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SOME PECARIC’S TYPE INEQUALITIES IN 2-INNER PRODUCT
SPACES AND APPLICATIONS

Y. J. Cho*, S. S. Dragomir, C.-S. Lin, S. S. Kim* and Y.-H. Kim

Abstract. Some results related to Pecari¢’s type generalisation of Bessel’s
inequality in 2-inner product spaces are given. Applications for determinantal
integral inequalities are also provided.

1. INTRODUCTION

In 1992, Pecari¢ [5] proved the following inequality for vectors in complex
inner product spaces (H; (-, -)).

Theorem 1. Suppose that x,y1,...,y, are vectors in H and cy,...,c, are
complex numbers. Then the following inequalities
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He also showed that for ¢; = (z,y;),i € {1,...,n}, one gets
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which improves Bombieri’s inequality [1]

1<i<n
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Note that (1.3) is in its turn a natural generalization of Bessel’s inequality
n
(1.4) Dol e < =)
i=1

for any = € H, which holds for the orthornormal vectors (&);;<,, -

In this paper we point out some results of Pecari¢’s type for 2-inner products
spaces. Some inequalities of Bombieri type holding in these spaces are also men-
tioned. Natural applications for determinantal integral inequalities are given as well.

2. SOME PRELIMINARY RESULTS IN 2-INNER PRODUCT SPACES

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in the book [2]. Here we give
the basic definitions and the elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of
real numbers or the field K = C of complex numbers. Suppose that (-,-|-) is a
K-valued function defined on X x X x X satisfying the following conditions:

(2I1) (x,z|z) > 0 and (z,x|z) = 0 if and only if z and z are linearly dependent,
(212) (

(213) (y,]2) = (=,yl2),
(21) (
(2I5) (

x,x|z) = (z, z|x),
21,) (azx,y|z) = a(z,y|z) for any scalar « € K|
2I5) (z+2',ylz) = (z,9]2) + (', y[2).

(+,+]) is called a 2-inner product on X and (X, (-,-|-)) is called a 2-inner
product space (or 2-pre-Hilbert space). Some basic properties of 2-inner product
(+,+]-) can be immediately obtained as follows [3]:

(1) If K = R, then (213) reduces to

(v, z[2) = (z, y[2)-
(2) From (213) and (214), we have
(0,ylz) =0, (z,0]z)=0
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and also
2.1 (z, ay|z) = a(z, y[2).
(3) Using (212)—(215), we have
(2,2l £y) = (x £y, £ylz) = (v, 2[2) + (y,y|2) + 2Re(z, y|2)

and

(.2) Re(z,yl2) = 1((z 2l +9) — (=, 2| — )]

In the real case K = R, (2.2) reduces to

@3 (@, 12) = §1( 2k +9) = (3.2l = )]

and, using this formula, it is easy to see , for any a € R, that
2.4) (2, ylaz) = o® (2, ylz).

In the complex case, using (2.1) and (2.2), we have

Im(z, y|z) =Re[—i(z, y|2)] %[(27 zla +iy) = (2, 2|z —iy)],

which, in combination with (2.2), yields

(2:9) (2,y12) = 710z, 2l +9) = (2,2 = )] + 21z 2o+ i) = (2o — i)

Using the above formula and (2.1), we have, for any a € C, that
(2.6) (z,ylaz) = |af*(z, y|2).
However, for a € R, (2.6) reduces to (2.4). Also, from (2.6) it follows that
(z,y|0) = 0.

(4) For any three given vectors x,y, z € X, consider the vector u = (y, y|z)x —
(z,y|2)y. By (2I1), we know that (u,u|z) > 0 with the equality if and only if u
and z are linearly dependent. The inequality (u,u|z) > 0 can be rewritten as

(2.7) (v, yl2)[(z, 2|2) (y, ylz) — |(z, y|2)]?] > 0.

For x = 2, (2.7) becomes

—(y,y|2)|(z,y|2)]* > 0,
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which implies that

(2.8) (z,yl2) = (y,2|2) =0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (2.8) holds too. Thus (2.8) is true for any two vectors y, z € X. Now,
if y and z are linearly independent, then (y, y|z) > 0 and, from (2.7), it follows

(2.9) (@, yl2) | < (2,212)(y, yl2).

