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SINGULAR LIMIT OF A CLASS OF NON-COOPERATIVE
REACTION-DIFFUSION SYSTEMS

D. Hilhorst, M. Mimura and R. Weidenfeld

Abstract. We consider a two component reaction-diffusion system with a
small parameter ²

8
><
>:

ut = du¢u+
1

²
(umv ¡ aun);

vt = dv¢v ¡
1

²
umv;

where m and n are positive integers, together with zero-flux boundary condi-
tions. It is known that any nonnegative solution becomes spatially homoge-
neous for large time. In particular, when n > m ¸ 1, (u²; v²)(t) ! (0; 0) as
t!1, while when m ¸ n ¸ 1, there exists some positive constant v²1 such
that (u²; v²)(t) ! (0; v²1) as t ! 1. In order to find the value of v²1, we
derive a limiting problem when ² ! 0 under some conditions on the values
of m, n and on the initial functions (u0; v0), by which an approximate value
of v²1 can be obtained.

1. INTRODUCTION

Among many classes of reaction-diffusion (RD) systems, we restrict ourselves
to the following rather specific two component RD system :

½
ut = du¢u+ kumv ¡ aun;
vt = dv¢v ¡ kumv;(1.1)

where u, v are the concentrations of U , V , respectively, which are governed by the
following cubic autocatalytic chemical reaction processes :

½
mU + V ¡! (m+ 1)U
nU ¡! P:

Received February 19, 2003.
Communicated by S. B. Hsu.
2000 Mathematics Subject Classification: 35J65, 35J55, 92D25.
Key words and phrases: singular limit, non-cooperative systems.

391



392 D. Hilhorst, M. Mimura and R. Weidenfeld

For the system (1.1), the positive constants du and dv are the diffusion rates for u
and v respectively, k and a are the reaction rates which are positive constants and
m, n are some positive integers. In the specific case where m = n = 1, (1.1) is
a diffusive epidemic model where u and v are respectively the population densities
of infective and susceptable species [1]. When m = 2, n = 1, it is called the
Gray-Scott model and describes an autocatalytic chemical process [2]. Fundamental
problems for (1.1) involve the global existence, uniqueness and asymptotic behavior
of nonnegative solutions in a smooth bounded domain ­ (in RN ) together with the
boundary and initial conditions

@u

@º
(x; t) =

@v

@º
(x; t) = 0; for all (x; t) 2 @­£R+;(1.2)

u(x; 0) = u0(x) ¸ 0; v(x; 0) = v0(x) ¸ 0 x 2 ­,(1.3)

where º stands for the outward normal unit vector to @­. If a = 0, (1.1) reduces
to

½
ut = du¢u+ kumv;
vt = dv¢v ¡ kumv;(1.4)

which is called a consumer and resource system with balance law. There are many
papers devoted to the system (1.4) with (1.2), (1.3) (e.g. [3, 4, 5, 6, 7, 8, 9, 10]).
Indeed, we know that as t ! 1, (u; v)(t) converges to (u1; 0) uniformly in ¹­
where u1 is explicitly given by u1 =< u0 + v0 >. Here < w > is the spatial
average of w over ­. Furthermore, it is proved by [10] that for m > 1 there exists
some constant K > 0 such that

k(u(t)¡ u1; v(t))kL1(­) –< Kt¡
1

m¡1 as t!1.

On the other hand, if a > 0, the asymptotic state depends on the values of m and
n. If n > m ¸ 1, (u; v)(t) converges to (0; 0) uniformly in ¹­ as t ! 1. On
the contrary, if m ¸ n ¸ 1, there exists a positive constant v1 such that (u; v)(t)
converges to (0; v1) uniformly in ¹­ as t ! 1 [11]. That is, every solution of
(1.1)-(1.2) becomes spatially homogeneous for large time. We therefore conclude
that the fundamental problems stated above have been already solved. However,
from qualitative points of view, we still have the following question on (1.1)-(1.3):

Question 1: when m ¸ n ¸ 1, how does the asymptotic state v1 depend on
the initial functions u0, v0, on k, a and on the domain ­?

This question has not yet been solved, except in some special cases. Consider
first a limiting situation where the reaction rates k and a are both sufficiently small
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(or, in other words, the diffusion rates are very large), so that (1.1) can be rewritten
as

8
><
>:

ut =
1

²
du¢u+ umv ¡ aun;

vt =
1

²
dv¢v ¡ umv:

(1.5)

Here we may set k = 1. For sufficiently small ² > 0, the two-timing method
reveals that the solution (u; v) becomes immediately spatially homogeneous and
then its time evolution is described by the solution of the initial value problem for
the following system of ordinary differential equations :

½
Ut = UmV ¡ aUn;
Vt = ¡ UmV;

(1.6)

together with the initial conditions

(U; V )(0) = (< u0 >;< v0 >):(1.7)

We will show in Section 4 that there exists some positive constant V1 such that
as t ! 1, the solution (U; V )(t) of (1.6), (1.7) converges to (0; V1), where V1

approximately gives the value v1 for the original problem (1.1)-(1.3). For a more
precise discussion, we refer to the papers by[12, 13].

The aim of this paper is to answer Question 1, assuming another limiting situ-
ation which is opposite to (1.5). Let us rewrite (1.1) as

8
><
>:

ut = du¢u+
1

²
(umv ¡ aun);

vt = dv¢v ¡
1

²
umv:

(1.8)

We study the limiting behavior as ² ! 0 of solutions (u²; v²) of System (1.8)
together with the boundary and initial conditions (1.2) and (1.3). We assume that
the initial functions u0 and v0 satisfy the hypothesis ku0km¡nL1(­)kv0kL1(­) < a and
derive the limiting system corresponding to (1.8) as ²! 0, which in turn yields the
asymptotic limit of the constant v²1 as ²! 0, where v²1 is the asymptotic limit of
v²(t) as t!1.

More precisely, we prove a compactness property for the sequence f(u²; v²)g and
a strong decay property for the function u²(t). This leads us to prove the convergence
of a subsequence of fv²g to a function v solution of a Neumann Problem for the heat
equation. In order to characterize the initial condition of the limiting problem, we
prove that until a time of order ² ln 1=² the difference in the L2(­)-norm between
the pairs (u²; v²)(t) and (U; V )(t=²) where (U; V ) is the solution of (1.6) is of
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order of ²¯ where ¯ is a positive constant. Thus, we identify the initial function of
the limiting problem with the asymptotic limit as t ! 1 of V (t), which in turn
proves the convergence of the whole sequence fv²g. Then the limit as ² ! 0 of
the constant v²1 is obtained by using the decay property of u² together with the fact
that the average of the limiting function v does not depend on time.

