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SHARPNESS AND GENERALIZATION
OF JORDAN’S INEQUALITY AND ITS APPLICATION

Shan-He Wu

Abstract. In this paper we sharpen and generalize the Jordan’s inequality,
our results unify and optimize some corresponding known results in the recent
papers. As application, the obtained results are used to improve the well-
known L. Yang’s inequality.

1. INTRODUCTION

The following inequality is known as the Jordan’s inequality [1]:
If 0 < x � π

2 , then

(1)
2
π

� sinx
x

< 1.

The Jordan’s inequality plays an important role in the trigonometry, calculus,
approximationtechnique and the theory of limit etc. Owing to various applications,
this inequality have been given considerable attention in the literature (see [2–4]).

In 2003, Debnath and Zhao [5] presented the following sharpness of Jordan’s
inequality

Theorem A. If 0 < x � π
2 , then

(2)
sinx
x

� 2
π

+
1
π3

(π2 − 4x2).

Recently, a reverse of the inequality (2) was given by Zhu [6] as follows:

Theorem B. If 0 < x � π
2 , then

(3)
sinx
x

� 2
π

+
π − 2
π3

(π2 − 4x2).
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In fact, the inequality (3) is a sharpness of the right hand side of Jordan’s
inequality, since the inequality (3) is equivalent to the inequality:

(4)
sinx
x

� 1 − 4π − 8
π3

x2.

An interesting analogue of the inequalities (2) and (3) was established by Deng
[7], i.e.

Theorem C. If 0 < x � π
2 , then

(5)
2
π

+
2

3π4
(π3 − 8x3) � sinx

x
� 2
π

+
π − 2
π4

(π3 − 8x3).

It is worth noticing that the constant factors 1
/
π3, (π − 2)

/
π3, 2

/
3π4 and

(π − 2)
/
π4 are best possible in the inequalities (2), (3) and (5) respectively, the

detailed accounts can be found in [6] and [7].
In this paper, by introducing two parameters θ and λ (0 < θ � π, λ � 2) we

give an unified sharpness and generalization of the above inequalities (see Theorem
1 below), which possesses the best possible coefficients. In section 4, we show that
the obtained result can be used for improving the well-known L. Yang’s inequality,
where an interesting result established by Debnath and Zhao in [5] is generalized
and sharpened.

2. LEMMAS

In order to prove the main results in Section 3 and Section 4, we need the
following Lemmas.

Lemma 1. If 0 < x � π, then

(6) 6 sinx− 2x− 4x cosx− x2 sinx > 0,

(7) x cosx < sinx <
2
3
x+

1
3
x cosx.

Proof. Define the following functions on the interval (0, π] by

φ(x) = 6 sinx− 2x− 4x cosx− x2 sinx,

and
ψ(x) = sinx− 2

3
x− 1

3
x cosx.
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Differentiating with respect to x gives

φ′(x) = 2 cosx+ 2x sinx− x2 cosx− 2, φ′′(x) = x2 sinx.

Obviously, φ′′(x) > 0 for all x ∈ (0, π), this implies that φ′(x) is strictly increas-
ing on (0, π), and so we have φ′(x) > φ′(0) = 0 for all x ∈ (0, π). Consequently,
we infer that φ(x) is strictly increasing on (0, π), this yields φ(x) > φ(0) = 0 for
all x ∈ (0, π]. The inequality (6) is proved.

Note that

ψ′(x) =
1
3
(2 cosx+ x sinx− 2) = −2

3
sinx(tan

x

2
− x

2
),

and using the well-known inequality [2]:

(8) tanx > x > sinx ( 0 < x <
π

2
),

we have ψ′(x) < 0 for all x ∈ (0, π). It shows that ψ(x) is strictly decreasing on
(0, π). Hence we get ψ(x) < ψ(0) = 0 for all x ∈ (0, π], which is the right-hand
inequality of (7).

The left-hand inequality of (7) can be deduced directly from (8) in the case
when 0 < x < π

2 , in addition, it is evidently valid for
π
2 � x � π, since here,

x cosx � 0 and sinx � 0.
The proof of Lemma 1 is complete.

