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REMARKS ON IMPLICIT VECTOR VARIATIONAL INEQUALITIES!

Sangho Kum? and Gue Myung Lee

Abstract. In this paper, as a continuation of the authors’ work, the existence
of solutions of IVVI for noncompact vaued multifunctions is provided under
generalized pseudomonotonicity assumption. This generalizes Konnov and
Yao's results [6, Theorems 3.1 and 4.1]. Also ancther 1VVI without the
generalized pseudomonatonicity assumption is proposed and the existence of
solutions of the IVV I is proved by using a selection theorem. This IVVI can
be regarded as an extension of the VVI studied in Lee et al. [10].

1. INTRODUCTION

Since Giannessi [4] fird introduced a vector variationd inequd ity (shortly, VVI)
inafinite dimensonad Eudidean gpace, many authors have intensively studied V VI
and its various extensions [1, 3, 8-13, 16, 18] (see also the references therein) in
abstract gpaces. Systematic treaments on generdized VVI can be found in Kon-
nov and Yeo [6], and Lin e d. [14]. Besides, savard authors have investigated
relationshi ps between VVI and vector optimization problems under some convexity
or generalized convexity assumptions. Lee et d. [11] showed that VVI can be an
efficient tool for studying vector optimization problems.

On the other hand, recently, Lee and Kum [13] proposed implicit vector vari-
aional inequalities (IVVI) to devdope a generd scheme deding with seemingly
diverse VVIs. They derived sufficient conditions for an 1VVI1 of compact vaued
multifunctions to have solutions under generdized wesk pseudomonctonicity as-
sumptions and the Hausdorff topologica vector space setting. In relation to IVVI,
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Ansari and Yeo [2] gave some interesting existence results for the strong solutions
of IVVI which seems to be a proper generdization of solutions of generdized VVI.

In this pgper, as a continuation of the authors' work [13], the existence of
olutions of 1VVI for noncompact vadued multifunctions is provided under gener-
dized pseudomonotonicity assumption. This generalizes Konnov and Yao's results
[6, Theorems 3.1 and 4.1]. For this purpose, we slightly modify the definition of
generdized hemicontinuity of a multifunction 7" with respect to a general function
1. Also another 1VVI without the generalized pseudomonatonicity assumption is
suggested and the exigence of solutions of the IVVI is proved by using a sdection
theorem. This IVVI can be regarded as an extension of the VVI dudied in Lee &
d. [10].

We use afixed point theorem due to Park [15] as a basic tool to establish our
results.

2. PRELIMINARIES

Let E be ared Hausdorff topological vector pace, X a nonempty convex subset
of F, F another real Hausdorff topologicd vector pace. A nonempty subset P of
E is caled a convex cone if

APcP, foral >0 and P+ P=P.

Let C : X — 2F be a multifunction such that for each € X, Cz is a convex
cone in F' with intCz # () and Cx # F. \We denote

P:.= ﬂC’x.

zeX

Let L(E,F) be the space of all continuous linear mappings from E to F, 9 :
L(E,F) x X x X — F afunction, T : X — 2LEF) g multifunction and G :
X — 2X amultifuntion. In this paper, our discussion is restricted to the following
(IVVI) and (IVVIY:

(IVVI1) Find z € X such tha for each y € X, there exigs s € Tz sdisfying
U(s, z,y) ¢ —intCZ.
(IVV1Y Find z € X such that for each y € X, there exids s € T'z such that
U(s,z,y) ¢ —intCz for dl z € Gz.

