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A NEW SYSTEM OF GENERALIZED CO-COMPLEMENTARITY
PROBLEMS IN BANACH SPACES

Fu-Quan Xia and Nan-Jing Huang

Abstract. In this paper, we introduce a new system of generalized co-
complementarity problems in Banach space. An iterative algorithm for finding
approximate solutions of these problems is considered. Some convergence re-
sults for this iterative algorithm are derived and several existence results are
also obtained.

1. INTRODUCTION

Let B be a real Banach space with dual space B∗ and pairing 〈x, f〉 between
x ∈ B and f ∈ B∗. Let CB(B) be the family of nonempty bounded closed subsets
of B. Suppose B1 and B2 are two Banach spaces, gi, mi : Bi → Bi (i = 1, 2),
F : B1 × B2 → B1, and G : B1 × B2 → B2 are all single-valued mappings.
Let V1 : B1 → CB(B1) and V2 : B2 → CB(B2) be two set-valued mappings.
Moreover, we assume X1 ⊂ B1 and X2 ⊂ B2 are two fixed closed convex cones.
Define Ki : Bi → 2Bi (i = 1, 2) by

Ki(x) = mi(x) + Xi, ∀x ∈ Bi.

In this paper, we shall study the following system of generalized co-complementarity
problems (SGCCP ): find (x, y) ∈ B1 ×B2 and (u, v) ∈ V1(x)× V2(y) such that
(g1(x), g2(y)) ∈ K1(x) × K2(y) and

(1.1)

{
F (u, v) ∈ (J1(K1(x)− g1(x)))∗,

G(u, v) ∈ (J2(K2(y)− g2(y)))∗,
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where Ji : Bi → B∗
i (i = 1, 2) are the normalized duality mappings, (J1(K1(x) −

g1(x)))∗ and (J2(K2(y)− g2(y)))∗ denote the dual cones of the sets (J1(K1(x)−
g1(x))) and (J2(K2(y)− g2(y))), respectively.

Recall that the normalized duality operator J : B → B∗ is defined for arbitrary
Banach space by the condition

‖Jx‖B∗ = ‖x‖ and 〈x, Jx〉 = ‖x‖2, ∀x ∈ B.

Some examples and properties of the mapping J can be found in [1, p. 19]. WhenB

is a Hilbert space, Jx = x reduces to the identity mapping. Note that every nonzero
x ∈ B is weak∗ continuous, and thus, attains its norm on the weak∗ compact unit
ball of B∗. In this case where B∗ is strictly convex, the point x attains its norm on
the ball of B∗ is unique, namely, Jx/‖x‖. In this paper, we are mainly interested
in uniformly smooth Banach space B. Therefore, the construction of J is concrete
to us here.

Before we proceed any further, we make a few observations. There is evidence
that our results generalize many known important results obtained in the literature.

(i) If B1 = B2, K1 = K2, g1 = g2, and F = G, then problem (1.1) reduces to
finding x ∈ B1, u ∈ V1(x), and v ∈ V2(y) such that g1(x) ∈ K1(x) and

(1.2) F (u, v) ∈ (J1(K1(x)− g1(x)))∗.

(ii) If V1(x) = T (x) is a single valued mapping and F (u, v) = u + A(v),
then problem (1.2) reduces to finding x ∈ B1 and v ∈ V2(x) such that
g1(x) ∈ K1(x) and

(1.3) T (x) + A(v) ∈ (J1(K1(x)− g1(x)))∗,

which is the generalized co-complementarity problem studied by Chen, Wong
and Yao [3].

(iii) If B1 is a Hilbert space, then problem (1.3) reduces to finding x ∈ B1 and
v ∈ V2(x) such that g1(x) ∈ K1(x) and

(1.4) T (x) + A(v) ∈ (K1(x) − g1(x))∗,

which is the generalized multivalued complementarity problem studied by Jou
and Yao [8].

(iv) If g1 is an identity mapping, then problem (1.4) reduces to finding x ∈ K1(x)
and v ∈ V2(x) such that
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(1.5) T (x) + A(v) ∈ (K1(x)− x)∗,

which is known as the generalized strongly nonlinear quasi-complementarity
problem studied by Chang and Huang [2].

(v) If g1 and V2 are identity mappings, A and m are zero mappings, then problem
(1.3) equivalent to finding x ∈ X1 such that

(1.6) T (x) ∈ X∗
1 , 〈T (x), x〉 = 0,

which is known as the generalized complementarity problem studied by Ha-
betler and Price [5] and Karamardian [10].

