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ON MINIMAL HORSE-SHOE LEMMA

Guo-Jun Wang and Fang Li

Abstract. The main purpose of this paper is to find the conditions for the
Minimal Horse-Shoe Lemma to be hold in some categories of graded modules.
Using the Minimal Horse-Shoe Lemma, we prove that the category of p-
Koszul modules is closed under direct sums, direct summands, extensions and
cokernels.

1. INTRODUCTION AND DEFINITIONS

We know that the Horse-Shoe Lemma plays an important role in Homological
algebra. But it is only true for the modules which have projective resolutions.
Obviously, a minimal projective resolution has more advantages than the ordinary
one in the computation of the Ext group. Thus a natural question arises: does the
Horse-Shoe Lemma hold in the minimal case?

Let R be an arbitrary ring with identity 1R and M ∈ Mod(R). It is well known
that, the projective cover of M does not necessarily exist; and that every finitely
generated R-moduleM has a projective cover if and only if R is semiperfect. As a
preparation, we first prove that if a graded algebra A =

∐
i≥0 Ai is a nice algebra,

then any graded A-module M =
∐

i≥0 Mi ∈ BGr(A) has a graded A-projective
cover, which is similar as in the nongraded case. Let 0 → K → M → N → 0 be
an exact sequence in the category of nice modules with K ∩ JM = JK, then the
Minimal Horse-Shoe Lemma holds, which is the main result in this paper. Finally,
as the application of the Minimal Horse-Shoe Lemma, we investigate the category
of p-Koszul modules.

Here, first we will give some basic definitions and notations. In section 2,
we will show that the graded A-projective covers in the category BGr(A) always
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exist. Moreover, we will give an explicit construction of the graded projective cover
for the graded A-module M =

∐
i≥0 Mi by using the minimal generating spaces

{S0, S1, . . .} ofM . Moreover, we obtain some sufficient conditions for the Minimal
Horse-Shoe Lemma to be hold. In the last section, using the Minimal Horse-Shoe
Lemma, we prove that the category Kp(A) of p-Koszul modules is closed under
direct sums, direct summands, extensions and cokernels.

Let us give some preliminary definitions which will be used in this paper.

Definition 1.1. Let A =
∐

i≥0 Ai be a graded algebra satisfying that:

1. A0 is semisimple ;
2. Ai · Aj = Ai+j ,

then A is called a nice algebra.

Throughout this paper, we always consider A =
∐

i≥0 Ai as a nice algebra and
J =

∐
i≥1 Ai to be the graded Jacobson radical of A. LetGr(A) denote the category

consisting of graded A-modules and degree zero morphisms. Let BGr(A) denote
the full subcategory of Gr(A) consisting of graded A-modules which are bounded
below and degree zero morphisms. Here, gr(A) is the full subcategory of Gr(A)
consisting of finitely generated graded modules. Obviously, gr(A) ⊆ BGr(A). We
also denote the pure module category by grs(A), i.e., if M ∈ grs(A) then M is
generated in degree s, where grs(A) is a full subcategory of gr(A).

Remark 1.1. Each M ∈ BGr(A) can be written in the form: M =
∐

i≥j Mi

and Mi = 0 for all i < j. Since M [j] =
∐

i≥0 Mi, where [ ] is the shift functor.
Thus for each M ∈ BGr(A), we can always assume that M =

∐
i≥0 Mi.

Definition 1.2. Let

· · · → Pn
fn→ Pn−1

fn−1→ · · · → P1
f1→ P0

f0→ M → 0

be a minimal graded projective resolution of M in BGr(A). If for each i ≥ 0, it
is satisfied that J ker fi = ker fi ∩ J2Pi, then M is called a nice module.

We denote the category of nice modules by N (A). In the above definition, if
we replace the nice algebra A by the Koszul algebra, then it is the definition of
Quasi-Koszul module, about which one can refer to [7] for more details.