For various specid cases of (IVVI), readers can refer to [13]. As far as (IVVI)' is
concerned, (IVV1)" becomestheV VI studied by Leeet d. [10] provided (s, x, y) =
(s,y —x) where (s, y — x) denotes the evaluation of s a y — .
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In fact (IVV1)" can be viewed as an extension of (IVVI) because the former
reduces to the latter by putting Gz = {z} for dl x € X. Now we give the gener-
dized pseudomonotonicity and the generdized hemicontinuity on the multifuncti on
T. T issad to be

(1) generalized C-pseudomonotone w.rt. 1 if for any z,y € X, 3s € T'x such
that
Y(s,z,y) ¢ —intCx implies Vt € Ty, —(t,y,z) ¢ —intCx;

(ii) generalized weakly C-pseudomonotone w.rit. ) if forany x,y € X, s € Tx
such that

Y(s,x,y) ¢ —intCz implies 3t € Ty, —(t,y,z) ¢ —intCx; and

(i) generalized hemicontinuous wr.t. v if for any z,y € X and « € [0, 1], the
multifunction

a = (T(z+ aly — 1)), ,y)
isupper semicontinuousat 0", where (T (z+ a(y—z)), z,y) = {¢(t, z,y) |
teT(x+aly—x))}.

Also T’ is said to be
(1) generalized C-pseudomonotone if for any x,y € X, s € Tx such that

(s,y —x) ¢ —intCzx implies Vt € Ty, (t,y —z) & —intCz; and

(i) generalized weakly C-pseudomonotone if for any x,y € X, ds € Tz such
that

(s,y —x) ¢ —intCx implies 3t € Ty, (t,y —x) ¢ —intCx; and

(iii)" generalized hemicontinuous if for any z,y € X and a € [0, 1], the multi-
function
a (T(z+aly —z)), y — )
isupper semicontinuousat 0", where (T'(z+a(y—z)), y—z) = {(s,y—z) |
seT(x+aly —x))}

The following lemma is immediate from the above definitions.

Lemma 2.1. Let E, X, F, C, P, i, and T be the same as in the above
definitions. Then we have

(i) T is generalized C-pseudomonotone w.r.t. ¢ = T is generalized weakly
C-pseudomonotone w.r.t. ; and
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(i) T is generalized hemicontinuous = T is generalized hemicontinuous w.rt.
’(,U(S,(L‘, y) = <57 Yy— $>

Example 2.1. Le¢ F = X = F = R, Cx = [0,00) for dl z € R and
(s, z,y) = s(y — x) for any s,z,y € R. Define a multifunction T': R — 2% by
forany x € R, Tz = [z,00). Then T' is generdized weakly C-pseudomonotone
(w.rt. %), but T is not generdized C-pseudomonotone (w.rt. ). Moreover, T'is
generdized hemicontinuous (W.r.t. ).

The following particular form of Park [15, Theorem 5] is a basic machinary to
derive main results.

Theorem 2.1. Let X be a nonempty convex subset of a real Hausdorff topo-
logical vector space E, K a nonempty compact subset of X. Let A, B : X — 2X
be two multifunctions. Suppose that

(1) for each x € X, Ax C Bxz;

(i) for each x € X, Bx is convex;

(iii) for each x € K, Ax is nonempty,

(iv) for each y € X, A™Yy is open in X; and

(v) for each finite subset N of X, there exists a nonempty compact convex subset

Ly of X containing N such that for each x € Ly \ K, Az N Ly # (). Then
B has a fixed point xg; that is, o € Bxy.

3. IVVI UNDER GENERALI1ZED PSEUDOMONOTONICITY

We provide the first main result concerned with the existence of solutions of
(IVVI) under the generdized pseudomonotonicity condition.

Theorem 3.1. Let E be a real Hausdorff topological vector space on which
the topological dual space E* of E separates points, X a nonempty convex subset
of E, F another real Hausdorff topological vector space on which the topological
dual space F* of F separates points, and C : X — 2F a multifunction such that
for each x € X, Cx is a convex cone in F with —intCx # () and Cx # F. Let
P:=pexCx,¢ : L(E,F)x X xX — F bea function, and T : X — 2LEF) ¢
multifunction. Let K be a nonempty weakly compact subset of X and W : X — 2F,
Wz = F\ (—intCx), such that the graph Gr(W) of W is weakly closed in X x F.
Assume that the following conditions are satisfied ,

