r = C,(0) = (fC,)(0) = f(0)r € f(0)R.
Thus 7r(X) C f(0)R. Since f(0) € rr(X), we have f(0) = f(0)%. Hence
rr(X) = f(0)R and f(0) = £(0)2. So Mg is a Baer module.

Applying Proposition 3.2 we can get



Special Properties of Modules of Generalized Power Series 455

Corollary 4.4. Let S be a torsion-free and cancellative monoid, < a strict
order on S and Mg a reduced module. Then Mp is a Baer module if and only if
[[MS’SH[[RS,SH is a Baer module.

Corollary 4.5. Let (S, <) be a strictly ordered monoid and R an S-Armendriz
ring. Then R is Baer if and only if [[R><]] is Baer:

In [5, Theorem 10], it was proved that if R is an Armendariz ring, then R is
Baer if and only if R[z] is Baer. Here we have

Corollary 4.6. Let R be an Armendariz ring of power series type. Then R is
Baer if and only if R|[x]] is Baer.

Applying Corollary 3.4 we can get

Corollary 4.7. ([2, Corollary 1.10.]). Let R be a reduced ring . Then R is
Baer if and only if R|[x]] is Baer.

5. PP-MODULES

One of generalizations of Baer rings is PP-rings. A ring R is called right (resp.
left) PP if the right (resp. left) annihilator of an element of R is generated by an
idempotent. A ring is called PP if it is both right and left PP. It was proved in [1,
Theorem A] that R is a reduced right PP-ring if and only if R[z] is a reduced right
PP-ring. It was proved in [4] that R[[z]] is a reduced right PP-ring if and only if R
is a reduced right PP-ring and any countable family of idempotents of R has a least
upper bound in B(R), the set of all central idempotents. If (.S, <) is a strictly totally
ordered monoid, then it is shown in [6, Theorem 3.5] that [[R*"<]] is a reduced right
PP-ring if and only if R is a reduced right PP-ring and any S-indexed family of
idempotents of R has a least upper bound in B(R). The notion of PP-modules was
introduced in [10]. A module My, is called PP if, for any m € M, rr(m) = eR
where €2 = e € R. It was also proved in [10, Corollary 2.12] that if My is an
Armendariz module of power series type, then M{[[x]] g/ is PP if and only if for
any countable subset X of M , rp(X) = eR where ¢? = e € R. In this section we
will consider the PP property of generalized power series modules. The following
result is a corollary of Theorem 5.2. But here we give a direct and different proof.

Proposition 5.1. Let (S, <) be a strictly ordered monoid and M a right
R-module. If [[M S’S]][[ rs.<)] is @ PP-module, then M p, is a PP-module.

Proof. Let m € M. Then by Lemma 4.2, [[rr(m)><]] = r[[Rs,g”(dgn). Since
[[M S’S]][[ rs.<)] is a PP-module, there exists an idempotent f € [[R*<=]] such that
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Trs.<)(d d2) = f[[RS <]]. We will show that rg(m) = f(0)R and f(0) = f( )
From f € ryps.<jj(d},) it follows that ), f = 0. Then mf(0) = (d5,f)(0 )

Thus f(0)R C rr(m). Conversely, let r € rg(m). Then C, € [[(rr(m)>= ]
fI[R>=]]. Thus C, = fC,. Then r = C,(0) = (fC,)(0) = f(O)r € ( )R.
Thus 7r(m) C f(0)R. Since f(0) € rp(m), we have f(0) = f(0)%. Hence

rr(m) = f(0)R and f(0) = £(0)2. So M is a PP-module.

Let X C M. We will say that X is S-indexed if there exists an artinian and
narrow subset I of .S such that X is indexed by I.

Theorem 5.2. Let (S,<) be a strictly ordered monoid and Mg an S-
Armendariz module. Then the following conditions are equivalent:

(1) [[MS’SH[[RS,SH is a PP-module.
(2) For every S-indexed subset X of M, there exists an idempotent e € R such
that rr(X) = eR.

Proof. (1)=(2). Suppose that [[A/*<]] is a PP-module. Let X = {m, | s € I}
is an S-indexed subset of M. Define ¢ : S — M via

ms, S€EI,
os) = 0, s¢l.

Then supp(¢) = I is artinian and narrow, and so ¢ € [[M*=]]. Since [[M* <H[[Rs,§]]
is a PP-module, there exists an idempotent f2 = f € [[R*<]] such that T([RS: <H(q§) =
FI[R®=]]. Since Mp is an S-Armendariz module, then rirs<)(¢) = [[rr(X )%
by Lemma 4.1. Thus [[rp(X)%<]] = f[[R®<]]. Then by analogy with the proof of
Theorem 4.3 we can show that 7r(X) = f(0)R with f(0)? = £(0).