Definition 1.3. ([5]) Let A be a nice algebra and M ∈ gr(A). Suppose that
the minimal graded projective resolution Q of M is given by

Q : · · · → Qn
fn→ Qn−1

fn−1→ · · · → Q1
f1→ Q0

f0→ M → 0.
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If for all n ≥ 0, Qn is generated in degree δ(n), where

δ(n) =




np

2
+ s if n is even,

(n − 1)p
2

+ 1 + s if n is odd,

and p ≥ 2, s is a fixed integer, then M is called a p-Koszul module.
It is easy to see that the definition of p-Koszul modules is slightly different from

that given in [5] where one also used the term d-Koszul module. We denote the
category of p-Koszul modules by Kp(A), which is a full subcategory of gr(A).

2. MAIN RESULTS

In this section, we will give some conditions for the Minimal Horse-Shoe Lemma
to be hold. First we have the following result:

Theorem 2.1. Let M =
∐

i≥0Mi ∈ BGr(A). Then M has a graded
A-projective cover.

Proof. Let S0, S1, · · · , Sn, · · · be the minimal generating spaces of M with
degSi = i. Since M =

∐
i≥0 Mi is a graded A-module, it can also be expressed as

M = M0 ⊕ (S1 + A1S0) ⊕ (S2 + A2S0 + A1S1) ⊕ · · · .

Set SM = M0⊕S1⊕S2⊕· · · , which can be considered as an A0-module. Let P =
A⊗A0 SM . We will show that P is the graded projective cover of M =

∐
i≥0 Mi.

First, we claim that P = A ⊗A0 SM is a graded A-projective module. It is clear
that P is graded, since Pi = A ⊗A0 Si. Let K → N → 0 be exact in Gr(A).
Since HomA(P, K) = HomA(A ⊗A0 SM , K) ∼= HomA0(S

M , HomA(A, K)) ∼=
HomA0(S

M , K), we obtain that HomA0(S
M ,−) is an exact functor. It follows

that we have the following commutative diagram,

HomA0(S
M , K) −→ HomA0(S

M , N ) −→ 0
| |∼=↓ ∼=↓

HomA(P, K) −→ HomA(P, N )

Therefore HomA(P, K) → HomA(P, N ) → 0 is exact and P is a graded A-
projective module. Now we define a morphism f as follows,

f : P = A ⊗A0 SM −→ M
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via
f :

∑
ai ⊗ si 
−→

∑
ai · si.

It is easy to see that f is an epimorphism. Finally, we claim that ker f ⊆ JP =
J ⊗A0 SM , since Ai ·Aj = Ai+j for all i, j ≥ 0.

The above theorem means that if A =
∐

i≥0 Ai is a nice algebra, then there
always exist the graded A-projective covers in BGr(A).

Next we will investigate some basic properties of graded projective covers in
BGr(A).

Proposition 2.2. Let M =
∐

i≥0 Mi ∈ BGr(A). If P and Q are both graded
projective covers of M , then P ∼= Q.

Proof. Its proof is similar as in the nongraded case, and we can refer [1] for
the details.

Proposition 2.2 shows the uniqueness (up to isomorphisms) of the graded pro-
jective covers, which is similar as in the nongraded case.

Proposition 2.3. Let M =
∐

i≥0 Mi ∈ BGr(A) and P be the graded projec-
tive cover of M . Then M is generated in degree s if and only if P is generated in
degree s.

Proof. “If”: From the proof of Theorem 2.1, we know that A ⊗A0 SM is one
of the graded projective covers of M and by Proposition 2.2, the projective covers
of M are unique up to isomorphisms. Hence

P ∼= A ⊗A0 SM = A ⊗A0 S0 ⊕ A ⊗A0 S1 ⊕ · · ·

Let Pi = A⊗A0Si. Further, ifM is generated in degree s, thenM = A·Ms = A·Ss.
In this case P = A ⊗A0 Ss, evidently P is generated in degree s.

“Only if”: By Theorem 2.1 and Proposition 2.2, P ∼= A ⊗A0 SM and Pi =
A ⊗A0 Si. By hypothesis, P is generated in degree s, i.e., Pj = Aj−s · Ps for all
j ≥ s. So we have A⊗A0 Sj = Aj−s ·A⊗A0 Ss. That is, M is generated in degree
s.