(1) T is generalized C-pseudomonotone w.rt. 1;

(i) T is generalized hemicontinuous w.r.t. 1,
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(iii) for each s € L(E,F) and x € X, (s, x,-) is P-convex, that is, for any
y,2€ X and a € [0, 1],

¢(S7 xz, Oéy+ (1 —a)z) € Oﬁﬁ(saﬂ?;y) + (1 - a)w(sa z, Z) _P;

(iv) for each t € L(E, F) and x € X,¢(t, x,-) is continuous where both X and
F are endowed with the weak topologies;

(v) forany x € X and s € Tz, (s, z,x) € P;
(Vi) for any s € L(E,F), z, y € X and « € [0,1], ¥(s,z + aly — x),y) =
(1= a)t(s, x,y); and

(vil) for each finite subset N of X, there exists a nonempty weakly compact convex
subset Ly of X containing N such that for each x© € Ly \ K, there exists

y € Ly satisfying —(t,y,z) € —intCz for some t € Ty.
Then there exists T € K such that T is a solution of (IVVI).

Proof. Let X be equipped with the weak topology from E. Define two multi-
functions A, B: X — 2% to be
Az:={y e X |3t e Ty suchthat — (¢, y,z) € —intCz},
Bx:={yec X |Vse€ Tz, (s, z,y) € —intCz}.

The proof is organized in the following parts.
(@) SinceT is generalized C'-pseudomonotonew.r.t. ¢, forany z € X, Ax C Bux.

(b) For eech x € X, Bx isconvex. Indeed, when y, z € Bz and « € [0,1], we
have for any s € Tz,

Y(s,z,ay + (1 —a)z) € ay(s, z,y) + (1 —a)(s,z,z) — P
C a(—intCz) + (1 — a)(=intCz) — P
C —intCz — Cx = —intCz.

Hence ay + (1 — )z € Bz, & desired.

(c) For ech y € X, A7'y is open in X. In fact, let {z)} be a net in
(A71y)¢ weakly convergent to = € X. Then y ¢ Az, and hence for any
te Ty, —(t,y,xr) € —intCzxy. Thusforanyt € Ty, —(t, y, zx) € Wz,
Since (zx, —¥(t,y,zx)) € Gr(W), by virtue of assumption (iv) and the weak
dosedness of Gr(W), —i(t,y,x) € Wz for any t € Ty, that is, for any
t € Ty,—y(t,y,x) ¢ —intCz, and hence y ¢ Az, namdy, = € (A~ 1y)e
Therefore (A~1y)¢ isclosed in X, whence A~y is open in X.
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(d) By hypothesis (vii), for each finite subset N of X, there exists a nonempty
weskly compact convex subset Ly of X contaning N such that for esch
xz € Ly \ K, thereexists y € Ly sdisfying —(t, y, ) € —intCz for some
t € Ty. Thusforeachz € Ly \ K, thereexists y € Ly such tha y € Az,
hence Ly N Az # ().

(e B has no fixed point. If not, there exigs x € X such that for any s € Tz,
Y(s,z,x) € —intCz. By assumption (v), for any s € Tx, ¢(s,z,x) €
—intCz N Cx = (), which is a contradiction.

(f) From (a)-(e), we see, by Theorem 2.1, that there mugt be £ € K such that

Az =, nandy, forany y € X, y ¢ Az, that is foranyy € X and t € T'y,
(l) _¢(t7 Y, i‘) ¢ —intCz.