(2)=(1). Let ¢ € [[M*>=]]. Then X = {¢(s) | s € supp(4)} is an S- indexed
subset of M. Then there exists an idempotent e € R such that rr(X) = eR by
(2). Thus by Lemma 4.1, we have rps.<j(¢) = [[(rr(X)*<]] = [[(eR)*<]] =
Ce[[R5=]], and which implies [[M *=]];zs.<) is a PP-module.

Corollary 5.3.  Let (S,<) be a torsion-free cancellative strictly ordered
monoid. Then the following conditions are equivalent:
(1) [[MS’SH[[RS,S]] is a reduced PP-module.

(2) M is a reduced PP-module, and for every S-indexed subset X of M, there
exists an idempotent e € R such that r p(X) = eR.

Proof. Using Proposition 3.2, Theorem 3.7 and Theorem 5.2, we can complete
the proof.
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If R is reduced, then R is Abelian (that is, every idempotent of R is central).
Thus, by [4], the set B(R) of all idempotents is a Boolean algebra where e < f
means ef = e, and where the join, meet, and complement are given by e V f =
e+ f—ef,eNf=cef and € =1 — e, respectively. The following result appeared
in [4] on which our following discussion is based. An element a € R will be called
entire if [g(a) = rr(a) = 0.

Lemma 5.4. The following conditions are equivalent for a ring R.:

(1) R is a reduced right PP-ring.
(2) If a € R then a = eb = be where ¢ = e € R and b € R is entire.
(3) R is an Abelian right PP-ring.

Now, comparing with the result in [6, Theorem 3.5], we have

Corollary 5.5. Let (S,<) be a torsion-free cancellative strictly ordered
monoid. Then the following conditions are equivalent:

(1) [[R®=]] is a reduced right PP-ring.

(2) R is a reduced right PP-ring, and for every S-indexed subset X of R, there
exists an idempotent e € R such that r p(X) = eR.

(3) R is a reduced right PP-ring, and for every S-indexed subset X of B(R),
there exists an idempotent e € R such that r (X ) = eR.

(4) R is a reduced right PP-ring and every S-indexed subset X of B(R) has a
least upper bound in B(R).

Proof. Letting M = R in Corollary 5.3 we can get (1)<(2).

(2)=(3). It is straightforward.

(3)=(4). Suppose that X = {es | s € I} is an S-indexed subset of B(R).
Then by (3), rr(X) = eR where ¢? = ¢ € R. We claim that 1 — e is a least upper
bound of X in B(R). First Xe = 0 implies that for every s € I, e;e = 0, and thus
es(1 —e) = es. Thus e; < 1 — e. On the other hand, suppose that e; < f for all
s €1, where f2=f € R. Then1— f € rg(X)=eR. Thus 1 — f = e(1 — f).
Thus 1 — e = (1 — e) f, and which implies that 1 — e < f.

(4)=(2). Suppose that X = {as | s € I} is an S-indexed subset of R. Then
by Lemma 5.4, a; = esbs for all s € I, where eg =es € R and b; € R is entire.
Setting X’ = {es | s € I'}. Then X' is an S-indexed subset of B(R). Let e be a
least upper bound of X’ in B(R). We will show that rr(X) = (1 — e)R. First
from ege = ey it follows that (1 —e)e; =0 forall s € I. Then 1 —e € rg(X). On
the other hand, let » € rr(X). Then asr = 0 for all s € I. By Lemma 5.4, there
exists an idempotent f2 = f € R and an entire element p € R such that r = fp.
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Thus esf = 0 for all s € I since p and by is entire. Thus e, <1 — f for all s € 1.
Thuse<1— f,andsor = (1—e)r € (1 —e)R. Hence rr(X) = (1—¢€)R.

In [5, Theorem 9], it was proved that if R is an Armendariz ring, then R is PP
if and only if R[z| is PP. Here we have

Corollary 5.6. Let R be an Armendariz ring of power series type. Then R[[z]]
is right PP if and only if R is right PP and for any countable subset X of R,
rr(X) = eR, where ¢ = e € R.

6. QUASI-BAER MODULES

Another generalization of Baer rings is quasi-Baer rings. Recall that R is quasi-
Baer if the right annihilator of every right ideal is generated by an idempotent.
Every prime ring is quasi-Baer ring. Since Baer ring are nonsingular, the prime
rings with Z,.(R) # 0 are quasi-Baer but not Baer. It was proved in [2, Theorem
1.8] that a ring R is quasi-Baer if and only if R[z] is quasi-Baer if and only if
R][[z]] is quasi-Baer. Following from [10] a module My, is called quasi-Baer if, for
any right R-submodule X of M , rg(X) = eR where > = ¢ € R. Clearly, R is
quasi-Baer if and only if Rp is quasi-Baer. In [10, Corollary 2.14], it is shown that
Mp is quasi-Baer if and only if M [z] g, is quasi-Baer if and only if M[[x]] gj]
is quasi-Baer. In this section we will generalize these results to generalized power
series modules.