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and =z are linearly
dependent. Therefore, the inequality (2.9) holds for any three vectors x,y,z € X
and is strict unless the vectors u = (y, y|z)z—(z, y|z)y and z are linearly dependent.
In fact, we have the equality in (2.9) if and only if the three vectors =,y and z are
linearly dependent.

In any given 2-inner product space (X, (-, -|-)), we can define a function || - | - ||
on X x X by
(2.10) 2|zl = v/ (2, z]2)

forall z,z € X.

It is easy to see that this function satisfies the following conditions:
(2N1) ||z|z|| > 0 and ||z|z|| = O if and only if = and z are linearly dependent,
(2N2) |zl = [l=|=]l;

(2N3) ||ax|z|| = |a||z|z|| for any scalar « € K,
(2Na) [z + 2'[2]| < =[] + [l"]=]]-

Any function ||-|-|| defined on X x X and satisfying the conditions (2N1)-(2Ny)
is called a 2-norm on X and (X, | -|-||) is called a linear 2-normed space. For
recent result devoted to the geometry of linear 2-normed spaces, see [4].

Whenever a 2-inner product space (X, (-, -|-)) is given, we consider it as a linear
2-normed space (X, || - | - ||) with the 2-norm defined by (2.10).

Let (X;(-,+]-)) be a 2-inner product space over the real or complex number
field K. If (f;),<,<,, are linearly independent vectors in the 2-inner product space
X, and, for a given z € X, (f;, f;|2) = &;; for all 4,5 € {1,...,n} where §; is
the Kronecker delta (we say that the family (f;),<;,, is z—orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [3])
for z—orthonormal family (f;);,,, in the 2-inner product space (X; (-, -|-)):

(2.11) >, fil2)* < =)
i=1

for any = € X. For more details on this inequality, see the recent paper [3] and the
references therein.
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3. SOME INEQUALITIES FOR 2-NORMS

We start with the following lemma that is interesting in its own right.

Lemma 1. Let (X, (+,|-)) be a 2-inner product space on K and z1, . . ., zp, z €
X, ai,...,a, € K Then one has the inequalities:
n 2
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Proof. We observe that
n n
”Z?:l (XZ‘ZZ“ZH2 = Z o2, Z oajzj‘z
=1 j=1

(3.2) = Zn:zn:aia_j(zi,zj\z) = Zn:zn:aia_j(zi,zj\z)

i=1j=1 i=1 j=1
n n

< 3" Jaillag |z, 212)] = M.
i=1 j=1

If one uses the Holder inequality for double sums, i.e., we recall it

n n P n q

E E p E q
(3.3) mijaijbij S mijaij mijbij s
4,j=1 4,j=1 4,j=1

where m;;, a;j, b5 > 0, % + % =1, p > 1; then

n v [ n 7
M < | Y I zl2)] el D Gz z12)] el
(34) i,7=1 z,izl A
n n P n n a
= | D1l | D 1Gis 212 P D]
i=1 Jj=1 i=1 j=1
and the first inequality in (3.1) is proved.
Observe, by Holder inequality, that
n
P )]
Joax || AZI\(%ZJ\Z)L
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n
Do laal” [ DIz 212l | <
i=1

which gives
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Similarly, we have
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Using (3.1) and (35)-(36), we deduce the 9 inequalities in the second part of (3.2). m

Remark 1. The case p = ¢ = 2, will produce some simpler inequalities which
will not be stated here for the sake of brevity.

4. SOME PECARIC TYPE INEQUALITIES FOR 2-INNER PRODUCTS

We are now able to point out the following result which complements and
generalizes the Bessel inequality (2.11) in 2-inner product spaces.
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Theorem 2. Let z, vy, .. ., Yn, z be vectors of an inner product space (X (-, -))
and c1,...,c, € K. Then we have
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and
n l % n
pax |ci (Zlct ) Jfoax. (ZI Yi, Yl ) (Z (yi, 95
i=1 i,j=1
1
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wherep>1,p—|—q—1.

Proof. We note that

SRS _< Zczyz\z)

Using Schwarz’s inequality in 2-inner product spaces, we have

(4.2) > ci(myile)| < llalzl? (D awilz
i=1 i=1
Finally, using Lemma 1 with o; = ¢, z; = y; (i = 1,...,n), we deduce the desired

inequality (4.1).

