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ROBUST TYPE GAUSS-MARKOV THEOREM AND RAO’S FIRST
ORDER EFFICIENCY FOR THE SYMMETRIC TRIMMED MEAN

Peter Thompson, Eugene K. Yang and Lin-An Chen

Abstract. In Chen and Chiang [2] and Chen, Thompson and Hung [3], the
symmetric trimmed mean has been shown, for various linear modds, to have
the eficiency of having asymptotic covariance matrices close to the Cramer-
Rao lower bounds for some heavy tail eror distributions. In this paper, we
investigate some further theoretical results for this symmetric trimmed mean
for the linear regression modd. From the nonparametric point of view, we
devedop a robust version of the Gauss-Markov theorem for the problem of
estimating regression parameter vector 8 and parametric vector function C(
where the best estimaors are this trimmed mean and C' multiplied by it,
respectively. In addition, we show that these best estimators are the best
Mallows-type bounded influence linear symmetric trimmed means. Findly,
from the parameric aspect, we show that the symmetric trimmed mean is
Rao's first order efficient for a heavy tail error distribution.

1. INTRODUCTION

Consider the linear regression modd
(1.2) y=X0B+e€

where y is avector of observations for the dependent varigble, X is an n x p matrix
of observations of independent variables with 1's in the firg column, and € is a
vector of independent and identicdly distributed error varigbles. We consider the
problem of egimating the parameter vector 5 and the parametric vector function
Cp of 5, where C'is aq x p constant matrix of rank q.
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The most popular technique in estimating 3 and C'( is the leag squares edti-
mation. Its popularity mainly reflects its advantages in the theoretical property of
using this technique. First, from the parametric point of view, besides the fact that
it is a uniformly minimum variance unbiased edimator, it is Rao's first order effi-
cient ([10], p348) when the error varigble follows a norma distribution. Secondly,
from the nonparametric point of view, Gauss-Markov theorem dates that it has the
amdlest covariance matrix in the cdass of unbiased linear estimators. However, the
least quares edimators of 3 and C3 are sengtive to departures from normality and
to the presence of outliers Hence, we need to consider robust estimators.

Among the hundreds or more robug esimators for location and regression pa-
rameters investigated in thelag three decades, the L-esimators, defined in terms of
ordinary quantile or the regression quantile of Koenker and Bassett [7], have been
an important estimator class (See Ruppert and Carroll [11], Koenker and Portnoy
[8], and De Jong &. al. [4]). In terms of efficiency, L-estimators can be asymptot-
ically efficent when the p.d.f. of the error digribution is exponentidly decreasing
on two tails (see Jureckova and Sen [6]). However, when the error variable fol-
lows a heavy tail didribution, the efficiency of these L-esimators no longer exig.
Chen and Chiang [2] investigated the symmetric trimmed mean, constructed by a
-cdled symmetric regression quantile, and show that it has the efficiency of as
ymptotic covariance matrices close to the Cramer-Rao lower bounds for some heavy
tal distributions Results smilar to this have also been obtained in Chen [1]. With
this efficiency for heavy tail error didribution, a question rased is whether there
are other optimal properties from ether the nonparametric or parametric agpect for
the symmetric trimmed mean. The am of this paper it to answer this question.

From the nonparametric point of view, we will introduce classes of linear sym-
metric trimmed means for the estimaion of 5 and C'5. We then show tha the
estimators based on the symmetric trimmed mean are the best in terms of asymp-
totic covariance matrices From this, we establish a robust version of the Gauss
Markov theorem. For describing these edimator dasses we will introduce a set
of Mallows-type bounded influence symmetric trimmed means and show that this
st forms a subclass of the linear symmetric trimmed means  On the other hand,
from the parametric point of view, we will show tha the symmetric trimmed mean
satisfies the Rao's firg order efficiency when the error variable follows an extreme
contaminated normd distribution.

In Section 2, we introduce a dass of linear symmetric trimmed means. In
Section 3, we derive their large sample properties and show that the symmetric
trimmed mean is the best among the estimators in this trimmed mean dass. In
Section 4, we introduce a class of Mallows-type linear symmetric trimmed means
and show tha the symmetric trimmed mean is alo the best among them. The
Rao's firg order efficiency for the symmetric trimmed mean is shown in Section 5.
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Findly, the proofs of the theorems are given in Section 6.