The contents of this paper is as follows: In Section 2, we state the main results
and in Sections 3-7, we prove some lemmas as well as the main results. Finally,
in Section 8, we present concluding remarks about the system (1.8) together with
(1.2) and (1.3).

2. RESULTS

We may use a spatial rescaling which amounts to setting du = 1 and dv = d
and consider the following ²-family of problems :

(P ²)

8
>>>>>>>><
>>>>>>>>:

ut = ¢u+
1

²
(umv ¡ aun) in Q := ­£ (0;1)

vt = d¢v ¡ 1

²
umv in Q,

@u

@º
=
@v

@º
= 0 on @­£ (0;1),

u(x; 0) = u0(x); v(x; 0) = v0(x) for all x 2 ­,

where ­ is a smooth bounded domain of RN , m ¸ n ¸ 1, d and a are positive
constants and u0; v0 2 C1(¹­) are both nonnegative functions. In the sequel we use
the notation QT := ­£ (0; T ).

It is well known (see [6], [11]) that there exists a unique global bounded non-
negative smooth solution pair (u²; v²) of Problem (P ²). We make the hypothesis

Ha : Mm¡n
1 M2 < a;

where

M1 := ku0kL1(­) and M2 := kv0kL1(­):

The main result of this paper is the following :

Theorem 2.1 Let T > 0 be fixed arbitrarily. As ²! 0

u² ! 0 in C(¹­£ [¹;1)) \ L2(QT )(2.1)

for all ¹ > 0 and there exists a function v 2 L2(QT ) such as

v² ! v in L2(QT ),(2.2)
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where the function v is the unique classical solution of the problem

(P 0)

8
>>><
>>>:

vt = d¢v in Q,

@v

@º
= 0 on @­£ (0;1),

v(x; 0) = ¹V (x) for all x 2 ­,

and

¹V (x) = lim
t!1

V (x; t);

where (U; V ) is the unique solution of the initial value problem (Q0)

(Q0)

8
>><
>>:

Ut = UmV ¡ aUn in Q;

Vt = ¡ UmV in Q;

U(x; 0) = u0(x) V (x; 0) = v0(x) for all x 2 ­:

The one-dimensional case of this result is also numerically confirmed by (Fig. 1-1).

In order to prove this result, we introduce a new time variable ¿ =
t

²
and set

U ²(x; ¿) := u²(x; t) V ²(x; ¿) := v²(x; t):

Then U ² and V ² satisfy the problem

(Q²)

8
>>>>>>>><
>>>>>>>>:

Ut = ²¢U + UmV ¡ aUn in Q,

Vt = ²d¢V ¡ UmV in Q,

@U

@º
=
@V

@º
= 0 on @­£ (0;1),

U(x; 0) = u0(x) V (x; 0) = v0(x) for all x 2 ­.

We recall [11] that

(u²; v²)(t) ! (0; v²1) in C(¹­) as t!1,(2.3)

for some positive constant v²1.
The second result which we prove is the following :

Theorem 2.2. Let (0; v²1) be the equilibrium solution of (P ²). Then

v²1 ! 1

j­j

Z

­

¹V (x)dx as ²! 0.(2.4)
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This theorem tells us that for small ² > 0, the value v²1 is approximately given
by the spatial average of ¹V (x) which is the asymptotically stable critical point of
(Q0).

Remark. In the case that m = n, the condition Ha becomes kv0kL1(­) < a.
Suppose that it is not satisfied ; then Theorem 2.2 does not hold. As a counter
example, we consider the one-dimensional problem in the interval ­ = (0; 1) and

choose u0 with support in [0;
1

2
] and v0 = 3a on ­. Then, the study of the ODE

system (Q²) shows that V (x; t) = v0 = 3a for x 2 (
1

2
; 1] and all t > 0 so that

Z 1

0

¹V (x)dx ¸ 3a

2
;

whereas if m = n,

v²1 < a:

In the appendix, we study two special cases without assuming Hypothesis Ha.
As the first case, we take a = 0. Then the L1(­) norm of (u²+ v²)(t) is preserved
in time and equal to the average over ­ of (u0 + v0). Thus the asymptotic behavior
of (u²; v²)(t) as t ! 1 is well known. More precisely, we prove the following
result:

Theorem 2.3. Let (u²; v²) be the solution of (P ²) with a = 0. Then

v² ! 0 in L2(QT ) as ²! 0,(2.5)

and

u² ! u in L2(QT ) as ²! 0,

where u is the unique solution of the problem
8
>>>><
>>>>:

ut = ¢u in ­£ (0; T ),

@u

@º
= 0 on @­£ (0; T ),

u(x; 0) = u0(x) + v0(x) for all x 2 ­.

The second case which we consider is the case that n > m ¸ 1. Then we have
that (see [11])

(u²; v²)(t) ! (0; 0) as t!1.
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We prove the following result :

Theorem 2.4. Fix T > 0 arbitrarily and suppose that n > m ¸ 1 and that
u0(x) > 0 for all x 2 ­. Then

u²(t); v²(t) ! 0 in L2(QT ) as ²! 0.(2.6.)

The proof of these two theorems are shown in the Appendix.