Corollary 2.4. Let M =
∐

i≥0 Mi ∈ BGr(A) and P be the graded projective
cover of M . Then M is generated in degrees j1 ,j2, · · · , jn if and only if P is
generated in degrees j1, j2, · · · , jn.

Proof. It is proved similarly to Proposition 2.3.
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Lemma 2.5. For every exact sequence 0 → K
f→ M

g→ N → 0 in Gr(A),
there exists the exact sequence

0 → K ∩ JM → JM → JN → 0

in Gr(A).

Proof. Let f = f |K∩JM and g = g|JM . Since f is an embedding, f is a
monomorphism. Let x =

∑
aini ∈ JN with ai ∈ J and ni ∈ N . Since g is

an epimorphism, there exists mi ∈ M such that g(mi) = ni. Set y =
∑

aimi

and we have g(y) = g(
∑

aimi) =
∑

g(aimi) =
∑

aig(mi) =
∑

aini, thus g

is an epimorphism. Let x =
∑

aimi ∈ kerg with ai ∈ J and mi ∈ M . So
g(x) = g(

∑
aimi) = 0, since g is an epimorphism, there exists z ∈ K ∩ JM such

that f(z) = x. Therefore ker(g) ⊆ Imf . Conversely, let x = f(y) ∈ Imf with
y ∈ K ∩ JM . Since g(x) = gf(y) = 0, x ∈ Kerg, hence Imf ⊆ ker g. Then we
have the exact sequence:

0 → K ∩ JM → JM → JN → 0.

Now we will give some sufficient conditions for the Minimal Horse-Shoe Lemma
to be hold:

Lemma 2.6. Let 0 → K → M → N → 0 be an exact sequence in Gr(A),
then the following statements are equivalent:

1. K ∩ JM = JK,
2. A/J ⊗A K → A/J ⊗A M is a monomorphism.

Proof. LetK∩JM = JK. By Lemma 2.5, we have the following commutative
diagram with exact rows and columns:

0 0 0
↓ ↓ ↓

0 −→ JK −→ JM −→ JN −→ 0
↓ ↓ ↓

0 −→ K −→ M −→ N −→ 0
↓ ↓ ↓

0 −→ K/JK −→ M/JM −→ N/JN −→ 0
↓ ↓ ↓
0 0 0

Obviously, A/J ⊗A K ∼= K/JK and A/J ⊗A M ∼= M/JM . Thus A/J ⊗A K →
A/J ⊗A M is a monomorphism, since 0 → K/JK → M/JM is exact. Therefore
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the assertion (1) implies the assertion (2). Conversely, suppose that A/J ⊗A K →
A/J⊗A M is a monomorphism. Then K/JK → M/JM is also a monomorphism.
Consider the following commutative diagram:

0 −→ K/JK −→ M/JM −→ N/JN −→ 0
|f id| id|↓ ↓ ↓

0 −→ K/K ∩ JM −→ M/JM −→ N/JN −→ 0

By “Five Lemma”, we get JK = K ∩ JM .

Lemma 2.7. Let 0 → Ω → P
f→ M → 0 be an exact sequence in Gr(A)

with M ∈ N (A) and P be the graded projective cover of M . Then A/J ⊗A Ω →
A/J ⊗A JP is a monomorphism.

Proof. Since Ω ⊆ JP , we have the exact sequence:

0 → Ω ↪→ JP
f→ JM → 0,

where f = f |JP . Since M is a nice module, JΩ = Ω ∩ J2P = Ω ∩ J(JP ). By
Lemma 2.6, A/J ⊗A Ω → A/J ⊗A JP is a monomorphism.

Now we can state the main theorem as follows.

Theorem 2.8. Let 0 → K → M → N → 0 be an exact sequence in N (A)
with K ∩ JM = JK. Then the Minimal Horse-Shoe Lemma holds, that is, there
is a commutative diagram with exact rows and columns:

...
...