2. LINeaAR SyMMETRIC TRIMMED MEANS

For 0 < A < 1, we cdl parameter vectors 5~ (\) and 5+()\) the population
symmetric quantiles if, for observation model yo = z,3 + eo, they satisfy

200~ (N) =z — F~1()) and ZhBT(\) = )8 LRI

where F~1(\) = inf{a : P(|eg] a) > A}. If F is a continuous distribution
function, then £-1(}\) is the vaue satifying P(—F—1(\) ¢ EF1(A) =\
which further implies that P(zp,8-(\) v z(87(\)) = A Moreover, if
we further assume that F is symmetric & 0, then £-1(1 — 2a) = F~1(1 — )
for 0 < a < 0.5 where F' isthe population quantile in the usud sense of F. This
links the population symmetric quantile with the population regression quantile 5(\)
subjected to zB(\) = (6 + F~1()). Koenker and Bassett [7] proposed the so-
cdled regression quantile to estimate the population regression quantile. Chen and
Chiang [ 2] conddered an initial-esti mator-based method to estimate the population
symmetric quantile. Let (o be an initid estimator of 5. Then F~1()\) is estimated
by

a(N) = agmingso Y "(y; — zifo| —a) A = I(lyi —ziBo|  a))
i1

and the symmetric quantile is defined as 5—(\) = By — (g(A)
p—1

) and 4+() =
Bo + 8()‘) , where y; is the i-th dement of y and =} is the i-th row of X for
-1

1=1, I,Dn The following theorem, developed by Chen and Chiang [2], provides
arepresentaion of a(\).

Theorem 2.1. Let F' have the probability density function f. If f is symmetric
at 0, then

n2(@(1-20) - F1(1-a)) =2f(F(1 —a))) a2y

=1
[1—2a—1I(lg] F7Y1—a)) +op(1).

With symmetric quantiles, 3-()\) and 31 (\), wethen define thetrimming matrix
A={a;;,i,j=1,..,nad a;; =I(i = j and a:;B_()\) Y; x;ﬁq'()\))} After
outliers are trimmed by the symmetric quantiles, we have the following submodel

2.1) Ay = AXB + Ae.
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Since A israndom, the error vector Ae is now not a set of independent variables.

Any linear unbiased estimator has the form My with M beng a p x n non-
gochadtic matrix saisfying MX = I,. Since M is a full-rank matrix, there exist
matrices H and Hy such that M = HHj. Thus, an edimaor is a linear unbiased
estimator if there exists a p x p nonsingular matrix H and ann x p full -rank metrix
Hj such that the estimator can be written as

(2.2 HH]y.

We generdize linear unbiased estimators defined on the observation vector y to
estimators defined on Ay by requiring them to beof the form M Ay with M = HHj).

Definition 2.1. A datistic (., is cdled alinear symmetric trimmed mean if
(2.3 Bim = M Ay,

andthere are H, apx p stochastic or nongochadic matrix, Hp, an nxp nonstochastic
matrix with decompogtion M = H H|; and an initid estimator 5y such that the
following two conditions are satisfied:

(al) MAX = I, where I, isthe p x p identity matrix.

@) n'2(6o—B) = Q;ln 123" | hith(e;) + 0p(1) where b/, represents the i-th
row of matrix Hy, and ¢(e) has zero mean and finite varinace.

This is similar to the usud requirements for unbiased estimation except that we
have introduced a trimmed observation vector to allow for robustness and consdered
asymptotic property instead of unbiasedness.

For estimating the parametric vector function C3, we define adass of estimators
andogoudy.

Definition 2.2. A linear function N Ay is cdled a linear symmetric trimmed
mean for a vector parametric function C'G if (1) the matrix N can be decomposed
as N = GH; with a ¢ x p-matrix G being stochastic or nonstochastic and H,
an n x p nonstochastic matrix, and (2) conditions (a2) and the following one are
satisfied:

(a1*) NAX =C.

Suppose tha M Ay is a linear symmetric trimmed mean for the parameter vector
B. Then dearly N Ay with N = C'M is alinear symmetric trimmed mean for the
vector parametric function C'3. This meansthat the results on theoptima estimation
of C3 can be derived from the edimation of 3.

Two questions arise for theclass of linear symmetric means. Fird, doesthisdass
of means contain estimators that have already gppeared in the literature? The answer
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is afirmative because the dass of linear symmetric means defined in this paper
contains the symmetric trimmed mean of Chen and Chiang [2] (H = (X'AX)!
and Hy = X), and the set of Madlows-type bounded influence symmetric trimmed
means (H = (X'WAX)~! and Hj = X'W with W, a diagonal matrix of weights;
see Section 4). Second, is there a best edimator in this dass of means and can we
find it if it exigs? This question will be answered in the next section.