3. DECAY OF u² AND PRECOMPACTNESS OF fv²g

We start with the following lemma :

Lemma 3.1. Let (u²; v²) be the solution of Problem (P ²). Then

0 –<
1

²

Z 1

0

Z

­
(u²)mv² –<

Z

­
v0;(3.1)

and
Z

­
u0 –<

a

²

Z 1

0

Z

­
(u²)n –<

Z

­
(u0 + v0):(3.2)

Proof. Integrating the second equation in (P ²) over ­£ (0; t) gives

Z

­
v²(t)¡

Z

­
v0 = ¡1

²

Z t

0

Z

­
(u²)mv²;

in which we let t!1 to deduce (3.1). Furthermore, adding up the two parabolic
equations in (P ²) and integrating over ­£ (0; t) gives

Z

­
(u² + v²)(t)¡

Z

­
(u0 + v0) = ¡a

²

Z t

0

Z

­
(u²)n;

and letting t!1 we deduce, also using that u²(t) ! 0 as t!1, that

a

²

Z 1

0

Z

­
(u²)n =

Z

­
(u0 + v0)¡ lim

t!1

Z

­
v²(t):

Also since

d

dt

Z

­
v²(t) = ¡1

²

Z

­
(u²)mv² –< 0;
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we obtain
Z

­
v²(t) –<

Z

­
v0:

Finally (3.2) follows from the inequality

0 –< lim
t!1

Z

­
v²(t) –<

Z

­
v0:

Next we show the following result :

Lemma 3.2. Let (u²; v²) be a solution of (P ²). Then

0 –< v²(x; t) –< M2;(3.3)

and

0 –< u²(x; t) –<

8
>>>>><
>>>>>:

M1e
¡
±t

² if n = 1,

M1
³
1 + (n¡ 1)±Mn¡1

1

t

²

´ 1
n¡1

if n > 1,
(3.4)

for all (x; t) 2 Q, where ± := a¡ ku0km¡nL1(­)kv0kL1(­) = a¡Mm¡n
1 M2 > 0.

Proof. The second inequality in (3.3) follows from the maximum principle.
Next we prove the second inequality in (3.4). Define L² by

L²(w) := wt ¡¢w ¡ 1

²
(wmv² ¡ awn)

for a smooth function w and solve the following initial value problem :

8
<
:

¹u²t = ¡ ±

²
(¹u²)n;

¹u²(0) = M1:

We find that

¹u²(t) =

8
>>><
>>>:

M1e
¡ ±t

² if n = 1,

M1
³
1 + (n¡ 1)±Mn¡1

1

t

²

´ 1
n¡1

if n > 1.
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Indeed, if n = 1, we have that

¹u²t = (M1e
¡ ±t

² )t = ¡M1
±

²
e¡

±t
² = ¡±

²
¹u²;

whereas if n > 1, we have that

¹u²t =

Ã
M1

³
1 + (n¡ 1)±Mn¡1

1

t

²

´ 1
n¡1

!

t

=
³
¡ 1

n¡ 1
(n¡ 1)±Mn¡1

1

1

²

´ M1
³
1 + (n¡ 1)±Mn¡1

1

t

²

´ 1
n¡1

+1

= ¡±
²

Mn
1³

1 + (n¡ 1)±Mn¡1
1

t

²

´ n
n¡1

= ¡±
²
(¹u²)n:

Thus

L²(¹u²) = (¹u²)t ¡¢¹u² +
1

²
(¹u²)n(a¡ (¹u²)m¡nv²)

= ¡ ±

²
(¹u²)n +

1

²
(¹u²)n(a¡ (¹u²)m¡nv²)

=
1

²
(¹u²)n

³
a¡ ± ¡ (¹u²)m¡nv²

´
:

Since ¹u² –< M1 and by the definition of ±, we find that

a¡ ± ¡ (¹u²)m¡nv² ¸ a¡ ± ¡Mm¡n
1 M2 = 0;

so that

L²(¹u²) ¸ 0:

Since

@¹u²

@º
= 0 on @­£ R+;

and

¹u²(0) = M1 ¸ u0(x);

the comparison principle (see for instance [14]) insures that

u²(x; t) –< ¹u²(t) for all (x; t) 2 Q:
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Corollary 3.3. We have that

u² ! 0 as ²! 0 in C(¹­£ [¹;1))

for all ¹ > 0 and

u² ! 0 as ²! 0 in L2(QT ),

for all T > 0.

Proof. Let ¹ positive be arbitrary. We deduce from Lemma 3.2 that

sup
¹­£[¹;1)

ju²(x; t)j –<

8
>><
>>:

M1e
¡ ±¹

² if n = 1,
M1

³
1 + (n¡ 1)±Mn¡1

1

¹

²

´ 1
n¡1

if n > 1,

which converges to zero as ²! 0. Moreover we have that for all T ¸ ¹ > 0

R T
0

R
­(u²)2 =

R ¹
0

R
­(u²)2 +

R T
¹

R
­(u²)2

–< ¹j­jM2
1 + (T ¡ ¹)j­jM2

1

8
>><
>>:

e¡
2±¹
² if n = 1;

1
³
1 + (n¡ 1)±Mn¡1

1

¹

²

´ 2
n¡1

if n > 1;

in which we let ² tend to 0 to deduce

lim sup
²!0

Z T

0

Z

­
(u²)2 –< ¹j­jM2

1

for all ¹ > 0 so that

lim sup
²!0

Z T

0

Z

­
(u²)2 = 0;

which completes the proof.

Next we will show a compactness property for the sequence fv²g.

Lemma 3.4. There exists a positive constant C1 such that
Z 1

0

Z

­
jrv²j2 –< C1:
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Proof. We multiply the second equation of (P ²) by v² and integrate by parts to
obtain

1

2

Z

­
(v²(t))2 + d

Z t

0

Z

­
jrv²j2 –<

1

2

Z

­
v0;

where we then let t!1.

Lemma 3.5. The sequence fv²g is relatively compact in L2(0; T ;L2(­)). In
particular, there exists a subsequence which we denote again by fv²g and a function
v such that

v² ! v strongly in L2(QT ),

as ²! 0.

Proof. By Lemma 3.4, we find that fv²g is bounded in L2(0; T ;H1(­)). This
implies that

f¢v²g is bounded in L2(0; T ; (H1(­))0).

Furthermore, Lemma 3.1 gives

f1

²
(u²)mv²g is bounded in L1(0; T ;L1(­)).

In particular, since Hs(­) ½ L1(­) for s large enough

L1(­) ½ (L1(­))0 ½ (Hs(­))0;

holds. It follows that

f1

²
(u²)mv²g is bounded in L1(0; T ; (Hs(­))0)

which together with the fact that (H1(­))0 ½ (Hs(­))0 for s ¸ 1, implies that

fv²tg is bounded in L1(0; T ; (Hs(­))0).