The complementarity theory derives its importance from the face that it unifies
problems in fields such as: mathematical programming, game theory, the theory
of equilibrium in a competitive economy, equilibrium of traffic flows, mechanics,
engineering, lubricant evaporation in the cavity of a cylindrical bearing, elasticity
theory, maximizing oil production, computation of fixed point etc., see Isac [6, 7].

The aim of this paper is to construct the projection iterative methods of finding
approximate solutions of (SGCCP ) in (especially uniformly smooth) Banach space.
As pointed out by Chen, Wong and Yao [3], such research fields are new, interesting,
and should be applicable to all those classical complementarity problems mentioned
above. The present results improve and extend many know results in the literature.

2. PRELIMINARIES

We first recall the following definitions.

Definition 2.1. Let B be a Banach space with the normalized duality mapping
J : B → B∗. A mapping A : B → B is said to be

(1) strongly accretive if there exists a constant γ > 0 such that

〈Ax− Ay, J(x− y)〉 ≥ γ‖x− y‖2, ∀x, y ∈ B;

(2) Lipschitz continuous if there exists a positive constant β such that

‖A(x)− A(y)‖ ≤ β‖x − y‖, ∀x, y ∈ B.

Definition 2.2. Let B1 and B2 be two Banach spaces, F : B1 × B2 → B1

a single-valued mapping, and V : B1 → CB(B1) a set-valued mapping. For any
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given y ∈ B2, F (·, y) is said to be ξ-strongly accretive with respect to V if there
exists a constant ξ > 0 such that

〈F (u1, y)− F (u2, y), J1(x1 − x2)〉
≥ ξ‖x1 − x2‖2, ∀x1, x2 ∈ B1, ∀u1 ∈ V (x1), ∀u2 ∈ V (x2),

where J1 : B1 → B∗
1 is the normalized duality mapping.

Definition 2.3. The mapping V : B → CB(B) is said to be H-Lipschitz
continuous if there exists a constant η > 0 such that

H(V (x), V (y)) ≤ η‖x− y‖, ∀x, y ∈ B,

where H(·, ·) is the Hausdorff metric on CB(B).
We remark that the uniform convexity of the Banach space B means that for

any given ε > 0, there exists δ > 0 such that for all x, y ∈ B, ‖x‖ ≤ 1, ‖y‖ ≤ 1
and ‖x − y‖ ≥ ε ensure the following inequality:

‖x + y‖ ≤ 2(1− δ).

The function

δB(ε) = inf{1− ‖x + y‖
2

: ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ ≥ ε}

is called the modulus of the convexity of the space B.
The uniform smoothness of the Banach space B means that for any given ε > 0,

there exists δ > 0 such that for all x, y ∈ B, ‖x‖ ≤ 1, ‖y‖ < δ ensure the following
inequality:

‖x + y‖ + ‖x − y‖
2

− 1 ≤ ε‖y‖
holds. The function

ρB(t) = sup{‖x + y‖ + ‖x − y‖
2

− 1 : ‖x‖ = 1, ‖y‖ ≤ t}

is called the modulus of the smoothness of the space B.
We also remark that the space B is uniformly convex if and only if δB(ε) > 0

for all ε > 0, and it is uniformly smooth if and only if limt→0t
−1ρB(t) = 0.

Moreover, B∗ is uniformly convex if and only if B is uniformly smooth. In this
case, B is reflexive by the Milman theorem. A Hilbert space is uniformly convex
and uniformly smooth. The proof of the following inequalities can be found, e.g.,
in [1, p. 24].

Proposition 2.1. Let B be a uniformly smooth Banach space and J be the
normalized duality mapping from B into B ∗. Then, for all x, y ∈ B, we have
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(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉,
(ii) 〈x−y, J(x)−J(y)〉 ≤ 2d2ρB(4‖x−y‖/d), where d = ((‖x‖2+‖y‖2)/2)1/2.

Let B be a real Banach space and Ω be a nonempty closed convex subset of B.
A mapping QΩ : B → Ω is said to be a retraction on Ω if Q2

Ω = QΩ. The mapping
QΩ is said to be a nonexpansive retraction if, in addition,

‖QΩ(x) − QΩ(y)‖ ≤ ‖x − y‖, ∀x, y ∈ B,

and QΩ is a sunny retraction if for all x ∈ B,

QΩ(QΩ(x) + t(x − QΩ(x))) = QΩ(x), ∀t ∈ R.