Lemma 2. Let A � 0, B � 0 and let A+ B � θ, θ ∈ [0, π]. Then

(9) sin2 θ � cos2 A+ cos2B − 2 cosθ cosA cosB � 4 sin2 θ

2
.

Proof. Since

(10)

cos2 θ + cos2A+ cos2B − 2 cos θ cosA cosB

= (cos θ − cosA cosB)2 + cos2 A+ cos2B − cos2A cos2 B

= (cos θ − cosA cosB)2 − sin2 A sin2B + 1

= (cos θ − cos(A+B))(cos θ − cos(A−B)) + 1

= 4 sin θ+A+B
2 sin θ−A−B

2 sin θ+A−B
2 sin θ−A+B

2 + 1.

From the hypotheses A � 0, B � 0, A+ B � θ, θ ∈ [0, π], we infer that

θ +A+ B

2
,
θ −A −B

2
,
θ + A−B

2
,
θ −A+ B

2
∈ [0, π].
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Thus
cos2 θ + cos2A+ cos2 B − 2 cos θ cosA cosB � 1,

which yields the left-hand inequality of (9).
Note that f(x) = sinx is a continuous and concave function defined on [0, π],

using the Jensen’s inequality and the Arithmetic-geometric mean inequality [8], we
have

sin

θ +A+ B

2
+
θ −A− B

2
+
θ +A− B

2
+
θ −A+ B

2
4

� 1
4

(
sin

θ +A +B

2
+ sin

θ − A−B

2
+ sin

θ +A− B

2
+ sin

θ − A+B

2

)

�
(

sin
θ +A+ B

2
sin

θ − A−B

2
sin

θ +A− B

2
sin

θ − A+B

2

)1
4

,

this yields

(11) sin
θ + A+B

2
sin

θ −A− B

2
sin

θ + A−B

2
sin

θ −A+ B

2
� sin4 θ

2
.

Combining (10) and (11), we obtain

cos2A + cos2B − 2 cosθ cosA cosB � 1 + 4 sin4 θ

2
− cos2 θ = 4 sin2 θ

2
.

The Lemma 2 is proved.

3. SHARPNESS AND GENERALIZATION OF JORDAN’S INEQUALITY

In this section we establish the following sharp and generalized version of Jor-
dan’s inequality.

Theorem 1. Let 0 < x � θ, θ ∈ (0, π], and let λ � 2. Then

(12)

sin θ
θ

+
1
λ

(
sin θ
θ

− cos θ
)(

1− xλ

θλ

)

+
(

1 − sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
))(

1 − x

θ

)λ

� sinx
x

� sin θ
θ

+
(

1 − sin θ
θ

)(
1 − xλ

θλ

)
.
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where the coefficients 1
λ

(
sin θ

θ −cos θ
)
, 1− sinθ

θ − 1
λ

(
sin θ

θ −cos θ
)
and 1− sin θ

θ are
best possible.

Proof. By Lemma 1 and the hypothesis λ � 2, we have

(1 − x/θ)λ � (1 − x/θ)2 ,

and

1 − sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
)

� 1 − sin θ
θ

− 1
2

(
sin θ
θ

− cos θ
)

=
3
2

(
2
3

+
cos θ

3
− sin θ

θ

)
> 0.

It follows that (
1 − sin θ

θ
− 1
λ

(
sin θ
θ

− cos θ
))(

1 − x

θ

)λ

�
(

1 − sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
))(

1 − x

θ

)2
.

Now in order to prove the left-hand inequality of (12), we need only to prove
that

(13)

sinx
x

� sin θ
θ

+
1
λ

(
sin θ
θ

− cos θ
)(

1− xλ

θλ

)

+
(

1− sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
))(

1 − x

θ

)2
,

which is equivalent to

(14)

sinx
x

− 1 +
1
λ

(
sin θ
θ

− cos θ
)
xλ

θλ

−
(

1 − sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
))(

x2

θ2
− 2x

θ

)
� 0.