...
↓ ↓ ↓

0 −→ P 1
K −→ P 1

M −→ P 1
N −→ 0

↓ ↓ ↓
0 −→ P 0

K −→ P 0
M −→ P 0

N −→ 0
↓ ↓ ↓

0 −→ K −→ M −→ N −→ 0
↓ ↓ ↓
0 0 0

where
· · · → P 1

K → P 0
K → K → 0,

· · · → P 1
M → P 0

M → M → 0,
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and
· · · → P 1

N → P 0
N → N → 0

are the minimal graded projective resolutions of K, M and N respectively, where
P i

M = P i
K ⊕ P i

N , for i ≥ 0.

Proof. By Lemma 2.5, the sequence:

0 → K ∩ JM → JM → JN → 0

is exact.
Since JK = K ∩ JM , we have the exact sequence:

0 → JK → JM → JN → 0.

The following diagram is commutative with exact rows and columns:

0 0 0
↓ ↓ ↓

0 −→ JK −→ JM −→ JN −→ 0
↓ ↓ ↓

0 −→ K −→ M −→ N −→ 0
↓ ↓ ↓

0 −→ K/JK −→ M/JM −→ N/JN −→ 0
↓ ↓ ↓
0 0 0

Since K/JK ∼= SK = M0 ⊕ S1 ⊕ · · · , M/JM ∼= SM and N/JN ∼= SN as
A0-modules, we get the exact sequence:

0 → SK → SM → SN → 0

in Gr(A0).
Since A0 is semisimple, by applying the functor A⊗A0 − to this sequence, we

obtain the following exact sequence:

0 → A ⊗A0 SK → A ⊗A0 SM → A ⊗A0 SN → 0.

Assume that P 0
K = A⊗A0 SK, P 0

M = A⊗A0 SM and P 0
N = A⊗A0 SN due to the

uniqueness (up to isomorphisms) of the graded projective covers. Thus, we get the
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following commutative diagram:

0 0 0
↓ ↓ ↓

0 −→ Ω(K) −→ Ω(M) −→ Ω(N ) −→ 0
↓ ↓ ↓

0 −→ P 0
K −→ P 0

M −→ P 0
N −→ 0

↓ ↓ ↓
0 −→ K −→ M −→ N −→ 0

↓ ↓ ↓
0 0 0

The exact sequence
0 → P 0

K → P 0
M → P 0

N → 0

splits, since P 0
N is graded projective. Thus, P 0

M = P 0
K ⊕ P 0

N . Obviously, we have
the following commutative diagram:

0 0 0
↓ ↓ ↓

0 −→ Ω(K) −→ Ω(M) −→ Ω(N ) −→ 0
↓ ↓ ↓

0 −→ JP 0
K −→ JP 0

M −→ JP 0
N −→ 0

↓ ↓ ↓
0 −→ JK −→ JM −→ JN −→ 0

↓ ↓ ↓
0 0 0

and, applying the functor A/J ⊗A − to the above diagram, we get the following
commutative diagram:

0 0
↓ ↓

A/J ⊗A Ω(K)
f−→ A/J ⊗A Ω(M) −→ A/J ⊗A Ω(N ) −→ 0

↓ ↓ ↓
0 −→ A/J ⊗A JP 0

K −→ A/J ⊗A JP 0
M −→ A/J ⊗A JP 0

N −→ 0
↓ ↓ ↓

A/J ⊗A JK −→ A/J ⊗A JM −→ A/J ⊗A JN −→ 0
↓ ↓ ↓
0 0 0

By Lemma 2.7, A/J ⊗A Ω(K) → A/J ⊗A P 0
K is a monomorphism. From the

commutativity of the left upper square, we have f as a monomorphism. By Lemma
2.6, JΩ(K) = Ω(K) ∩ JΩ(M).
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Next we claim that if M ∈ N (A) and P
f→ M → 0 with Kerf ⊂ JP , i.e.,

P is the graded projective cover of M , then Ω(M) = ker f ∈ N (A). In fact, the
minimal graded projective resolution of M is obtained as

· · · → Pn
fn→ Pn−1

fn−1→ · · · → P1
f1→ P0

f0→ M → 0

such that J ker fi = ker fi ∩ J2Pi for all i ≥ 0, since M ∈ N (A). Hence we get a
minimal graded projective resolution of ker f0 as

· · · → Pn
fn→ Pn−1

fn−1→ · · · → P1
f1→ ker f0 → 0

such that J ker fi = ker fi ∩ J2Pi for all i ≥ 1. Therefore ker f0 ∈ N (A).
This implies that Ω(K), Ω(M) and Ω(N ) are contained in N (A).
ReplacingK, M and N by Ω(K), Ω(M), Ω(N ) respectively, through recursing

step by step, we have the Minimal Horse-Shoe Lemma to be hold.