The following characterization of a sunny nonexpansive retraction mapping can be
found, e.g., in [4].

Proposition 2.2. QΩ is a sunny nonexpansive retraction if and only if for all
x ∈ B and y ∈ Ω,

〈x− QΩ(x), J(QΩ(x)− y)〉 ≥ 0.

From Proposition 2.2, we have the following retraction shift equality.

Proposition 2.3. Let B be a Banach space and Ω be a nonempty closed convex
subset of B. Let QΩ be a sunny nonexpansive retraction mapping and m : B → B

be a single valued mapping. Then for all x ∈ B, we have

QΩ+m(x)(x) = m(x) + QΩ(x− m(x)).

3. ITERATIVE ALGORITHM AND CONVERGENCE

In this section, we first derive some characterizations of solutions of the system
of generalized co-complementarity problem.

Theorem 3.1. Let B1 and B2 be two Banach spaces with normalized duality
mapping J1 and J2, respectively. Suppose X1 ⊂ B1 and X2 ⊂ B2 are two closed
convex cones such that the sunny nonexpansive retraction mappings Q X1 and QX2

exist. Let F : B1 × B2 → B1, G : B1 × B2 → B2, Vi : Bi → CB(Bi) and
gi, mi : Bi → Bi for i = 1, 2. Assume Ki(x) = mi(x) + Xi for all x ∈ Bi and
i = 1, 2. Then, for any given (x, y) ∈ B1 × B2 and (u, v) ∈ V1(x) × V2(y) are
solutions of SGCCP (1.1) if and only if

(3.1)

{
g1(x) = m1(x) + QX1(g1(x)− τ1F (u, v)),

g2(y) = m2(y) + QX2(g2(y)− τ2G(u, v)),
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where τ1 > 0 and τ2 > 0 are constants.

Proof. From Proposition 2.3, we know that (3.1) holds if and only if

(3.2)

{
g1(x) = QK1(x)(g1(x) − τ1F (u, v)),

g2(y) = QK2(y)(g2(y)− τ2G(u, v)),

From Proposition 2.2, it is easy to see that (3.2) holds if and only if

〈g1(x)− τ1F (u, v)− g1(x), J1(g1(x)− z1)〉 ≥ 0, ∀z1 ∈ K1(x)

and

〈g2(y)− τ2G(u, v)− g2(y), J2(g2(y) − z2)〉 ≥ 0, ∀z2 ∈ K2(y).

That is,

(3.3)

{ 〈F (u, v), J1(z1 − g1(x))〉 ≥ 0, ∀z1 ∈ K1(x),

〈G(u, v), J2(z2 − g2(y))〉 ≥ 0, ∀z2 ∈ K2(y).

We note that (3.3) holds if and only if

F (u, v) ∈ (J1(K1(x)− g1(x)))∗, G(u, v) ∈ (J2(K2(y) − g2(y)))∗.

This is complete the proof.

Remark 3.1. In theorem 3.1, we suppose the sunny nonexpansive retraction
mappings QX1 and QX2 exist. Such conditions can be satisfied under some as-
sumptions, see, for example, Theorem 1 and Remark 2 in [9], or Theorem 5 and
Remark 6 in [9].

Next we shall construct an iterative algorithm for finding approximate solutions
of SGCCP (1.1) and discuss the convergence analysis of the algorithm.

Algorithm 3.1. Let Bi, Xi, gi, mi, Vi, Ki, F and G be the same as in Theorem
3.1 for i = 1, 2. Let τ1 > 0 and τ2 > 0 be fixed. For any given (x0, y0) ∈ B1 ×B2

and (u0, v0) ∈ V1(x0) × V2(y0), from Theorem 3.2, let{
x1 = x0 − g1(x0) + m1(x0) + QX1(g1(x0) − τ1F (u0, v0) − m1(x0)),

y1 = y0 − g2(y0) + m2(y0) + QX2(g2(y0) − τ2G(u0, v0) − m2(y0)).