Define a function f : (0, θ] −→ R by

f(x) =
sinx
x2

− 1
x

+
1
λ

(
sin θ
θ

− cos θ
)
xλ−1

θλ

−
(

1 − sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
))(

x

θ2
− 2
θ

)
.
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Differentiating with respect to x gives

f ′(x) =
1
x2

+
cos x
x2

− 2 sinx
x3

+
λ− 1
λ

(
sin θ
θ

− cos θ
)
xλ−2

θλ

− 1
θ2

(
1 − sin θ

θ
− 1
λ

(
sin θ
θ

− cos θ
))

,

f ′′(x) =
6 sinx− 2x− 4x cosx− x2 sinx

x4

+
(λ− 1)(λ− 2)

λ

(
sin θ
θ

− cos θ
)
xλ−3

θλ
.

We conclude from Lemma 1 and λ � 2 that f ′′(x) > 0 for all x ∈ (0, θ]. It
implies that f ′(x) is strictly increasing on (0, θ], consequently f ′(x) < f ′(θ) = 0
for all x ∈ (0, θ). Thus we assert that f(x) is strictly decreasing on (0, θ), it follows
that f(x) � f(θ) = 0 for all x ∈ (0, θ], this yields xf(x) � 0 for all x ∈ (0, θ],
which leads to the inequality (14). Hence the left hand side of (12) is proved.

The right-hand inequality of (12) is equivalent to

(15)
sinx
x

− 1 +
(

1 − sin θ
θ

)
xλ

θλ
� 0.

Consider the function g : (0, θ] −→ R,

(16) g(x) =
sinx
x2

− 1
x

+
(

1− sin θ
θ

)
xλ−1

θλ
.

Differentiating with respect to x gives

g′(x) =
1
x2

+
cosx
x2

− 2 sinx
x3

+ (λ− 1)
(

1 − sin θ
θ

)
xλ−2

θλ
,

g′′(x) =
6 sinx− 2x− 4x cosx− x2 sinx

x4
+ (λ− 1)(λ− 2)

(
1 − sin θ

θ

)
xλ−3

θλ
.

By Lemma 1 and λ � 2 we conclude g′′(x) � 0 for all x ∈ (0, θ]. Hence g′(x)
is increasing on (0, θ].

In addition, since

lim
x→0

g′(x) =




−1
6
, λ > 2

− 1
θ3

(
sin θ − θ +

1
6
θ3
)
, λ = 2

,
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g′(θ) =
3
θ2

(
2
3

+
1
3

cos θ − sin θ
θ

)
+
λ− 2
θ2

(
1 − sin θ

θ

)
,

it follows from Taylor’s formula and Lemma 1 respectively that lim
x→0

g′(x) < 0 and
g′(θ) > 0.

Therefore by the continuity of g′(x) we conclude that there exists ξ ∈ (0, θ)
such that g ′(x) < 0 for all x ∈ (0, ξ) and g′(x) > 0 for all x ∈ (ξ, θ). This implies
that g(x) is strictly decreasing on (0, ξ) and increasing strictly on (ξ, θ). We get
g(x) � 0 for all x ∈ (0, θ], since g(x) → 0 (x → 0) and g(θ) = 0. Thus we
deduce that xg(x) � 0 for all x ∈ (0, θ], the right hand side inequality of (12) is
proved.

Next, we need to show that the coefficients 1
λ

(
sin θ

θ − cos θ
)
, 1− sin θ

θ − 1
λ

(
sin θ

θ

− cos θ
)
and 1 − sin θ

θ are best possible in the inequality (12).
Consider the inequality (12) in a general form as

(17)

sin θ
θ

+ k1

(
1 − xλ

θλ

)
+ k2

(
1 − x

θ

)λ

� sinx
x

� sin θ
θ

+ µ1

(
1 − xλ

θλ

)
+ µ2

(
1− x

θ

)λ
.

Firstly, let x→ 0 in (17), we find k1 + k2 � 1− sin θ
θ and µ1 + µ2 � 1− sin θ

θ .
Now it is easy to see that the best possible coefficients k1, k2, µ1 and µ2 are given
by the following inequality with the maximal k1 and minimal µ1

sin θ
θ

+ k1

(
1 − xλ

θλ

)
+
(

1 − sin θ
θ

− k1

)(
1− x

θ

)λ

� sinx
x

� sin θ
θ

+ µ1

(
1− xλ

θλ

)
+
(

1 − sin θ
θ

− µ1

)(
1 − x

θ

)λ
.