Remark 2. If in (4.1) we choose p = g = 2, we obtain amongst others, some
particular inequalities generalising the version of Pecari¢’s inequality for 2-inner

products, i.e., the inequality

2

2
< lzlz| Z‘Cz‘ Z‘ Yi, Yjl2

=1

n

Zci (z,vi|2)
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n n
2
< (k) s (St
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For the sake of brevity, we do not present them here.

"
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5. SoME RESuLTS OF BOMBIERI TYPE FOR 2-INNER PRODUCTS

The following results of Bombieri type hold.

Theorem 3. Let z,y1,...,Yn, 2 € X. Then one has the inequalities:

n n n
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1,1 _
wherep>1,5—|—a—1.

Proof.  The proof follows by Theorem 2 on choosing ¢; = (z,y;|z) for i €
{1,...,n} and taking the square root in both sides of the inequalities involved. We
omit the details. ]

Remark 3. We observe, by the last inequality in (5.1), we get

(z \(w,yi\z>\2)2 .
62 ———E o <ol | Ll )
(izlux,yz\z)\ ) (izlux,yz\z)\ )

where p > 1,% + % = 1, and provided that not all (x,y;|z) for i € {1,...,n} are
zero.

Remark 4. If in this inequality we choose p = ¢ = 2, then we obtain the
following Bombieri’s type result for 2-inner products

n n
(53) Sl w2 < alel® mas | D1 u5l2)]
i=1 == \j=1

6. APPLICATIONS FOR DETERMINANTAL INTEGRAL INEQUALITIES

Let (£2, X, 1) be a measure space consisting of a set €2, a o —algebra ¥ of subsets
of Q2 and a countably additive and positive measure p on X with values in R U {co}.

Denote by LIQ) (Q) the Hilbert space of all real-valued functions f defined on
Q) that are 2-p-integrable on Q, i.e., [ p(s) |f (s)|? du (s) < oo, where p: Q —
[0, 00) is a measurable function on .

We can introduce the following 2-inner product on LIQ) (©) by formula

(6.1)

om=3 [ fowoo] 100 10|46 2 o,
where £ (s) f(t)‘
his) h(t)
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generating the 2-norm on L2 (2) expressed by

62) /Il = (%/Q/Qp(s)p(t)l £8 28

A simple calculation with integrals reveals that

/prgdu /prhdu

(6.3) (f.9lh), =
2
/Q pghdp /Q ph”dp
and
1/2
/prZdM / pfhdp
(6.4) 1 f|nll, = “

/ pfhdy / ph*dp
Q Q

where, for simplicity, instead of [, p (s) f (s) g (s) du (s) , we have written [, pfgdpu.
Using the representations (6.3), (6.4) and the inequalities for 2-inner products
and 2-norms established in the previous sections, we can get some interesting de-
terminantal integral inequalities.
We give here only two examples.

Proposition 1. Let f,g1,...,gn,h € L% (Q), where p : Q — [0,00) is a
measurable function on §2, then we have the inequality

Zn: /Q pfgidu /Q pfhdp

=1 pgihdp /Q ph*dp

/ pf2dp / pfhdp
Q Q
<
/Q pfhdp  [o ph*dp
. Ja rgjgidp /Q pgihdp

det
X max Z;\ e i \
= pgihdp / ph=dp
Q Q
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r 11PN\ /P
n /Q pfgidp /Q pfhdp
X Z det
=1 /Q pgihdp [ phPdp
r 119\ /g
n /Q pfgidp /Q pfhdp
X Z det )
=1 / pgihdp / ph*dp
L Q Q _

1,1
where p > 1,p—|—q = 1.
The proof follows by the inequality for 2-inner products incorporated in (5.2).

Proposition 2. Let f,g1,...,gn,h € L% (Q), where p : Q — [0,00) is a
measurable function on §2, then we have the inequality

n / pfgidu / pfhdp
Q Q

D

=1 / pgihdp / ph*dp
Q Q

2

) /prQdu /prhdu
/,

pfhdyp / ph*dp
Q

hd
§ /ngjgidu /ngj i
det
j:
/ pgihdp / ph*dp
L Q Q i
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