Since u0 ∈ V1(x0) and v0 ∈ V2(y0), by Nadler’s Theorem [11], there exist u1 ∈
V1(x1) and v1 ∈ V2(y1) such that

‖u0 − u1‖ ≤ (1 + 1)H(V1(x0), V1(x1)), ‖v0 − v1‖ ≤ (1 + 1)H(V2(y0), V2(y1)),
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where H is the Hausdorff metric on CB(B). Let{
x2 = x1 − g1(x1) + m1(x1) + QX1(g1(x1)− τ1F (u1, v1) − m1(x1)),

y2 = y1 − g2(y1) + m2(y1) + QX2(g2(y1) − τ2G(u1, v1) − m2(y1)).

Again by Nadler’s Theorem, there exist u2 ∈ V1(x2) and v2 ∈ V2(y2) such that

‖u1 − u2‖ ≤ (1 +
1
2
)H(V1(x1), V1(x2)), ‖v1 − v2‖ ≤ (1 +

1
2
)H(V2(y1), V2(y2)).

Continuing in this way, we can obtain the following:
For any given (x0, y0) ∈ B1 ×B2 and (u0, v0) ∈ V1(x0)×V2(y0), compute the

sequences {xn}, {yn}, {un} and {vn} by iterative schemes such that

(3.4)

{
xn+1 =xn−g1(xn)+m1(xn)+QX1(g1(xn)−τ1F (un, vn)−m1(xn)),

yn+1 =yn−g2(yn)+m2(yn)+QX2(g2(yn)−τ2G(un, vn)−m2(yn))

and

(3.5)

{
un ∈ V1(xn), ‖un − un+1‖ ≤ (1 + 1

n+1 )H(V1(xn), V1(xn+1)),

vn ∈ V2(yn), ‖vn − vn+1‖ ≤ (1 + 1
n+1 )H(V2(yn), V2(yn+1))

for all n = 0, 1, 2, · · · , where τ1 > 0 and τ2 > 0 are two constants.
Now we have the following convergence and existence result.

Theorem 3.3. Let B1 and B2 be two uniformly smooth Banach spaces with
ρB1(t) ≤ C1t

2, ρB2(t) ≤ C2t
2 for some C1 > 0, C2 > 0, respectively. Let

X1 ⊂ B1, X2 ⊂ B2 be two closed convex cones such that the sunny nonexpansive
retraction mappings QX1 and QX2 exist. Let F : B1 × B2 → B1, G : B1 × B2 →
B2, Vi : Bi → CB(Bi), and gi, mi : Bi → Bi be mappings for i = 1, 2. Suppose
Ki : Bi → 2Bi is defined by Ki(x) = mi(x) + Xi for all x ∈ Bi (i = 1, 2) and

(i) gi and mi are Lipschitz continuous with constants δ i and θi, respectively, and
Vi is H-Lipschitz continuous with constant η i for i = 1, 2;

(ii) gi is strongly accretive with constant γ i with i = 1, 2. For any given (x, y) ∈
B1 × B2, F (·, y) is ξ1-strongly accretive with respect to V1 and G(x, ·) is
ξ2-strongly accretive with respect to V2;

(iii) for any given (x, y) ∈ B1 × B2, F (·, y), F (x, ·), G(·, y), and G(x, ·) are
Lipschitz continuous with constants β 1, β2, α1, α2, respectively;

(iv) there exist τ1 > 0 and τ2 > 0 such that

2(1−2γ1 +64C1δ
2
1)1/2 +(1−2τ1ξ1 +64C1τ

2
1 β2

1η
2
1)

1/2 +2θ1 + τ2α1η1 < 1,

2(1−2γ2 +64C2δ
2
2)1/2 +(1−2τ2ξ2 +64C2τ

2
2 α2

2η
2
2)

1/2 +2θ2 + τ1β2η2 < 1.
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Then for any given (x0, y0) ∈ B1 × B2 and (u0, v0) ∈ V1(x0) × V2(y0), the
sequences {(xn, yn)} and {(un, vn)} generated by Algorithm 3.1 converge strongly
to some (x, y) ∈ B1 × B2 and (u, v) ∈ V1(x) × V2(y), respectively, which solve
SGCCP (1.1).