3. LARGE SAMPLE PROPERTIES OF THE LINEAR SYMMETRIC TRIMMED MEAN

Denote by A the i-th row of H,. Let z; represent dther the vector x; or h;
and z;; be its j-th dement. The following conditions are similar to the sandard
ones for linear regression models given in Chen and Chiang [2] and Koenker and
Portnoy [8]:

(@) n1y 7, 2 =0Q) for z =z or hand dl j,

(@) n'X'X =Qz+0(1), nT H\X = Qna+o(1) and n  H)Hy = Qp +0(1)
where @, and @y, are positive definite matricesand Q.. is a full rank matrix.

(ab) The probability density function f is symmetric a zero. f and its derivative
ae both bounded and bounded away from 0 in a neighborhood of F—1(«)
fora € (0,1).

Throughout this paper welet A = 1—2a,0 < a < 0.5, for the convenient setting
of the quantile function of £'. The following theorem gives a Bahadur representati on
of the linear symmetric trimmed mean.

Theorem 3.1. Under conditions (al)-(ab), we have

n!2(Bm — B) = (1 = 20) ' Quin™ > " higpy(er) + 0p(1)
=1

where ¢y(€) = 2F (1 —a)f(F7Y(1— a)y(e) + el(le] F~H(1 —a)).

The limiting digribution of the linear symmetric trimmed mean follows from
the centrd limit theorem (see, eg. Safling [12], p. 30).

Corollary 3.2. Under the conditions of Theorem 3.1, the normalized linear
symmetric trimmed mean nl/ 2(Byy, — B) has an asymptotic normal distribution
with zero mean vector and asymptotic covariance matrix .

o2 ()Q,1QnQ, Y

where

o%(a) = (1 —20) E(¢j(e))-
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Next we consider the question of optimal linear symmetric trimmed estimation.
For any two postive definite p x p marices Q1 and @2, we say that @)1 is amaller
than or equal to Q2 If Q2 — Q1 is positive semidefinite. An estimator is said to
be the best in an estimator-class if it is in this dass and its asymptotic covariance
matrix is smaller than or equd to tha of any estimator in this dass. The following
lemma implies that any linear symmetric trimmed mean with asymptotic covariance
meatrix

(3.2) o?(a)Q,*
is the best estimator in this class.

Lemma 3.3. For any matrices Qny and Qy, induced from conditions (al) and
(28), the difference

-1 -1/ -1
th Qthm - Qs
is positive semidefinite.

The symmetric trimmed mean proposed by Chen and Chiang [2] is defined by
(3.2 B, = (X'AX) 71X’ Ay.

Put H = (X’AX)~!, and Hy = X which impliesthat (al) holds. If we further let
(3 satisfy condition (a2), then the symmetric trimmed mean is a linear symmetric
trimmed mean. Moreover, Chen and Chiang [2] proved tha n'/?(3; — 8) has an
asymptotic normd distribution with zero mean and covariance matrix of the form
(3.1). Then Lemma 3.3 implies the optimal property of 3.

Theorem 3.4. Under conditions (al)-(a5), the symmetric trimmed mean [
defined in (3.2) is a best linear symmetric trimmed mean.

For egimating the parametric vector function C'3, we have the following theo-
rem.

Theorem 3.5. Under conditions (a1*) and (82)-(eb), we have
@ n'A(NAy — CB)) =n~2(1 = 20)71CQ), St higy(ei) + 0p(1), and
(b) the normalized linear symmetric trimmed mean n'/?(N Ay — C(3) has an

asymptotic normal distribution with zero mean and asymptotic covariance
matrix

o2 (2)CQprQnQpa C'.

Lemma 3.3. dso implies that the product of C' and the symmetric trimmed
mean is asymptoticdly bes inaclass of linear functions of the trimmed observation
vector Ay.
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Theorem 3.6. Under the conditions of Theorem 3.5, a best linear symmetric
trimmed mean for estimating C 3 is

CBs,
where B is a symmetric trimmed mean.

In the dass of linear estimators based on the trimmed observation vector Ay,
we have shown that for estimating the parameter vector 5 and the vector parametric
function Cg, the symmetric trimmed mean and its product with C' are both best
linear symmetric trimmed means This esablishes a robust version of the Gauss-
Markov theorem.