We daim that z is a solution of (IVVI). Suppose to the contrary that z is not a
olution of (IVVI). Then there eixsts y € X such that for any s € T'z,

2 U(s, Z, ) € —intCz.

Let 2o :=Z 4+ a(y —Z) for a € [0,1]. Since X is convex, z, € X. Define a
multifunction H : [0,1] — 2% by for any « € [0,1], H(«) : = {¢(s,%,7) | s €
Tz} Thenby (2), H(0) C —intCz. Since T' is generdized hemicontinuous w.r.t.
¥, there exists & € (0, 1] such that for any « € [0, &), H(«) C —intCz. Hence for
anya € (0,&) ad s € Tz,

3 Y(s, T, y) € —intCz.
Fix a € (0,&). By the P-convexity of ¢(s,xq, ), Wwe have for any s € Tz,
V(8,Ta,Ta) =V(S,Tay a + (1 — )X)
€ a)(s,xa,y) + (1 —a)p(s,xq,z) — P.
From (3) and assumptions (v) and (vi), we have for any s € Tz,
—(1— a@)i(s, Ta, T) € at)(s, Ta,¥) — Y(S,Ta,2a) — P
Ca(l—a)yY(s,z,y) — P—P
C —intCz — Cz — CZ
C —intCz.

Thus for any s € Txq, —(s,24,%) € —intCZ, which contradicts (1). This com-
pletes the proof.

Corollary 3.1. Let E, F, X, K, C, W, Gr(W) and P be the same as in
Theorem 3.1 Let T : X — 2MEE) pe g multifunction. Assume that the following
conditions are satisfied :
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(1) T is generalized C-pseudomonotone;
(i) T is generalized hemicontinuous; and

(iii) for each finite subset N of X, there exists a nonempty weakly compact convex
subset Ly of X containing N such that for each © € Ly \ K, there exists
y € Ly satisfying (t,y —x) € —intCz for some t € Ty.

Then there exists T € K such that

VyeX,IseTz: (s,y—z)¢ —IntCxz.

Proof. Taking ¢(s,x,y) = (s, y—x) in Theorem 3.1, we get the result. Indeed,
it is straightforward to check the conditions (i)-(vii) of Theorem 3.1 except the
continuity of s : (E,weak) — (F,weak). But this directly follows from the
definition of the week topologiesfor £ and F. (See Kdley and Namioka [5, 16.1

(iv) p.140]).

Remark 3.1. Corallary 3.1 is a noncompact verson of Konnov and Yao [6,
Theorem 3.1] in the context of a Hausdorff t.v.s. instead of a Banach space.

Example 3.1. L& £ = F = R, X = [0,00) and K = [0,1]. L& Tz =
[2 + 1,00) and Cz = [0,00) for any = € X, and (s, z,y) = s(y — x) for any
s€ Rand x,y € X. For eech finite subset N of X, wetake Ly : = coN, where
coN denotes the convex hull of N. Then al the assumptions of Theorem 3.1 are
satidied. Moreover, 0 € K is asolution of (IVVI).

It is necessary to adopt more definitions in Konnov and Yao [6]. A point z € X
issad to be a strong solution of (IVVI) if there exists ¢ € T'z such tha

v(t,z,y) ¢ —intCz fordl ye X.

For s € F*, we st
H(s)={z€ F| (s,z) >0}.
Then T : X — 2L(E.F) jssad to be

(i) H(s)-pseudomonotone w.rt. 1 if for any z, y € X and for every ¢’ € Tz,
t" € Ty we have

Y(t',x,y) € H(s) implies —+(t",y,z) € H(s); and

(i) H(s)-pseudomonotone if for any z, y € X and for every t’ € Tz, t" € Ty,
we have
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(t', y—x) € H(s) implies (", y — ) € H(s).

By a scdization method we derive the existence of astrong solution of (IVVI) under
an appropriate condition.

Theorem 3.2. Let E, v, C and P be the same as in Theorem 3.1, and X
be a nonempty weakly compact convex subset of E. Let F' be a Hausdorff L.c.s.
and L(E, F) be equipped with either the topology of pointwise convergence or
the topology of bounded convergence, and F* the topological dual space of F.
Let T : X — 2UEF) be g multifunction. Assume that C% \ {0} # 0, where
Cy = co(UgexCx) and

Ci={weF"[(wy) >0forayyeC}.