Proof. It follows from iterative schemes (3.4) that

(3.6)

‖xn+1−xn‖
= ‖xn−g1(xn) + m1(xn) + QX1(g1(xn)−τ1F (un, vn)−m1(xn))

−(xn−1−g1(xn−1) + m1(xn−1) + QX1(g1(xn−1)

−τ1F (un−1, vn−1)−m1(xn−1)))‖
≤ ‖xn−xn−1−(g1(xn)−g1(xn−1))‖+ ‖m1(xn)−m1(xn−1)‖

+‖g1(xn)−τ1F (un, vn)−m1(xn)−(g1(xn−1)

−τ1F (un−1, vn−1)−m1(xn−1))‖
≤ 2‖xn−xn−1−(g1(xn)−g1(xn−1))‖+ 2‖m1(xn)−m1(xn−1)‖

+‖xn − xn−1−τ1(F (un, vn)−F (un−1, vn−1))‖
≤ 2‖xn−xn−1−(g1(xn)−g1(xn−1))‖+ 2‖m1(xn)−m1(xn−1)‖

+‖xn−xn−1−τ1(F (un, vn)−F (un−1, vn))‖
+τ1‖F (un−1, vn)−F (un−1, vn−1)‖.

By Proposition 2.3 and the assumptions,

(3.7)

‖xn−xn−1−(g1(xn)−g1(xn−1))‖2

≤ ‖xn−xn−1‖2 + 2〈−(g1(xn)−g1(xn−1)), J1(xn−xn−1

−(g1(xn)−g1(xn−1)))〉
= ‖xn−xn−1‖2−2〈g1(xn)−g1(xn−1), J1(xn−xn−1)〉

+2〈−(g1(xn)−g1(xn−1)), J1(xn−xn−1−(g1(xn)−g1(xn−1)))

−J1(xn − xn−1)〉
≤ ‖xn−xn−1‖2−2γ1‖xn−xn−1‖2+4d2ρB1(4‖g1(xn)−g1(xn−1)‖/d)

≤ ‖xn−xn−1‖2−2γ1‖xn−xn−1‖2 + 64C1‖g1(xn)−g1(xn−1)‖2

≤ (1−2γ1 + 64C1δ
2
1)‖xn−xn−1‖2

and
‖xn−xn−1−τ1(F (un, vn)−F (un−1, vn))‖2
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(3.8)

≤ ‖xn−xn−1‖2 + 2〈−τ1(F (un, vn)−F (un−1, vn)), J1(xn−xn−1

−τ1(F (un, vn)−F (un−1, vn))〉
= ‖xn−xn−1‖2−2τ1〈F (un, vn)−F (un−1, vn), J1(xn−xn−1)〉

−2τ1〈F (un, vn)−F (un−1, vn), J1(xn−xn−1−τ1(F (un, vn)

−F (un−1 , vn)))−J1(xn−xn−1)〉
≤ ‖xn−xn−1‖2−2τ1ξ1‖xn−xn−1‖2 + 4d2ρB1(4τ1‖F (un, vn)

−F (un−1 , vn)‖/d)

≤ ‖xn−xn−1‖2−2τ1ξ1‖xn−xn−1‖2

+64C1τ
2
1‖F (un, vn)−F (un−1, vn)‖2

≤ (1−2τ1ξ1 + 64C1τ
2
1β2

1η2
1(1 +

1
n + 1

)2)‖xn−xn−1‖2,

where J1 : B1 → B∗
1 is the normalized duality mapping. It follows from the

Lipschitz continuity of the mappings m1 and F that

(3.9) ‖m1(xn) − m1(xn−1)‖ ≤ θ1‖xn − xn−1‖

and

(3.10) ‖F (un−1, vn) − F (un−1, vn−1) ≤ β2η2(1 +
1
n

)‖yn − yn−1‖.

From (3.6)-(3.10), we have

(3.11)

‖xn+1 − xn‖ ≤ {2(1− 2γ1 + 64C1δ
2
1)1/2

+(1 − 2τ1ξ1 + 64(1 +
1

n + 1
)2C1τ

2
1 β2

1η2
1)

1/2

+ 2θ1}‖xn − xn−1‖ + τ1β2η2(1 +
1
n

)‖yn − yn−1‖.

Similarly, we have

(3.12)

‖yn+1 − yn‖ ≤ {2(1− 2γ2 + 64C2δ
2
2)1/2

+(1 − 2τ2ξ2 + 64(1 +
1

n + 1
)2C2τ

2
2α2

2η
2
2)

1/2

+ 2θ2}‖yn − yn−1‖ + τ2α1η1(1 +
1
n

)‖xn − xn−1‖.