Since also

fv²g is bounded in L2(0; T ;H1(­))

and by the embeddings H1(­) ½ L2(­) ½ (Hs(­))0) where the first embedding is
compact, it follows from [15, Corollary 4]sim that

fv²g is precompact in L2(0; T ;L2(­)),
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which completes the proof.
The above results are sufficient to prove that v satisfies the parabolic equation

and the homogeneous Neumann boundary condition in Problem (P 0). However we
cannot prove yet that v satisfies the initial condition in Problem (P 0) and therefore
we cannot prove either at this point that the function v is uniquely defined.

4. THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

In this section we study the system :

(IV P )

8
><
>:

Ut = UmV ¡ aUn for t > 0,

Vt = ¡ UmV for t > 0,

U(0) = u0 V (0) = v0;

where 0 –< u0 –< M1 and 0 –< v0 –< M2 are fixed constants. We only suppose that
the constants m and n are such that m;n ¸ 1.

Lemma 4.1. Problem (IV P ) has a unique solution (U; V ) such that for any
t ¸ 0

0 –< U(t) –< u0 + v0 –< M1 +M2

and

0 –< V (t) –< v0 –< M2

hold. Moreover

(U; V ) ! (0; ¹V ) as t!1.

Proof. Since u0; v0 ¸ 0, we have that U; V ¸ 0. Also since Vt –< 0 and

(U + V )t = ¡aUn
–< 0;

it follows that

V (t) –< v0 ; U(t) –< u0 + v0:

Since V (t) is nonincreasing and bounded from below there exists a constant ¹V 2
[0; v0] such that

V (t) ! ¹V as t!1.



Non-cooperative Reaction-diffusion Systems 403

Similarly there exists a constant ¹U such that

U(t) + V (t) ! ¹U + ¹V as t!1.

Therefore

U(t) ! ¹U as t!1,

and ¹U 2 [0; u0 +v0]. Setting U t(s) = U(t+s) and V t(s) = V (t+s) for s 2 [0; 1],
we deduce that

U t ! ¹U ; V t ! ¹V in C([0; 1]),

as t!1. Integrating the differential equations for U and V gives
8
>><
>>:

U(t+ 1)¡ U(t) =

Z t+1

t

³
UmV ¡ aUn

´
;

V (t+ 1)¡ V (t) = ¡
Z t+1

t
UmV;

which we rewrite as
8
>><
>>:

U t(1)¡ U t(0) =

Z 1

0

³
(U t)mV t ¡ a(U t)n

´
;

V t(1)¡ V t(0) = ¡
Z 1

0
(U t)mV t:

Letting t!1, we deduce that
(

0 = ( ¹U)m ¹V ¡ a( ¹U)n;

0 = ¡( ¹U)m ¹V ;

so that ( ¹U)n = 0 and thus ¹U = 0.

Remark. In the special case that m = n, we have that
8
>>><
>>>:

U(t) + V (t) = u0 + v0 ¡ a
Z t

0
Um(s)ds;

V (t) = v0e
¡
Z t

0
Um(s)ds

;

which implies, letting t!1, the following equalities involving ¹V :
8
>><
>>:

¹V = u0 + v0 ¡ a
Z 1

0
Um(s)ds;

¹V = v0e
¡
Z 1

0
Um(s)ds

:
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Setting I =
R1
0 Um(s)ds, one can compute I from the identity

u0 + v0 ¡ aI = voe
¡I ;

and then deduce that

¹V = u0 + v0 ¡ aI = voe
¡I :

5. GRADIENT ESTIMATES FOR THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

Again we only suppose that m;n ¸ 1 and we consider the system

(Q0)

8
><
>:

Ut = UmV ¡ aUn in Q,

Vt = ¡ UmV in Q,

U(x; 0) = u0(x); V (x; 0) = v0(x) for all x 2 ­.

By Lemma 4.1, we have that for each x 2 ­

V (x; t) ! ¹V (x) as t!1.

Since V (x; t) –< M2, the Lebesgue monotone convergence theorem implies the fol-
lowing result :

Lemma 5.1. For all p 2 [1;1) we have that

V (x; t) ! ¹V (x) in Lp(­) as t!1.

Next we prove the following lemma :

Lemma 5.2. There exist two positive constants C2 and C3 such that

krU(t)kL1(­); krV (t)kL1(­) –< C2e
C3t for all t > 0(5.1)

Proof. We set

W = U + V;

so that
U = W ¡ V:

We have that (
Vt = ¡UmV in Q,

Wt = ¡aUn in Q,
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and therefore

V (t) = v0e
¡
Z t

0
Um(s)ds

;

W (t) = (u0 + v0)¡ a
Z t

0
Un(s)ds:

Thus

rV (t) = rv0e
¡
Z t

0
Um(s)ds

¡ v0m
³Z t

0

³
Um¡1rU

´
ds
´
e
¡
Z t

0
Um(s)ds

;

rW (t) = r(u0 + v0)¡ an
Z t

0
Un¡1(s)rU(s)ds;

which imply that

jrV (t)j –< jrv0j+ C

Z t

0
jrU(s)jds;

jrW (t)j –< jr(u0 + v0)j+ C

Z t

0
jrU(s)jds;

and then

jrV (t)j –< jrv0j+ C

Z t

0
(jrV (s)j+ jrW (s)j)ds;

jrW (t)j –< jr(u0 + v0)j+ C

Z t

0
(jrV (s)j+ jrW (s)j)ds:

Next we add up those two inequalities to deduce

jrV (t)j+ jrW (t)j –< jrv0j+ jr(u0 + v0)j+ C

Z t

0
(jrV (s)j+ jrW (s)j)ds;

and finally we obtain

jrV (t)j+ jrW (t)j –< ~CeCt;

which completes the proof.

6. ASYMPTOTIC LIMIT OF PROBLEM (Q²)

In this section we study the limiting behavior as ²! 0 of the solution (U ²; V ²)
of Problem (Q²) :
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(Q²)

8
>>>>>>>><
>>>>>>>>:

Ut = ²¢U + UmV ¡ aUn in Q,

Vt = ²d¢V ¡ UmV in Q,

@U

@º
=
@V

@º
= 0 on @­£ (0;1),

U(x; 0) = u0(x) V (x; 0) = v0(x) for all x 2 ­.

Here we suppose that one of the two following hypotheses is satisfied :
(i) m ¸ n ¸ 1 and ku0km¡nL1(­)kv0kL1(­) < a,
or
(ii) n > m ¸ 1.