Assume further that the following conditions are satisfied :
(i) Let s C3\ {0} and H(s) # F. T is H(s)-pseudomonotone w.r:t. 1;

(i) T is generalized hemicontinuous w.r.t. 1 and for any x € X, Tx is nonempty,

(iii) for each t € L(E,F) and v € X, (t,x,-) is P-convex and continuous
where both X and F are endowed with the weak topologies;

(iv) for each z, y € X, —(-,z,y) is P-convex and continuous where F' is
endowed with the weak topology;

(v) forany x € X and t € Tx, Y(t, z, x) € P; and

(Vi) for anyt € L(E,F), z, y € X and a € [0,1], ¥(t,z + aly — x),y) =
(1 - a)w(tazay)'

Then :
(1) There exists a solution T € X of (IVVI).

() 1f; for each x € X, Tx is convex and compact, there exists a strong
solution of (IVVI).

Proof. () For notational simplicity, we define a mapping ¢ : L(E,F) x X X
X — R by ¢s(t, z,y) = s(i(t, z,y)). Dueto the H(s)-pseudomonotonicity of T
w.r.t. ¢, for every pair of x, y € X and for dl ¢ € Tx,t" € Ty, we have

%(t',fﬂ,y) Z 0 |mp||eS - ws(t”ﬂ% LI}) 2 O
Since T is generalized hemicontinuous w.r.t. v, for any z,y € X and « € [0, 1],
o Ps(T(z+ oy — @), 2,y)

is upper semicontinuous a 0. Moreover, 1s(t, z,-) is convex and continuous by
virtue of (iii). In addtion, ¢s(t,z,z) > 0 for any x € X andt € Tx by (v).
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Let X be equipped with the weak topology from E. Define two multifunctions
A B:X —2Xtobe

Ax:={ye X |3t e Ty suchthat —v,(t,y,z) < 0},
Bz :={y € X |Yv € Tz such that 15 (v, z,y) < 0}.
Then we can eadly check the follwings:
(8 forany x € X, Ax C Bux;
(b) forany x € X, Bz isconvex;
(c) foreachy € X, A~'yisopenin X; and

(d) B has no fixed point. So, by Theorem 2.1, there exists z € K such that
AZ = (. Thus foreach y € X and ¢t € Ty, —)5(t,y,z) > 0. By adamilar
argument to the second part of the proof of Theorem 3.1, we can show that

4) Vy € X, 3t € Tz such that «,(t,z,y) > 0.

Note that intH (s) = s~1(0, 0o). For aproof, see Lee and Kum [ 13, Theorem 4.1].
From this observation and the fact that —intC'z C —intH (s), we can conclude that

Vy € X, 3t € Tz such that ¥(¢t,z,y) ¢ —intCxz.

(I1) Suppose that T'z is convex and compact. By (4), (iv) and Kneser's minimax
theorem [7], we have

inas(t,z,y) = mi t.%,y) > 0.
@gg&l}r{w , T, Y) gégr(lgrel%%clﬁs( ,T,y) >

Thus there exigs ¢ € Tz such that
¥s(t,Z,y) >0 fordl ye X.
Recdling intH(s) = s71(0,00) yidds
Y(E,z,y) ¢ —intCz fordl y e X,
which implies that z is a strong solution of (IVV1).

Corollary 3.2. Let E, F, X, C, C4, C% and P be the same as in Theorem
32, and L(E, F) be equipped with the topology of pointwise convergence. Let
T : X — 2LEF) pe q multifunction. Assume that the following conditions are
satisfied.

(i) Let s € C3 \ {0} and H(s) # F. T is H(s)-pseudomonotone; and
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(i) T is generalized hemicontinuous and for any x € X, Tx is nonempty.
Then:

(1) There exists * € X satisfying

Vy € X, 3t € Tz such that (f,y — ) ¢ —intCx.
(1 {f, for each x € X, Tz is convex and compact, there exists * € X and
t € T'z such that
t,y—z) ¢ —intCz forally € X.
Proof. Taking ¢(s,x,y) = (s,y —x) in Theorem 3.2, we get the result.