Based on the above inequality and the property of functional limit, we deduce
that

k1 � lim
x→θ

(
sinx
x

− sin θ
θ

−
(

1 − sin θ
θ

− k1

)(
1− x

θ

)λ
)/

(
1 − xλ

θλ

)
=

1
λ

(
sin θ
θ

− cos θ
)
,

and

lim
x→0

(
sinx
x

− sin θ
θ

− µ1

(
1− xλ

θλ

)
−
(

1 − sin θ
θ

− µ1

)(
1 − x

θ

)λ
)/

x � 0,

⇐⇒ λ

θ

(
1 − sin θ

θ
− µ1

)
� 0 ⇐⇒ µ1 � 1 − sin θ

θ
.
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Therefore, the best possible values of k1, k2, µ1 and µ2 in (17) are

k1 =
1
λ

(
sin θ
θ

− cos θ
)
, k2 = 1 − sin θ

θ
− 1
λ

(
sin θ
θ

− cos θ
)
,

µ1 = 1 − sin θ
θ
, µ2 = 0.

The proof of Theorem 1 is complete.

Putting λ = 2 and λ = 3 (together with θ = π
2 ) in (12) respectively, we obtain

Corollary 1. If 0 < x � π
2 , then

(18)
2
π

+
1
π3

(π2 − 4x2) +
π − 3
π3

(π − 2x)2 � sinx
x

� 2
π

+
π − 2
π3

(π2 − 4x2),

(19)
2
π

+
2

3π4
(π3 − 8x3) +

3π − 8
3π4

(π − 2x)3 � sinx
x

� 2
π

+
π − 2
π4

(π3 − 8x3).

Remark 1. From the inequalities (18) and (19), it is easy to see that the
inequality (12) is an unified generalization of the inequality (2), (3) and (5), es-
pecially, as a consequence of the inequality (12), the above inequalities have also
sharpened the inequality (2) and (5). So the inequality (12) can be considered as a
generalization and sharpness of Jordan’s inequality.

In inequality (12), putting λ = 2 and integrating both sides of the inequality
gives

Corollary 2. If 0 < θ � π, then

(20)
1
3
θ +

5
6

sin θ − 1
6
θ cos θ <

∫ θ

0

sinx
x

dx <
2
3
θ +

1
3

sin θ.

Specially, taking θ = π
2 in (20), an estimate of

∫ π
2

0 (sinx/x)dx is obtained as
follows

(21)
π + 5

6
<

∫ π
2

0

sinx
x

dx <
π + 1

3
.

4. APPLICATION TO THE IMPROVEMENT OF L. YANG’S INEQUALITY

It is well-known that the L. Yang’s inequality plays an important role in the
theory of distribution of values of functions, it can be stated as follows [9]:
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Theorem D. Let A1 > 0, A2 > 0, A1 + A2 � π, and let 0 � µ � 1. Then

(22) cos2 µA1 + cos2 µA2 − 2 cosµπ cosµA1 cosµA2 � sin2 µπ.

In [5], an improvement of L. Yang’s inequality was given by Debnath and Zhao,
i.e.

Theorem E. Let Ai > 0 (i = 1, 2, · · · , n, n � 2) with
∑n

i=1 Ai � π, let
0 � µ � 1, and let n be a natural number. Then

(23)

(
n
2

)
µ2(3 − µ2)2 cos2

µπ

2
� (n− 1)

n∑
k=1

cos2 µAk

−2 cosµπ
∑

1�i<j�n

cosµAi cosµAj �
(
n
2

)
µ2π2.

We give here a further sharpness and generalization of the inequality (23) by
using the improved Jordan’s inequality (12).