Proposition 2.9. Let 0 → K → M → N → 0 be an exact sequence in
N (A) where K, M and N are generated in the same degrees. Then the Minimal
Horse-Shoe Lemma holds.

Proof. Since K, M and N are generated in the same degrees, we can assume
K = A · Ks, M = A · Ms and N = A · Ns. By Theorem 2.8, we only need to
show K ∩ JM = JK. Since JK ⊆ K and JK ⊆ JM , JK ⊆ K ∩ JM . Let x
be a nonzero homogeneous element of K ∩ JM . Then x ∈ JM . It follows that
degx ≥ s + 1. Since K is generated in degree s, it means that for any a ∈ K ,
dega ≥ s + 1 if and only if a ∈ JK. Thus x ∈ JK. So JK ⊇ K ∩ JM . Hence
JK = K ∩ JM .

Proposition 2.10. Let

0 → K → M → N → 0

be a split exact sequence in BGr(A). Then the Minimal Horse-Shoe Lemma holds.

Proof. Since
0 → K → M → N → 0

splits, we have M = K ⊕ N . Let PK and PN are the graded projective covers of
K and N respectively. That is, there exist two epimorphisms

PK
f→ K → 0

and
PN

g→ N → 0
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such that kerf ⊆ JPK and kerg ⊆ JPN . Set P = PK ⊕ PN and define ϕ as
follows:

ϕ : P → M → 0

via
ϕ(x⊕ y) = f(x) ⊕ g(y)

for x ∈ PK and y ∈ PN . Obviously, ϕ is an epimorphism. Let ϕ(x+y) = 0, clearly
f(x) = 0 = g(y). Thus x ∈ ker f and y ∈ ker g, kerϕ = ker f ⊕ ker g. Since
J ker ϕ = J(ker f ⊕ ker g) = J ker f ⊕ J ker g ⊆ JPK ⊕ JPN = J(PK ⊕ PN ) =
JP , we have that P is the graded projective cover of M . We get the split exact
sequence:

0 → Ω(K) → Ω(M) → Ω(N ) → 0.

ReplacingK, M and N by Ω(K), Ω(M), Ω(N ) respectively, through recursing
step by step, we have the Minimal Horse-Shoe Lemma to be hold.

Lemma 2.11. Let 0 → K
f→ M

g→ N → 0 be an exact sequence in gr(A)
and A be a graded algebra. Then

(1) if K and N are generated in degree s, then M is generated in degree s;
(2) if M is generated in degree s, then N is generated in degree s;
(3) ifK andN are generated in degree s and t, respectively, thenM is generated

in degrees s and t.

Proof. Consider the exact sequence:

0 → Kn
f→ Mn

g→ Nn → 0

with n > s, where N = ⊕i≥sNi, K = ⊕i≥sKi and M = ⊕i≥sMi and f = f |Kn ,
g = g |Mn . Let x ∈ Mn be a homogeneous element, then g(x) ∈ Nn. Since N is
generated in degree s, there exists n =

∑
aini ∈ Nn with ai ∈ An−s and ni ∈ Ns,

such that g(x) =
∑

aini. Since

0 → Ks
f→ Ms

g→ Ns → 0

is exact and g is epimorphism, there exists mi ∈ Ms, such that g(mi) = ni. Let
y =

∑
aimi be a homogeneous element of Mn. Since g(y) = g(

∑
aimi) =∑

aig(mi) =
∑

aini = g(x), we have y − x ∈ Kerg = Imf and thus x − y =
f(

∑
biki) with bi ∈ An−s and ki ∈ Ks. Therefore x =

∑
aimi+

∑
bif(ki) where

mi, f(ki) ∈ Ms. It follows that M is generated in degree s. Thus the assertion (1)
holds.
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AssumeM is generated in degree s. For each integer n > s, consider the exact
sequence:

0 → Kn
f→ Mn

g→ Nn → 0.