4. MaLLows-TYPE BoOUNDED INFLUENCE SYMMETRIC TRIMMED MEANS

Like most robug estimators, the symmetric trimmed mean has a Bahadur rep-
reentation with influence function of the form

Q7 ziv(e)

with function ~ bounded in the domain of error variablee if the initial estimator Bo
dso has influence function bounded in error variable. Then the influence function
of the symmetric trimmed mean i s bounded in the error space but not bounded in the
ace of explanatory variables In statisticd literature, the Mallows-type bounded
influence technique has been applied by De Jongh et. d. [4] on the trimmed |east
uares esdimator of Koenker and Bassett [ 7] and atrimmed mean proposed by Welsh
[13]. Herewe use the Mallows-type bounded influence technique to construct some
bounded influence linear symmetric trimmed means.

Le w;,i = 1,...,n, be real numbers and denote the n x n matrix W by the
diagond matrix of the set {w;,i = 1, ...,n}. The Mallows-type bounded influence
symmetric trimmed mean is defined as

By = (X'WAX) 1 X'W Ay.

Here trimming matrix A is for bounding the influence of error variable and the
weighted matrix W is for bounding the influence of explanatory variables (For con-
druction of weights, see De Jongh €. d. [4]). In addition, the following assumption
isvalid.
(@) limp—oo n 1Y 0 wimizh = Qu, limp_eon ™1 Y 1 wizixh = Quuw, Where
Qw and Q. aep x p positive definite matrices.

By letting H = (X'WAX)~! and H) = X'W, we see from the following
lemma that the Mdlows-type bounded influence symmetric trimmed meanisalinear
symmetric trimmed mean.
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Lemma 4.1. Under conditions (al)-(e6),
nPX'WAX = (1 —20)Qu +0p(1).
From condition (a2), 3 is required to have the following representation
n'2(Go — B) = Qtn"/? Zwixq;w(ei) + 0p(1).
i=1

Theorem 4.2. The Mallows-type bounded influence symmetric trimmed means
form a subclass of linear symmetric trimmed means.

The following theorem states a representation for this bounded influence sym-
metric trimmed mean.

Theorem 4.3.
2By — B) = (1 —20) " 1Qtn /2 Zwixiqﬁw(ei) + 0p(1),
=1
and
n2(By — B) = N(0,0*(2) Qu' QuuQu)-

As the fact that the symmetric trimmed mean is a Mallows-type bounded influence
trimmed mean (W = I,,), we then can stéte the following theorem.

Theorem 4.4. The symmetric trimmed mean is the best Mallows-type bounded
influence symmetric trimmed mean.

The Mallowstype bounded influence symmetric trimmed mean for vector para:
metric function C( is defined as R
Cﬁ’uh
indexed in weight matrix W. Let G = C(X'WAX)~L. It isseen that
G — (1—2a)~'cQy" in probability.
Moreover, by letting Hy = W X,
GHyAX = C.
Condition (alx) holds and then we have the following theorem.

Theorem 4.5. The Mallows-type bounded influence symmetric trimmed means
CBy are also linear symmetric trimmed means.

Their large sample properties are essily obtained from Theorem 4.3.
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Theorem 4.6.
(@) A representation of the Mallows-type bounded influence symmetric trimmed
means CBy is

n
n!/2(CBy —CB) = (1 —20) 1 CQL'n ™2 " wimichy (€:) + 0p(1).
=1
(b) The normalized Mallows-type bounded influence symmetric trimmed mean
nY/2(CBw—CPB) has an asymptotic normal distribution with zero mean vector
and asymptotic covariance matvix .

02(0)CQ ' QuuwQy'C'.
The symmetric trimmed mean C3; for estimating vector parametric function C3 is
aso a Mdlows-type bounded influence symmetric trimmed mean (W = 1,,).

Theorem 4.7. The symmetric trimmed mean C’ﬁs is the best Mallows-type
bounded influence symmetric trimmed mean.

These results are based solely on considerations of the asymptotic variances and
ignore the fact tha symmetric timmed mean does not have bounded influence in
the space of explanatory variables. It confirms that bounded influence is achieved
a the cog of efficiency.

5. Rao’s First ORDER EFACIENCY FOR THE SYMMETRIC TRIMMED MEAN

Let 2 be an observation vector with joint probability dendity function f, having
unknown parameter vector 6. Rao ([10], p348) defined an estimator 6 with first
order efficiency for estimating parameter vector 6 if there is a constant matrix B
such that

w20 —0) - BIEEED, g,
where || || is the Eudidean norm in R™.