Theorem 2. Let Ai � 0 (i = 1, 2, · · · , n, n � 2) with
∑n

i=1 Ai � θ, θ ∈ [0, π],
let λ � 2, and let n be a natural number. Then

(24)

(
n
2

)((
π − 2 − 2

λ

)(
1 − θ

π

)λ

− 2
λ

(
θ

π

)λ

+
2
λ

+ 2

)2(
θ

π
cos

θ

2

)2

� (n− 1)
n∑

k=1

cos2Ak − 2 cos θ
∑

1�i<j�n

cosAi cosAj

�
(
n
2

)(
2
(
θ

π

)λ+1

− θ
(

θ
π

)λ
+ θ

)2

.

Proof. Let Hij = cos2Ai + cos2Aj − 2 cos θ cosAi cosAj . It follows from
Lemma 2 that

(25) sin2 θ � Hij � 4 sin2 θ

2
(1 � i < j � n).

Taking the sum for all inequalities in (25), we obtain

(26)
∑

1�i<j�n

sin2 θ �
∑

1�i<j�n

Hij �
∑

1�i<j�n

4 sin2 θ

2
.

From the following obvious identities:
∑

1�i<j�n

sin2 θ = 4
(
n
2

)
sin2 θ

2
cos2

θ

2
,

∑
1�i<j�n

4 sin2 θ

2
= 4

(
n
2

)
sin2 θ

2
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and

∑
1�i<j�n

Hij = (n − 1)
n∑

k=1

cos2Ak − 2 cos θ
∑

1�i<j�n

cosAi cosAj,

we deduce that

(27)
4
(
n

2

)
sin2 θ

2
cos2

θ

2
� (n− 1)

n∑
k=1

cos2Ak

−2 cos θ
∑

1�i<j�n

cosAi cosAj � 4
(
n
2

)
sin2 θ

2
.

On the other hand, utilizing the Theorem 1 together with 0 < θ
2 � π

2 , we obtain

sin π
2

π
2

+
1
λ

(
sin π

2
π
2

−cos
π

2

)(
1− θλ

πλ

)
+
(

1− sin π
2

π
2

− 1
λ

(
sin π

2
π
2

−cos
π

2

))(
1− θ

π

)λ

� sin θ
2

θ
2

� sin π
2

π
2

+
(

1− sin π
2

π
2

)(
1 − θλ

πλ

)
,

this yields

(28)
0 <

θ

π

((
π

2
− 1
λ
− 1
)(

1 − θ

π

)λ

− 1
λ

(
θ

π

)λ

+
1
λ

+ 1

)

� sin
θ

2
�
(
θ

π

)λ+1

− θ

2

(
θ

π

)λ

+
θ

2
.

It is easy to see that the inequality (28) is also valid for θ = 0 (It becomes the
identity).

Combining the inequalities (27) and (28) yield the inequality (24). This com-
pletes the proof of Theorem 2.

Note that when
∑n

i=1 Ai � π and 0 � µ � 1, it implies
∑n

i=1 µAi � µπ

and µπ ∈ [0, π]. By using the Theorem 2 with the substitution Ai → µAi

(i = 1, 2, · · · , n) and θ → µπ in (24), we get the following inequality.

Corollary 3. Let Ai > 0 (i = 1, 2, · · · , n, n � 2) with
∑n

i=1 Ai � π, let
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0 � µ � 1, λ � 2, and let n be a natural number. Then

(29)

(
n

2

)(
2λ− 2µλ + 2 + (λπ − 2λ− 2)(1− µ)λ

)2 (µ
λ cos µπ

2

)2
� (n− 1)

n∑
k=1

cos2 µAk − 2 cosµπ
∑

1�i<j�n

cosµAi cosµAj

�
(
n

2

)(
µπ + µλ+1(2 − π)

)2
.

In particular, putting λ = 2 in (29), a sharp version of inequality (23) is derived
as follows

Corollary 4. Let Ai > 0 (i = 1, 2, · · · , n, n � 2) with
∑n

i=1 Ai � π, let
0 � µ � 1, and let n be a natural number. Then

(30)

(
n

2

)
µ2
(

3 − µ2 + (π − 3)(1− µ)2
)2 cos2 µπ

2

� (n− 1)
n∑

k=1

cos2 µAk − 2 cosµπ
∑

1�i<j�n
cosµAi cosµAj

�
(
n
2

)
µ2
(
π − (π − 2)µ2

)2
.
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