We first prove the following estimates :

Lemma 6.1. There exists a positive constant ~M1 such that

½
0 –< U ²(x; t) –< ~M1;
0 –< V ²(x; t) –< M2;

(6.1)

for all (x; t) 2 ­£ [0;1). Moreover there exists a positive constant C4 such that
for all t ¸ 0

Z t

0

Z

­
jrU ²j2 –<

C4

²
;(6.2)

Z t

0

Z

­
jrV ²j2 –<

C4

²
:(6.3)

Proof. The comparison principle insures that

0 –< V ²(x; t) –< M2:

Suppose that n > m ¸ 1. We remark that there exists M3 such that

rmM2 ¡ arn –< 0 for all r ¸M3.

Then applying a comparison principle, one has that

U ²(x; t) –< ~M1 for all (x; t) 2 Q,(6.4)

where ~M1 = max(M1;M3).
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In the case that m ¸ n ¸ 1, we recall that

U ²(x; t) = u²(x; ²t) V ²(x; t) = v²(x; ²t);

for all (x; t) 2 ­£ [0;1). Then Lemma 3.2 gives

0 –< u²(x; ²t) –< M1 –< ~M1;

which proves the inequalities (6.1).
Then by multiplying the second equation for in (Q²) by V ² and integrating by

part, we obtain

1

2

Z

­
(V ²)2(t) + ²d

Z t

0

Z

­
jrV ²j2 +

Z t

0

Z

­
(U ²)n(V ²)2 =

1

2

Z

­
v2
0;

so that

²d

Z t

0

Z

­
jrV ²j2 –<

1

2

Z

­
v2
0:

Next adding the equations for U ² and V ², we have

U ²
t + V ²

t = ²¢U ² + ²d¢V ² ¡ a(U ²)n

= ²¢(U ² + V ²) + ²(d¡ 1)¢V ² ¡ a(U ²)n;

so that

1

2

d

dt

Z

­

³
U ² +V ²

´2
+ ²

Z

­

¯̄
¯r(U ² + V ²)

¯̄
¯
2
+ a

Z

­
(U ²)n

³
U ² + V ²

´

= ²(d¡ 1)

Z

­
rV ²:r(U ² + V ²);

and

1

2

Z

­

³
U ² + V ²

´2
(t) +

²

2

Z t

0

Z

­

¯̄
¯ r(U ² + V ²)

¯̄
¯
2

–<
1

2

Z

­
(u0 + v0)

2 + ²C(d)

Z t

0

Z

­

¯̄
¯rV ²

¯̄
¯
2

–< C:

Thus we conclude that

²

Z t

0

Z

­

¯̄
¯rU ²

¯̄
¯
2

–< 2²

Z t

0

Z

­

¯̄
¯r(U ² + V ²)

¯̄
¯
2
+ 2²

Z t

0

Z

­

¯̄
¯rV ²

¯̄
¯
2

–< C;

which completes the proof.
Next we prove the following result :
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Theorem 6.2. There exists positive constants ®, ¯ and C5 such that for all

t 2 [0; ln
1

²®
]

Z t

0

Z

­

h³
U ² ¡ U

´2
+
³
V ² ¡ V

´2i
(x; s)dxds –< C5²

¯:(6.5)

Proof. We set ~U ² = U ² ¡ U and ~V ² = V ² ¡ V and we define

fm(r; s) =

8
<
:

rm ¡ sm
r ¡ s if r 6= s,

mrm¡1 if r = s,

and

fn(r; s) =

8
<
:

rn ¡ sn
r ¡ s if r 6=]texts;

nrn¡1 if r = s:

Then we have that

~U ²
t = (U ² ¡ U)t

= ²¢U ² + (U ²)mV ² ¡ a(U ²)n ¡ UmV + aUn

= ²¢U ² + V ²((U ²)m ¡ Um) + Um(V ² ¡ V )¡ a((U ²)n ¡ Un)

= ²¢U ² +
³
V ²fm(U ²; U)¡ afn(U ²; U)

´
~U ² + Um ~V ²;

and
~V ²
t = (V ² ¡ V )t

= ²d¢V ² ¡ (U ²)mV ² + UmV

= ²d¢V ² ¡ (U ²)m ~V ² ¡ V fm(U ²; U) ~U ²:

Thus ~U ² and ~V ² satisfy the problem :
8
>>>>>>><
>>>>>>>:

~U ²
t = ²¢U ² +

³
V ²fm(U ²; U)¡ afn(U ²; U)

´
~U ² + Um ~V ² in Q;

~V ²
t = ²d¢V ² ¡ (U ²)m ~V ² ¡ V fm(U ²; U) ~U ² in Q;

@U ²

@º
=
@V ²

@º
= 0 on @­£ (0;1);

~U ²(x; 0) = 0 ~V ²(x; 0) = 0 for all x 2 ­:

Multiplying the equations respectively by ~U ² and ~V ² and integrating over ­ gives
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1

2

d

dt

Z

­
( ~U ²)2 = ²

Z

­
¢U ² ~U ² +

Z

­

³
V ²fm(U ²; U)¡afn(U ²; U)

´
( ~U ²)2 +

Z

­
Um ~V ² ~U ²;

1

2

d

dt

Z

­
( ~V ²)2 = ²d

Z

­
¢V ² ~V ² ¡

Z

­
(U ²)m( ~V ²)2 ¡

Z

­
V fm(U ²; U) ~U ² ~V ²;

and then

1

2

d

dt

Z

­
( ~U ²)2 = ¡²

Z

­
rU ²:r ~U ²

+

Z

­

³
V ²fm(U ²; U)¡afn(U ²; U)

´
( ~U ²)2 +

Z

­
Um ~V ² ~U ²;

(6.6)

1

2

d

dt

Z

­
( ~V ²)2 = ¡²d

Z

­
rV ²:r ~V ²¡

Z

­
(U ²)m( ~V ²)2¡

Z

­
V fm(U ²; U) ~U ² ~V ²:(6.7)

By the lemmas 4.1 and 6.1, one finds that there exists a positive constant C such
that

0 –< U ²; V ²; U; V –< C in ­£ [0;1):