Let x ∈ Nn be a homogeneous element and since g is epimorphism, there exists
y ∈ Mn such that g(y) = x and y =

∑
aimi with mi ∈ Ms and ai ∈ An−s.

Hence x = g(y) = g(
∑

aimi) =
∑

aig(mi) and g(mi) ∈ Ns and it follows that
N is generated in degree s. Then the assertion (2) holds. The assertion (3) can be
proved similarly.

Proposition 2.12. Let 0 → K → M → N → 0 be an exact sequence in gr(A)
such that K and N are generated in the same degrees. If K and N are p-Koszul
modules, then the Minimal Horse-Shoe Lemma holds.

Proof. Since K and N are generated in the same degrees, we can assume that
K = A · Ks and N = A · Ns. By Lemma 2.11, M = A · Ms. Thus we have the
following commutative diagram with exact rows and columns

0 0 0
↓ ↓ ↓

0 −→ Ω1(K) −→ Ω1(M) −→ Ω1(N ) −→ 0
↓ ↓ ↓

0 −→ P 0
K −→ P 0

M −→ P 0
N −→ 0

↓ ↓ ↓
0 −→ K −→ M −→ N −→ 0

↓ ↓ ↓
0 0 0

where P 0
K , P

0
M and P 0

N are the graded projective covers ofK,M andN respectively,
and Ω1(K), Ω1(M) and Ω1(N ) are the first syzygies of K, M and N respectively.
Since the exact sequence

0 → P 0
K → P 0

M → P 0
N → 0

splits, we have that P 0
M = P 0

K ⊕ P 0
N . Notice that since K and N are p-Koszul

modules, P 0
K and P 0

N are generated in degree δ(0). By Lemma 2.11, P0
M is generated

in degree δ(0). Since P1
K and P 1

N are the graded projective covers of Ω1(K) and
Ω1(N ) respectively, Ω1(K) and Ω1(N ) are generated in degree δ(1). By Lemma
2.11, Ω1(M) is generated in degree δ(1).

Replacing K, M and N by Ω1(K), Ω1(M), Ω1(N ) respectively, through re-
cursing step by step, the result is proved.
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Though we have found some sufficient conditions for the Minimal Horse-Shoe
Lemma to be hold, an interesting but difficult question is how to find some necessary
conditions.

3. THE APPLICATIONS OF THE MINIMAL HORSE-SHOE LEMMA

In this section, we will study the category Kp(A) of p-Koszul modules in de-
tails. As the application of the Minimal Horse-Shoe Lemma, we will prove that
the category Kp(A) is closed under direct sums, direct summands, extensions and
cokernels.

Proposition 3.1. Let M = M1 ⊕M2 ∈ gr(A). Then M is a p-Koszul module
if and only if M1 and M2 are p-Koszul modules.

Proof. We have the following split exact sequence:

0 → M1 → M → M2 → 0.

By Proposition 2.10, we have the following commutative diagram with exact rows
and columns:

0 0 0
↓ ↓ ↓

0 −→ P 2
M1

−→ P 2
M1

⊕ P 2
M2

−→ P 2
M2

−→ 0
↓ ↓ ↓

0 −→ P 1
M1

−→ P 1
M1

⊕ P 1
M2

−→ P 1
M2

−→ 0
↓ ↓ ↓

0 −→ P 0
M1

−→ P 0
M1

⊕ P 0
M2

−→ P 0
M2

−→ 0
↓ ↓ ↓

0 −→ M1 −→ M −→ M2 −→ 0
↓ ↓ ↓
0 0 0

where
· · · → P 2

M1
→ P 1

M1
→ P 0

M1
→ M1 → 0,

· · · → P 2
M1

⊕ P 2
M2

→ P 1
M1

⊕ P 1
M2

→ P 0
M1

⊕ P 0
M2

→ M → 0,

and
· · · → P 2

M2
→ P 1

M2
→ P 0

M2
→ M2 → 0,

are the minimal graded projective resolutions of M1, M and M2 respectively. If
M is a p-Koszul module, by definition, P i