Remark 3.2. Corollary 3.2 is a generalized version of Konnov and Yao [6,
Theorem 4.1] in the context of a Hausdorff locally convex space.

4. (IVVI) WiTHouT GENERALIZED PSEUDOMONOTONICITY

Now weare in a position to i ntroduce the following exigencetheorem of (IVVIY
for compact-vaued and upper semicontinuous multifunctions without the generd-
ized pseudomonotonicity condition. Using thisresult, we will deduce the find main
result of this pgper, say, Theorem 4.2.

Theorem 4.1. Let E, F, X, K, C, W, Gr(W) and P be the same as
in Theorem 3.1. Suppose that L(E,F) is equipped with either the topology of
pointwise convergence or the topology of bounded convergence. Let 1) : L(E, F) X
X x X — F be a function, T : X — 2LEE) g multifunction, and G : X —2X a
multifunction. Assume that the following conditions are satisfied :

(1) T is compat-valued and upper semicontinuous where X is equipped with the
weak topology, and T'(X) is contained in a compact subset of L(E, F);

(ii) for each s € L(E, F), (s,-,-) is P-convex with respect to two variables,
that is, for any y1, Y2, 21,22 € X and o € [0, 1],
¢(5;0421 + (1 - 06)22, oyl + (1 - a)yQ) € Oﬂ,b(S,Zl, yl)
+(1 = a)y(s, z2,y2) — P;

(iii) for each y € X, (-,-,y) is continuous where both X and F are endowed
with the weak topologies,
(iv) G is convex-valued and lower semicontinuous on X with the weak topology;,

(v) for each x € X, s € Tx such that (s, z,x) ¢ —intCx for all z € Gu;
and
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(Vi) for each finite subset N of X, there exists a nonempty weakly compact convex

subset Ly of X containing N such that for each x € Ly \ K, there exists
y € Ly such that for any s € Tz, (s, z,y) € —ItCz for some z € Gz.

Then there exists T € K such that T is a solution of (IVVI)'.

Proof. Let X be equipped with the weak topology from E. Define a multifunc-
tion A: X — 2% tobe

Az :={ye X |Vs € Tx,3z € Gz st. (s,z,y) € —intCz}.

The proof is appeding to a Smilar argument in that of Theorem 3.1.

(@)
()

(©

(d)

For eech z € X, Az is convex. This follows directly from the assumption
(i) and the convexity of Gz.

For each y € X, A~y isopenin X. Infact, let {z)} be anetin (A~ly)°
weakly convergenttoz € X. Theny ¢ Az and hencethereexids sy € Txy
such that for any z € Gz,

Y(sx,z,y) € —intCzy.

Since T(X) is contained in a compact subset of L(E, F), we may assume
that s\ converges to s € L(E,F). Since T is compact-vdued and upper
semicontinuous, the graph of 7" is dosed, and 0 s € Txz. Since G is lower
semicontinuous, for any w € G, there exists z) € Gz weakly convergent
to w. Since (xx, ¥(sx,2x,y)) € Gr(W), by virtue of (iii) and the weak
dosednessof Gr(W), wehave(z, ¥ (s,w, y)) € Gr(W). Hence (s, w, y) ¢
—intCx for any w € Gz, that is = € (A~1y)c. Therefore (A~ 1y)¢ isclosed
in X, 0 A~y isopenin X.

By (vi), for each finitesubset NV of X, there exists a nonempty weakly compact
convex subset Ly of X containing N such that for each z € Ly \ K, there
exists y € Ly such tha for any s € Tz, ¥(s,z,y) € —intCz for some
z € Gx. Thus Ly N Ax # (.