Therefore summing (6.6) and (6.7) gives

1

2

d

dt

Z

­

³
( ~U ²)2 + (~V ²)2

´
–< ¡ ²

Z

­
rU ²:r ~U ² ¡ ²d

Z

­
rV ²:r ~V ²

+C

Z

­
( ~U ²)2 + C

Z

­
( ~V ²)2 +C

Z

­
j ~U ² ~V ²j;

so that, by Young’s inequality

1

2

d

dt

Z

­

³
( ~U ²)2 + (~V ²)2

´
–< ¡²

Z

­
rU ²:r(U ² ¡ U)

(6:8) ¡²d
Z

­
rV ²:r(V ² ¡ V ) + 2C

Z

­

³
( ~U ²)2 + (~V ²)2

´
:

By the Lemmas 5.2 and 6.1, we have that

²
¯̄
¯
Z t

0

Z

­
rU ²:rU

¯̄
¯ –< ²

³Z t

0

Z

­
jrU ²j2

´ 1
2
³Z t

0

Z

­
jrU j2

´ 1
2

–< ²
³C4

²

´ 1
2 j­j 12

³Z t

0
C2

2e
2C3t

´ 1
2

–< ~C
p
²eC3t;
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and similarly

²
¯̄
¯
Z t

0

Z

­
rV ²:rV

¯̄
¯ –< ²

³Z t

0

Z

­
jrV ²j2

´ 1
2
³Z t

0

Z

­
jrV j2

´ 1
2

–< ~C
p
²eC3t:

Then, integrating (6.8) over (0; t) yields

Z

­

³
( ~U ²(t))2 + (~V ²(t))2

´
–< ~C

p
²eC3t + C

Z t

0

Z

­

³
( ~U ²)2 + (~V ²)2

´
:(6.9)

Setting Y (t) =

Z t

0

Z

­

³
( ~U ²)2 + (~V ²)2

´
and h(t) = ~C

p
²eC3t, we have proved that

Y 0(t) –< CY (t) + h(t):

Applying Gronwall’s inequality, we deduce

Y (t) –<
R t
0 h(¿)e

C(t¡¿)d¿

–<
~C 0
p
²eC

0t:

Let ® 2 (0;min(
1

2C 0
;

1

2C3
)) be arbitrary. We have shown that for all t 2 [0; ln

1

²®
]

Z t

0

Z

­

³
(U ² ¡ U)2 + (V ² ¡ V )2

´
–<

~C 0²
1
2
¡C0®:(6.10)

This completes the proof of Theorem 6.2.

Substituting the inequality (6.10) into (6.9), we deduce that

Z

­

³
V ²(x; ln

1

²®
)¡ V (x; ln

1

²®
)
´2
! 0 as ²! 0.

Since, by Lemma 5.1, V (x; t) ! ¹V (x) in L2(­) as t ! 1, we have proved the

following result :

Corollary 6.3. Let ¿(²) = ln
1

²®
. Then

Z

­

³
V ²(x; ¿(²))¡ ¹V (x)

´2
! 0 as ²! 0:
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7. PROOFS OF THEOREM 2.1 AND THEOREM 2.2

We recall that by Corollary 3.3 and Lemma 3.5, there exists a subsequence of
f(u²; v²)g which we denote again by f(u²; v²)g such that

(u²; v²) ! (0; v) inL2(QT )as²! 0:

We first prove the following result :

Lemma 7.1. Set ¿(²) = ln
1

²®
. We have that

Z T

²¿(²)

Z

­

(u²)m

²
! 0 as²! 0:

Proof. By Lemma 3.2, we have that
(i) if n = 1,

Z T

²¿(²)

Z

­

(u²)m

² –<
R T
²¿(²)

Mm
1 j­j
²

e¡
±mt
²

–<
Mm

1 j­j
m±

e¡±m¿(²) ! 0 as ²! 0.

(ii) if n > 1,

R T
²¿(²)

R
­

(u²)m

² –<
R T
²¿(²)

Mm
1 j­j
²

1
³
1 + (n¡ 1)±Mn¡1

1

t

²

´ m
n¡1

=
Mm

1 j­j
²

³ ²

(m¡ n+ 1)±Mn¡1
1

´

Z T

²¿(²)

d

dt

h 1
³
1 + (n¡ 1)±Mn¡1

1

t

²

´ m
n¡1

¡1

i

–<
Mm¡n+1

1 j­j
±(m¡ n+ 1)

1
³
1 + (n¡ 1)±Mn¡1

1 ¿(²)
´m¡n+1

n¡1

! 0 as ²! 0.

Proof. of Theorem 2.1 Let T > 0 be arbitrary and ' be an arbitrary smooth

function such that
@'

@º
= 0 on @­£ (0; T ) and '(T ) = 0. Then

Z T

²¿(²)

Z

­
(v²t ¡ d¢v²)' = ¡1

²

Z T

²¿(²)

Z

­
(u²)mv²';
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which implies that
Z T

²¿(²)

Z

­
v²
³
't + d¢'

´
=

Z T

²¿(²)

Z

­

1

²
(u²)mv²'¡

Z

­
v²(x; ²¿(²))'(x; ²¿(²)):

By Lemma 7.1, we have that

lim
²!0

Z T

²¿(²)

Z

­

1

²
(u²)mv²'! 0;

whereas by Corollary 6.3
Z

­
v²(x; ²¿(²))'(x; ²¿(²)) !

Z

­

¹V (x)'(x; 0)

as ²! 0. Furthermore, since

v²Â(²¿(²);T ) –< M2;

and since there exists a subsequence which we denote again by fv²g such that

v² ! v a.e. in QT ,

we deduce from Lebesgue dominated convergence theorem that

v²Â(²¿(²);T ) ! v in L1(QT ).

Therefore v satisfies
Z T

0

Z

­
v
³
't + d¢'

´
= ¡

Z

­

¹V (x)'(x; 0)

for all ' 2 C2;1( ¹QT ) such that
@'

@º
= 0 on @­ £ [0; T ] and '(T ) = 0. One can

then easily deduce that v is the unique classical solution of Problem (P 0).
Next we turn to the proof of Theorem 2.2. We first prove a key lemma which

shows that the whole process occurs in a very short time.