M1
⊕P i

M2
is generated in degree δ(i) for
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all i ≥ 0. Obviously, P i
M1

and P i
M2
are generated in degree δ(i). Hence M1 and

M2 are p-Koszul modules. Conversely, if M1 and M2 are p-Koszul modules, then
P i

M1
and P i

M2
are generated in degree δ(i) for all i ≥ 0. Evidently, Pi

M1
⊕ P i

M2
is

generated in degree δ(i) for all i ≥ 0. Therefore M is a p-Koszul module.
By Proposition 3.1 we have

Corollary 3.2. LetM = M1⊕M2⊕· · ·⊕Mn ∈ gr(A). ThenM is a p-Koszul
module if and only if all M i are p-Koszul modules.

Now we investigate the extension closure of the category Kp(A) of p-Koszul
modules.

Proposition 3.3. Let 0 → K → M → N → 0 be an exact sequence in gr(A)
such that K and N are in grs(A). If K, N ∈ Kp(A), then M ∈ Kp(A).

Proof. Let 0 → K → M → N → 0 be an exact sequence in gr(A).
Since K and N are in degree grs(A) and K and M are p-Koszul modules, by
proposition 2.12, we have the following commutative diagram with exact rows and
exact columns:

...
...

...
↓ ↓ ↓

0 −→ P 2
K −→ P 2

K ⊕ P 2
N −→ P 2

N −→ 0
↓ ↓ ↓

0 −→ P 1
K −→ P 1

K ⊕ P 1
N −→ P 1

N −→ 0
↓ ↓ ↓

0 −→ P 0
K −→ P 0

K ⊕ P 0
N −→ P 0

N −→ 0
↓ ↓ ↓

0 −→ K −→ M −→ N −→ 0
↓ ↓ ↓
0 0 0

where
· · · → P 2

K → P 1
K → P 0

K → K → 0,

· · · → P 2
K ⊕ P 2

N → P 1
K ⊕ P 1

N → P 0
K ⊕ P 0

N → M → 0,

and
· · · → P 2

N → P 1
N → P 0

N → N → 0,

are the minimal graded projective resolutions of K, M and N respectively. Since
K and N are p-Koszul modules, both P i

K and P i
N are generated in degree δ(i) for

all i ≥ 0. Thus P i
K ⊕ P i

N are generated in degree δ(i) for all i ≥ 0. Therefore M

is a p-Koszul module. Hence Kp(A) is closed under extensions.
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The next corollary shows that the category Kp(A) preserves cokernels.

Corollary 3.4. Let 0 → K → M → N → 0 be an exact sequence in grs(A).
If K and M are p-Koszul modules, then M/K ∼= N is a p-Koszul module.

Proof. Similarly to Proposition 3.3, we have the following commutative diagram
with exact rows and columns:

...
...

...
↓ ↓ ↓

0 −→ P 2
K −→ P 2

K ⊕ P 2
N −→ P 2

N −→ 0
↓ ↓ ↓

0 −→ P 1
K −→ P 1

K ⊕ P 1
N −→ P 1

N −→ 0
↓ ↓ ↓

0 −→ P 0
K −→ P 0

K ⊕ P 0
N −→ P 0

N −→ 0
↓ ↓ ↓

0 −→ K −→ M −→ N −→ 0
↓ ↓ ↓
0 0 0

where
· · · → P 2

K → P 1
K → P 0

K → K → 0,

· · · → P 2
K ⊕ P 2

N → P 1
K ⊕ P 1

N → P 0
K ⊕ P 0

N → M → 0,

and
· · · → P 2

N → P 1
N → P 0

N → N → 0,

are the minimal graded projective resolutions of K, M and N respectively. Since
P i

K and P i
K ⊕ P i

N are generated in degree δ(i) for all i ≥ 0, by Lemma 2.11, Pi
N

is also generated in degree δ(i) for all i ≥ 0. Hence M/K ∼= N is a p-Koszul
module.
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