A has no fixed point by (v). From (a) - (d), we see, by Theorem 2.1, that
there must be an z € K such that Az = (), namdy, for eech y € X, there
exists s € T'z such tha

U(s, z,y) ¢ —intCz forany z € Gz.

This completes the proof.

Corollary 4.1. (cf. Leeet d. [10, Theorem 2.1]) Let E be a Hausdorff l.c.s.
and X a weakly compact convex subset of E. Let F, C, W, Gr(W) and P be the
same as in Theorem 3.1. Suppose that L(E, F) is equipped with the topology of
bounded convergence. Let' T : X — 2UEF) pe g multifunction and G : X — 2%
a multifunction. Assume that the following conditions are satisfied:
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(1) T is compat-valued and upper semicontinuous where X is equipped with the
weak topology;

(i) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(iii) for each x € X, 3s € Tx such that (s,x — z) ¢ —intCz for all z € Gx.

Then there exists T € X such that for each y € X, there exists s € Tx satisfying
(s,y — z) ¢ —intCz for any z € Gz.

Proof. Put ¢(s,z,y) = (s,y —x) and X = Ly = K in Theorem 3.2. Recdl
that X is grongly bounded because E is a Hausdorff l.cs. The image T'(X) is
obvioudy compeact since T" is compact-valued and upper semicontinuous Appealing
to Lemma 2.4 in Lee and Kum [13], we can easily check tha dl the conditions in
Theorem 4.1 are satisfied. Therefore we get the conclusion.

Using the sdection theorem of Yanndis and Prabhakar [17] and Theorem 4.1
we prove the following exigence theorem of (IVVI)’ for multifunctions with con-
vex vaues and open lower sections without the generdized pseudomonotonicity
condition.

Theorem 4.2. Let E, F, X, C, W, Gr(W) and P be the same as in Theorem
3.1 except that X is a nonempty weakly compact convex set. Let L(E,F) be
equipped with either the topology of pointwise convergence or the topology of
bounded convergence. Assume that the following conditions are satisfied .

(1) T is a nonempty convex-valued multifunction such that for any s € L(E, F),
T7Y(s) is weakly open in X;

(i) for each s € L(E,F), (s, -,-) is P-convex with respect to two variables;

(iii) for each y € X, 1(+,-,y) is continuous where both X and F are endowed
with the weak topologies;,

(iv) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(V) for each x € X, s€ Tz, and z € Gz, (s, z,x) ¢ —intC.

Then there exists T € X and s € T'Z such that

Y(s,z,y) ¢ —INtCZ for any y € X and z € Gz.

Proof. Let X be equipped with the weak topol ogy from E. Since T' has open
lower sections, that is, for any t € L(E, F), T~(t) : = {z € X|t € Tz} is open
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in X, and T has nonempty convex vd ues, by the sdection theorem of Yanndis
and Prabhakar [17], there exists a continuous function f : X — L(E, F) such that
fr €Tz forany x € X. By Theorem 3.2, there exists z € X such that

V(fz,z,y) ¢ —intCz for any y € X and z € GZ.
Putting s = fx € Tz, we obtain the conclusion of Theorem 4.2.

Corollary 4.2. (cf. Leeetd. [10, Cordllary 2.3]) Let E, F, X, C, W, Gr(W)
and P be the same as in Corollary 4.1. Let T : X — 2MEF) pe g multifunction and
G : X — 2X a multifunction. Assume that the following conditions are satisfied.:

(i) T is a nonempty convex-valued multifunction such that for any s € L(E, F),
T—1(s) is weakly open in X;

(ii) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(iii) for each x € X, s € Tx, and z € Gz, (s,x — z) ¢ —intCz.

Then there exists T € X and s € T'xZ such that

(s,y—2z) ¢ —INtCZT for any y € X and z € GZ.

Proof. Taking ¢ (s, z,y) = (s,y — x) in Theorem 4.2, we obtan the result as
in Corollary 4.1.
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