Theorem 6.1. Let (S <) be a torsion-free and cancellative strictly ordered
monoid . Then the following conditions are equivalent:

(1) Mpg is a quasi-Baer module.

(2) [[MS’SH[[RS,SH is a quasi-Baer module.

Proof. (1)=-(2). Suppose that V < [[M>=]]. By [11], there exists a compatible
strict total order <’ on S, which is finer than < (that is, for all s,t € S,s < t
implies s <’ t). Note that [[AM*=]] (resp. [[R*<]]) is a submodule (resp. subring)
of [[M5=']] (resp. [[R®<]]). Thus we may assume that the order < is total. Then
for any 0 # f € [[R%=]] (resp. [[M=]]), the supp(f) is a nonempty well-ordered
subset of S. We denote by 7(f) the smallest element of the support of f. Let
U={¢(s) | o € V,m(¢) = s} U{0}. Then it is easy to see that U is a right
R-submodule of M. Since Mp is a quasi-Baer module, then rz(U) = eR where
e? = e € R. We will show that r(ps.<| (V) = C[[R®=]]. Let ¢ € V. If ¢C;. # 0.
Let m(¢C.) = s, then 0 # (¢C.)(s) = ¢(s)e; on the other hand, since ¢ € V,
so ¢C. € V and then ¢(s)e € U. From rr(U) = eR it follows that ¢(s)e =
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(¢(s)e)e = 0, a contradiction. Thus ¢C, = 0, and so C.[[R%=]] C rrs.< (V).
Conversely, suppose that 0 # f € rps<;(V). We will show that f(u) = ef(u)
for all u € supp(f).

Step 1. Let 7(f) = s. Then we will show that f(s ) ef(s). Let0 #m e U.
Then there exists a ¢ € V' such that 7(¢) = t and $(t) = m. From f € r(ps.<;(V)
it follows that ¢ f = 0. Thus

0=+t = > ou)f().

(uav)eXS+t(¢af)

If u € supp(¢) and v € supp(f) are such that u+v = s+t¢, thent < wand s < v.
Ift <wthen s+t < u+v=s+t, a contradiction. Thus v = ¢. Similarly, v = s.
Hence ¢(t)f(s) = 0. Thus U f(s) = 0, which implies that f(s) € rr(U) = eR.
Thus f(s) = ef(s).

Step 2. Assume that f(u) = ef(u) for any u < w € supp(f). We will show
that f(w) = ef(w). Define f,, as follows:

0, w < T.

Then f,, € [[RS’SH and fu,(z) = f(2) = ef(z) = efuw(x) = (Ccfuw)(x) for any
r < w by induction hypothesis. Thus f, = Cef, € C.[[R>S]] C rrs.< (V).
Thus f — fu € mps<)(V), and 7(f — fu) = w. Applying Step 1, we obtain
(f = fw)(w) = e(f — fu)(w), thus f(w) = ef(w). Therefore, by transfinite
induction, f(u) = ef(u) for all u € supp(f). Thus f = C.f € C.[[R><]], and
which implies that 7[zs.<(V) € C.[[R¥=]].

Hence 7(ps.<))(V) = Cc[[R®<]]. This shows that [[M*=]] is a quasi-Baer
module.

(2)=-(1). Suppose that [[M*<]] is a quasi-Baer module. Let U < M, then it
is easy to see that [[U*<]] < [[M*<=]]. Thus there exists an idempotent f 2 =fe
[[R%=]] such that rps.< ([U%=]]) = f[[RS=]]. We claim that rygs.<([US=]]) =

fI[R>S])] = [[rr(U)>=]]. Let m € U. Then d°, € [[U%=]]. Thus d%f = 0,
and then mf( ) =0 for all s € S. Thus Uf(s) = 0 for all s € S, and so
f € [[rr(U)5=]]. Let g € [[rr(U)*<]]. Then g(s) € rg(U) for all s € S. Then

(09)(t) = D (uw)exi(og) P(W)g(v) = 0 for any ¢ € [[U%=]] and any t € S. Thus
¢g = 0, and so g € rps.<;([U=]]). Hence rigps.<([[US]]) = fI[RT=]] =
[[rr(U)%<]]. Then by analogy with the proof of Theorem 4.3 we can show that
rr(U) = f(0)R with f(0)? = f(0). Hence Mp is a quasi-Baer module.

It was proved in [9] that if (S, <) is a strictly totally ordered monoid satisfying
that 0 < s for all s € S, then R is quasi-Baer if and only if [[R%<]] is quasi-Baer.
Here we have
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Corollary 6.2. Let (S <) be a torsion-free and cancellative strictly ordered
monoid. Then the following conditions are equivalent:

(1) R is quasi-Baer:
(2) [[R><]] is quasi-Baer.
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