Lemma 7.2. Fix ¹ > 0 be arbitrary. There holds
°°°
Z

­

³
v² ¡ v²1

´°°°
L1(¹;1)

! 0 as ²! 0:(7.1)

Proof. We have that for T ¸ t ¸ ¹
Z

­

³
v²(T )¡ v²(t)

´
=

Z T

t

d

dt

Z

­
v²(s)ds

= ¡
Z T

t

Z

­

1

²
(u²)m(s)v²(s)ds;
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which implies, letting T !1, that

¯̄
¯
Z

­
(v²(t)¡ v²1)

¯̄
¯ =

Z 1

t

Z

­

1

²
(u²)m(s)v²(s)ds:

Furthermore we have that
(i) if n = 1 and t ¸ ¹

1

²

Z 1

t

Z

­
(u²)mv² –<

Mm
1 M2j­j
²

Z 1

t
e¡

±ms
² ds

–<
Mm

1 M2j­j
±m

e¡
±mt
²

–<
Mm

1 M2j­j
±m

e¡
±m¹
² ;

(ii) if n > 1 and t ¸ ¹

1

²

Z 1

t

Z

­
(u²)mv² –<

Mm
1 M2j­j
²

Z 1

t

³ 1
³
1 + (n¡ 1)Mn¡1

1 ±
s

²

´ m
n¡1

´
ds

= ¡M
m¡n+1
1 M2j­j
±(m¡ n+ 1)

Z 1

t

d

ds

h³
1 + (n¡ 1)Mn¡1

1 ±
s

²

´¡m¡n+1
n¡1

i
ds

=
Mm¡n+1

1 M2j­j
±(m¡ n+ 1)

1
³
1 + (n¡ 1)Mn¡1

1 ±
t

²

´m¡n+1
n¡1

–<
Mm¡n+1

1 M2j­j
±(m¡ n+ 1)

1
³
1 + (n¡ 1)Mn¡1

1 ±
¹

²

´m¡n+1
n¡1

:

Therefore
°°°
R
­

³
v²¡ v²1

´°°°
L1(¹;1)

–<

8
>>>><
>>>>:

Mm
1 M2j­j
±m

e¡
±m¹
² if n = 1;

Mm¡n+1
1 M2j­j
±(m¡ n+ 1)

1
³
1 + (n¡ 1)Mn¡1

1 ±
¹

²

´m¡n+1
n¡1

if n > 1;

! 0 as ²! 0;

which completes the proof.

Proof of Theorem 2.2. Let T > 0 be arbitrary. Since
Z

­
v(t) =

Z

­

¹V for all t ¸ 0;
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we have that, by Lemma 7.2,

³Z

­

¹V ¡ j­jv²1
´2

=

Z T+1

T

³Z

­

¹V ¡ j­jv²1
´2
dt

=

Z T+1

T

³Z

­
v(t)¡ j­jv²1

´2
dt

–< 2

Z T+1

T

³Z

­
v(t)¡

Z

­
v²(t)

´2
dt

+2

Z T+1

T

³Z

­
v²(t)¡ j­jv²1

´2
dt

–< 2j­
Z T+1

T

Z

­

³
v(t)¡ v²(t)

´2
dt

+2

Z T+1

T

³Z

­
v²(t)¡ j­jv²1

´2
dt

which tends to zero as ²! 0.

8. CONCLUDING REMARKS

In this paper, we have discussed the singular limit analysis of a two-component
reaction-diffusion system with very fast reaction terms, namely Problem (P ²). For
this problem, it was already known that when m ¸ n ¸ 1, there exists some constant
v²1 such that the nonnegative solution (u²; v²)(t) tends to (0; v²1) as t ! 1.
Assuming that ku0km¡nL1(­)kv0kL1(­) < a, we have shown that as ² ! 0, u² tends
to zero and v² tends to v, where v is the solution of the heat equation

vt = d¢v;

together with the homogeneous Neumann boundary condition and the initial condi-
tion v(x; 0) = ¹V (x) where ¹V (x) is given by the asymptotic state

lim
t!1

(U; V )(x; t) = (0; ¹V (x));

and where (U; V ) is the solution of the system of ordinary differential equations
½
Ut = UmV ¡ aUn in ­£ R+;
Vt = ¡UmV in ­£ R+;

(8.1)

with

(U; V )(x; 0) = (u0(x); v0(x)):

Our second result shows that the asymptotic state v²1 of the reaction-diffusion
Problem (P ²) is approximately given by the spatial average of ¹V (x) over ­.
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For the case where ku0km¡nL1(­)kv0kL1(­) > a, we have not yet discussed this
singular limit problem as ²! 0. The difficulty is, as it was shown in the introduc-
tion, that the transient behavior of solutions is totally different from the previous
case. In fact, it exhibits spatio-temporal patterns such as expending rings or splitting
spots. Moreover, from pattern formation viewpoints, the analysis of the transient
behavior of u is important but we will also leave this case as a future work for us.

APPENDIX A: THE CASE THAT a = 0

In this section we consider the problem

(R²)

8
>>>>>><
>>>>>>:

u²t = ¢u² +
1

²
(u²)mv² in Q;

v²t = d¢v² ¡ 1

²
(u²)mv² in Q;

@

@º
u² =

@

@º
v² = 0 on @­£ (0;1);

u²(x; 0) = u0(x) v²(x; 0) = v0(x) for all x 2 ­;

with the same hypothesis on m, d, u0, v0 and ­ as before (but of course without
the assumption Ha). First we present some preliminary results.

Lemma A.1. For all (x; t) 2 Q, we have that

0 –< u²(x; t); 0 –< v²(x; t) –< M2:(A.1)

Proof. (A.1) immediately follows from the comparison principle.

Lamma A.2. The following inequality holds

1

²

Z 1

0

Z

­
(u²)mv² –<

Z

­
v0:(A.2)

Proof. Integrate the partial differential equation for v² in (R²) on ­ £ (0; t)
and let t!1. The result of Lemma A.2 immediately follows.

Lemma A.3. We have that for all t > 0

d

Z T

0

Z

­
jrv²j2 –<

Z

­
(v0)

2(A.3)

and there exist a constant C6 such that
Z T

0

Z

­
jru²j2 –< C6;

Z T

0

Z

­
(u²)2 –< C6:(A.4.)
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Proof. We deduce (A.3) from the inequality

1

2

d

dt

Z

­
(v²)2 + d

Z

­
jrv²j2 –< 0:

Then adding up the partial differential equations for u² and for v² in (R²) gives

(u² + v²)t = ¢(u² + v²) + (d¡ 1)¢v²;

which permits to prove the estimatesv (A.4) similarly as in the proof of Lemma
6.1.