It follows from (3.11) and (3.12) that

(3.13) ‖xn+1 − xn‖ + ‖yn+1 − yn‖ ≤ kn(‖xn − xn−1‖ + ‖yn − yn−1‖),
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where kn = max{εn, λn} and

εn = 2(1− 2γ1 + 64C1δ
2
1)1/2 + (1− 2τ1ξ1 + 64(1 +

1
n + 1

)2C1τ
2
1β2

1η2
1)

1/2

+2θ1 + τ2α1η1(1 +
1
n

),
λn = 2(1− 2γ2 + 64C2δ

2
2)1/2 + (1− 2τ2ξ2 + 64(1 +

1
n + 1

)2C2τ
2
2 α2

2η
2
2)

1/2

+2θ2 + τ1β2η2(1 +
1
n

).

Let
ε = 2(1 − 2γ1 + 64C1δ

2
1)1/2 + (1 − 2τ1ξ1 + 64C1τ

2
1 β2

1η2
1)

1/2

+2θ1 + τ2α1η1,

λ = 2(1− 2γ2 + 64C2δ
2
2)

1/2 + (1− 2τ2ξ2 + 64C2τ
2
2α2

2η
2
2)

1/2

+2θ2 + τ1β2η2.

Then,
εn → ε and λn → λ as n → ∞.

Let k = max{ε, λ}. Then kn → k as n → ∞. It follows from condition (iv) that
0 < k < 1. Hence, there are a positive number k0 and an integer n0 ≥ 1 such that
kn ≤ k0 < 1 for all n ≥ n0.

Now we define ‖ · ‖1 on B1 × B2 by

‖(x, y)‖1 = ‖x‖ + ‖y‖, ∀(x, y) ∈ B1 × B2.

It is easy to see that (B1×B2, ‖·‖1) is a Banach space. Let zn = (xn, yn) ∈ B1×B2.
It follows from (3.13) that

‖zn+1 − zn‖1 ≤ kn‖zn − zn−1‖1.

This implies that {zn} is a Cauchy sequence in (B1 × B2, ‖ · ‖1). Suppose that
{zn} converges to some z = (x, y) ∈ B1 × B2. Since

‖xn − x‖ ≤ ‖xn − x‖ + ‖yn − y‖ = ‖zn − z‖1 → 0 (n → +∞),

‖yn − y‖ ≤ ‖xn − x‖ + ‖yn − y‖ = ‖zn − z‖1 → 0 (n → +∞),

it is easy to see that {xn} converges to x ∈ B1 and {yn} converges to y ∈ B2,
respectively. By (3.5), we obtain

(3.14)




‖un − un+1‖ ≤ (1 +
1

n + 1
)H(V1(xn), V1(xn+1))

≤ (1 +
1

n + 1
)η1‖xn − xn+1‖,

‖vn − vn+1‖ ≤ (1 +
1

n + 1
)H(V2(yn), V2(yn+1))

≤ (1 +
1

n + 1
)η2‖yn − yn+1‖.
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Let wn = (un, vn) ∈ B1 × B2. By (3.14),

‖wn − wn−1‖1 ≤ sn‖zn − zn−1‖1,

where
sn = max{(1 +

1
n + 1

)η1, (1 +
1

n + 1
)η2}.

Since {zn} is a Cauchy sequence, we know that {wn} is also a Cauchy sequence in
B1 ×B2. Suppose that {wn} converges to some w = (u, v) ∈ B1 ×B2. Then it is
easy to see that {un} converges to u and {vn} converges to v, respectively. Since
F , G, QXi , gi, mi, and Vi are all continuous (i = 1, 2), we have

x = x − g1(x) + m1(x) + QX1(g1(x) − τ1F (u, v)− m1(x)),

y = y − g2(y) + m2(y) + QX2(g2(y)− τ2G(u, v)− m2(y)).

It remains to show that (u, v) ∈ V1(x) × V2(y). In fact,

d(u, V1(x)) ≤ ‖u − un‖ + d(un, V1(x))

≤ ‖u − un‖ + H(V1(xn), V1(x))

≤ ‖u − un‖ + η1‖x− xn‖,
where

d(u, V1(x)) = inf{‖u − z‖ : z ∈ V1(x)}.
It follows that d(u, V1(x)) = 0 and so u ∈ V1(x) since V1(x) is closed. Similarly,
we have v ∈ V2(y). By Theorem 3.2, we know that (x, y) ∈ B1 × B2 and
(u, v) ∈ V1(x) × V2(y) are solutions of SGCCP (1.1). This completes the proof.
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