TAIWANESE JOURNAL OF MATHEMATICS Vol. 7, No. 3, pp. 503-505, September 2003 This paper is available online at http://www.math.nthu.edu.tw/tjm/

UNIFORM CONVERGENCE THEOREM FOR THE H_1 -INTEGRAL REVISITED

Aleksander Maliszewski and Piotr Sworowski

Abstract. In this note we show that the uniform convergence theorem for the H_1 -integral is false.

1. Introduction

Most notions and notations we use is taken from [1]. Moreover for partial divisions D_1 and D_2 of a compact interval [a,b] we write $D_2 \supseteq D_1$, if for every $([s,t],\eta) \in D_2$ there is $([u,v],\xi) \in D_1$ such that $[s,t] \subset [u,v]$. Recall from [2] that a function $f \colon [a,b] \to \mathbb{R}$ is H_1 -integrable on [a,b] to a number $A \in \mathbb{R}$, if there exists a positive function δ on [a,b] such that for every $\varepsilon > 0$ there exists a division D_0 of [a,b] such that $|(D)\sum f(\xi)(v-u)-A| < \varepsilon$ for every δ -fine division $D \supseteq D_0$. (This definition is equivalent to the one from [1], see [3, Theorem 2.4]. The difference is in the definition of the relation \supseteq .) In this case we will say that A is the H_1 -integral of f on [a,b] and write $A = \int_a^b f$.

I. J. L. Garces and P. Y. Lee claimed to prove the uniform convergence theorem for the H_1 -integral [1, Theorem 4]. Alas, we have the following theorem.

Theorem 1. The uniform convergence theorem does not hold for the H_1 -integral.

Proof. Let (G_n) be a sequence of open dense subsets of [0,1], whose intersection E is a null set. For each $n \in \mathbb{N}$ denote by h_n the characteristic function of $[0,1] \setminus G_n$. By [2, Lemma 4], each function h_n is H_1 -integrable.

Received November 30, 2001; revised May 24, 2002.

Communicated by Y. J. Lee

2000 Mathematics Subject Classification: Primary 26A39.

Key words and phrases: H₁-integral, uniform convergence theorem.

The research was supported by the National Science Council, Taipei, R.O.C.

The series $f = \sum_{n \in \mathbb{N}} h_n/2^n$ is uniformly convergent on [0,1]. Suppose that f is H_1 -integrable using a positive function δ on [0,1]. For each $n \in \mathbb{N}$ let

$$E_n = \{ x \in E : \delta(x) > n^{-1} \}.$$

The set E is a dense \mathcal{G}_{δ} set, so it is residual. Thus there is an $n \in \mathbb{N}$ and an open interval I such that E_n is dense in I. Since E is a null set and f > 0 outside of E, there is an $m \geq n$ such that the measure of the closure of the set

$$F_m = \{x \in I \setminus E : f(x) > m^{-1} \text{ and } \delta(x) > m^{-1}\}$$

is positive, say M.

Define $\varepsilon = M/(2m)$. By assumption, there is a division D_0 of [0,1] such that

(1)
$$\left| (D) \sum f(\xi)(v-u) - \int_a^b f \right| < \varepsilon$$

for every δ -fine division $D \supseteq D_0$. Without loss of generality we may assume that a subset of D_0 , say D_I , is a division of I. Every interval from D_I can be written as the union of a finite family of nonoverlapping intervals of length less than m^{-1} . Denote by \mathcal{A} the family of all these intervals. Clearly if

$$\mathcal{B} = \{ J \in \mathcal{A} : J \cap F_m \neq \emptyset \},\$$

then $\sum_{J\in\mathcal{B}}|J|\geq M$.

For each $J \in \mathcal{B}$ we can pick an $x_J \in J \cap F_m$ and, as E_n is dense in I, a $y_J \in J \cap E_n$. Let $D_1 \supseteq D_0$ be a δ -fine division of $[0,1] \setminus \bigcup_{J \in \mathcal{B}} J$. Both $D_2 = \{(J,x_J): J \in \mathcal{B}\}$ and $D_3 = \{(J,y_J): J \in \mathcal{B}\}$ are δ -fine partial divisions of [0,1] and $D_2,D_3 \supseteq D_I$. So, $D_4 = D_1 \cup D_2$ and $D_5 = D_1 \cup D_3$ are δ -fine divisions of [0,1] such that $D_4,D_5 \supseteq D_0$.

For all $J \in \mathcal{B}$ we have $f(x_J) > m^{-1}$ and $f(y_J) = 0$. Thus

$$(D_4) \sum f(\xi)(v-u) - (D_5) \sum f(\xi)(v-u) > m^{-1} \sum_{J \in \mathcal{B}} |J| \ge M/m = 2\varepsilon,$$

contrary to (1). Consequently, f is not H_1 -integrable.

I. J. L. Garces and P. Y. Lee proved the controlled convergence theorem for the H_1 -integral [1, Theorem 6]: if an equi- H_1 -integrable sequence of functions (f_n) is pointwise convergent to some function f, then f is H_1 -integrable and $\int f = \lim \int f_n$. In view of Theorem 1, we obtain the following corollary.

Corollary 2. There is a uniformly convergent sequence of H_1 -integrable functions which is not equi- H_1 -integrable.

So, [1, Theorem 4] (the one which turned out to be false) does not follow from [1, Theorem 6], contrary to the remark at the bottom of page 444 of [1].

REFERENCES

- 1. I. J. L. Garces and P. Y. Lee, Convergence theorems for the H_1 -integral, *Taiwanese Journal of Mathematics* 4 (2000), 439-445.
- 2. I. J. L. Garces, P. Y. Lee and D. Zhao, Moore–Smith limits and the Henstock integral, *Real Analysis Exchange* **24** (1998-99), 447-456.
- 3. P. Sworowski, On H_1 -integrable functions, *Real Analysis Exchange* **27** (2001-02), 275-286.

Aleksander Maliszewski and Piotr Sworowski Bydgoszcz Academy, Department of Mathematics, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland E-mail: AMal@ab.edu.pl and piotrus@ab.edu.pl