Lemma A.4. The sequences fu²g and fv²g are precompact in L2(QT ).

Proof. By the lemmas A.1 and A.3, the sequences

fu²g and fv²g are bounded in L2(0; T ;H1(­));

and by Lemma A.2 we have that

f1

²
(u²)mv²g is bounded in L1(QT ):

Then we follow the argument of Lemma 3.5 to conclude that the sequences fu²g
and fv²g are precompact in L2(QT ).

Lemma A.5. Let ¹ 2 (0; T ) be arbitrary. There exists ´ = ´(¹) > 0 such
that

u²(x; t) ¸ ´ for all (x; t) 2 ­£ [¹; T ];(A.5)

in particular we have that

u² > 0 in ­£ (¹; T ):(A.6)

Proof. Let ~u be the solution of the following problem :

8
><
>:

ut = ¢u in ­£ (0; T );
@

@º
u = 0 in @­£ (0; T );

u(x; 0) = u0(x) for all x 2 ­:

The comparison principle shows that

u²(x; t) ¸ ~u(x; t) for all (x; t) 2 Q:
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Since for all ¹ 2 (0; T ) there exists ´ = ´(¹) > 0 such that

~u(x; t) ¸ ´ for all (x; t) 2 ­£ (¹; T );

we deduce the result of Lemma A.5.

Proof of Theorem 2.3. Let ¹ 2 (0; T ) and ´ = ´(¹) be as in Lemma A.5. For
all t ¸ ¹ we have that

v²t = d¢v² ¡ 1

²
(u²)mv² –< d¢v² ¡ 1

²
´mv²;

so that

1
2

R
­(v²)2(T ) + d

R T
¹

R
­ jrv²j2 +

1

²

Z T

¹

Z

­
´m(v²)2 –<

1
2

R
­(v²)2(¹)

–<
j­jM2

2

2
;

therefore
Z T

¹

Z

­
(v²)2 –<

j­jM2
2 ²

2´m
;

so that v² ! 0 in L2(­£ (¹; T )) as ²! 0. Furthermore we have that
Z T

0

Z

­
(v²)2 =

Z ¹

0

Z

­
(v²)2 +

Z T

¹

Z

­
(v²)2

–< ¹j­jM2
2 +

j­jM2
2 ²

2´m
:

Letting ²! 0 yields

lim sup
²!0

Z T

0

Z

­
(v²)2 –< ¹j­jM2

2 ;

for all ¹ 2 (0; T ) so that

lim sup
²!0

Z T

0

Z

­
(v²)2 –< 0;

which implies the convergence of v² to 0 in L2(QT ) as ²! 0.

Next we prove the convergence property for u². Since
8
>>><
>>>:

(u² + v²)t = ¢u² + d¢v² in ­£ (0; T );

@

@º
(u² + v²) = 0 on @­£ (0; T );

(u² + v²)(x; 0) = u0(x) + v0(x) for all x 2 ­;
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we have that for all ' 2 C2;1(­) such that
@'

@º
= 0 on @­£ (0; T ) and '(T ) = 0,

Z T

0

Z

­

h
(u² + v²)'t + (u² + dv²)¢'

i
+

Z

­
(u0 + v0)'(0) = 0:(A.7)

Now suppose that a subsequence of fu²g converges to a function u strongly in
L2(QT ) as ²! 0. Then u satisfies the integral identity

Z T

0

Z

­

h
u't + u¢'

i
+

Z

­
(u0 + v0)'(0) = 0;(A.8)

which implies the result of Theorem 2.3.

APPENDIX B: THE CASE WHERE n > m ¸ 1 AND u0 > 0

Proof of Theorem 2.4. By Lemma 6.1, we have that

0 –< U ²
–< ~M1 and 0 –< V ²

–< M2;

and since

U ²(x; t) = u²(x; ²t) and V ²(x; t) = v²(x; ²t) for all (x; t) 2 Q,

it follows that

0 –< u² –< ~M1 and 0 –< v²(x; t) –< M2:

As in Lemma 3.1 one can prove the inequality

a

²

Z T

0

Z

­
(u²)n –<

Z

­
(u0 + v0);(B.1)

so that
Z T

0

Z

­
(u²)n ! 0 as ²! 0;(B.2)

which since Ln(QT ) ½ L2(QT ) implies that

Z T

0

Z

­
(u²)2 ! 0 as ²! 0:(B.3)
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Moreover we have that by Corollary 6.3
Z

­

³
V ²(x; ¿(²))¡ ¹V (x)

´2
! 0 as ²! 0;(B.4)

where ¿(²) = ln
1

²®
. Next we prove that if u0(x) > 0 then ¹V (x) = 0. Suppose on

the contrary that ¹V (x) > 0; since

U(x; t) ! 0 as t!1;(B.5)

we have that for t large enough

Ut(x; t) = Um(x; t)V (x; t)¡ aUn(x; t);

= Um(x; t)
³
V (x; t)¡ aUn¡m(x; t)

´
;

¸ Um(x; t)
¹V (x)

2
> 0;

which contradicts (B.5) (note that this result was proved by Hoshino [11] for the
solution of Problem (Q²)). Thus we have that

¹V (x) = 0 for all x 2 ­,

so that
Z

­
V ²(x; ¿(²)) ! 0 as ²! 0;(B.6)

and since V ²(x; ¿(²)) = v²(x; ²¿(²)), (B.6) yields
Z

­
v²(x; ²¿(²)) ! 0 as ²! 0:(B.7)

Moreover fix ¹ > 0; the inequality
d

dt

Z

­
v² –< 0 implies that

Z

­
v²(x; ¹) ! 0 as ²! 0:(B.8)

Furthermore we have that
Z T

0

Z

­
(v²)2 =

Z ¹

0

Z

­
(v²)2 +

Z T

¹

Z

­
(v²)2

–< ¹j­jM2
2 + (T ¡ ¹)M2

Z

­
v²(¹);
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which by the equation B.8 implies that

lim sup
²!0

Z T

0

Z

­
(v²)2 –< ¹j­jM2

2 + (T ¡ ¹)M2 lim sup
²!0

Z

­
v²(¹)

–< ¹j­jM2
2 ;

for all ¹ > 0; consequently

lim sup
²!0

Z T

0

Z

­
(v²)2 = 0;(B.9)

which completes the proof.
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