Now, let y follow regresson model (1.1) and redenote the symmetric trimmed
mean of (3.2) by 5s(1 —2a) where 1 —2« is the percentage of observationsretained
for esimator computing. Suppose that error variable e has a contaminated normal
digribution as

(5.1) (1—8)N(0,02) 4+ §N(0, v0?),

where 0 < 6 < 1, v > 0. The contaminated normal distribution of (5.1) satisfies
ef(e) + 0ase — oo and @y — oo, F, 1(1—§/2) — co. Thenasy — oo, we
have

8lnf(y79)__ —2 G |k
(5.2) 5 =C ;xzq,
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asymptoticaly, where ¢ are i.i.d. with distribution N(0,02). Only an estimator
which has a representation proportional to (5.2) is Rad's first order efficient. We
now state that the symmetric trimmed mean is firs order efficient in this extreme
heavy tal error distribution.

Theorem 5.1. We assume that initial estimator (3, has a representation with
bounded influence function. Then, as v — oo, B4(1 —0) is first order efficient with
matrix B= —(1—8§)'o?n " 1/2QL.

It says that the symmetric trimmed mean with percentage of observations being
removed exactly equal to tha of the outliers in modd (5.1) isfirst order efficient.
This isthe firg result which bears an estimator with Rad's first order efficiency in
a heavy tal error digribution. It also further implies that the symmetric trimmed
mean isonethat can completdy remove dl outliersand retain dl good observations

6. CoNCLUDING REMARKS

In this paper we have shown tha the symmetric trimmed mean has sverd
properties. (@) It is asymptoatically the best among the dass of linear symmetric
trimmed means. This extends the property of being a best linear unbi sad estimation
for the least squares estimator to robust esimation. (b) It is asymptaticaly the best
among the class of Mdlows-type bounded influence symmetric trimmed means. (c)
It sati fies Rao'sfirst order efficiency. An interesting question raised from the above
results is whether there is another trimmed mean or M-estimator that satisfies all or
ome of these properties Moreover, Snce Léger and Romano [9] daimed that the
adaptive trimmed mean of Welsh [13] can asymptotically achieve optimd tri mming
percentage, it would dso be interesting to see if this property dso holds for the
symmetric trimmed mean.

7. APPENDIX
Proof of Theorem 3.1. Inserting (2.1) in equation (2.3), we have
n1/2(Blw —-pB) = n1/2HH6Ae,

and from condition (a4) and Lemmeas 3.2 of Juregkova [5] or Chen and Chiang [2],
we have

n~t Zhﬂ;[(’% —zify|  a(l —2a)) = (1 —20)Qu, + op(1),
i—1
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which implies that
(7.1) nH = (1—2a)" Qns +0p(1).

Moreover, from Lemma 3.1 of Jureckova [5], we have the following that develop a
representation of n~1/2H) Ae

n~1/2 Z hieilI (Je; — 2l
i—1
72) w2+ FY(1= )~ (e F4(1—a))]
=2f(F'1—-a)F 1 -a);nt Zhingn + 0p(1),
i=1

for any sequences Ty and T, satisfying Ty = Op(1) and T;, = O,(1). Equdion
(7.2) can be gpplied to obtain the foll owing extension:

n 2> hieil(lei —n i nTPTy+ FTH(1- @)
=

73) =n"12Y hell(ei —n P Ty 0TV PTo+ FH(1 - )
=1

—[(les]  FY1—a)]+n 12 hiel(le|  F7(1—a))+ op(1).
=1

The theorem is followed from (7.1) and the result of (7.3) with replacing T;, by
n=L2(3y — B) and Ty by nl/2(a(1 — 2a) — F~1(1 —a)).

Proof of Lemma 3.3. Writeplim(B,,) = B if B,, convergesto B in probability.
Let
P=HHy— (X'AX)"1X'
Now PAX = HH\AX — (X'AX)71X'AX = 0. Hence
Qra @@y, = (1 20) "' plim(H HyA(HH} AY)
= (1 —2a) tplim((PA+ (X'AX)1 X" A)(PA + (X'AX)~1X'A)"),
= (1 —2a)7plim(PAP") +plim((X'AX) "1 X'AX(X'AX)™1)],
= (1 —-2a)"tplim(PAP") + (1 —2a)72Q; 1,
> (1—-2a)72Q; %

Proofs of Theorem 3.5, Lemma 4.1, Theorem 4.3 and Theorem 4.6 can dl be
analogously derived through the line for Theorem 3.1 and are then skipped.



366 Peter Thompson, Eugene K. Yang and Lin-An Chen

Proof of Theorem 5.1. A representation of the symmetric trimmed mean in Chen
and Chiang [2] is
nY/2(B,(1 - 2a) — )
=A1Q 2PN (1~ a) f(FH(1 - @))Qun'?(Bo — B)

+n 2N "miel (el 71— a))] + 0p(1).
=1
However, asy — oo, F~1(1— §/2) — oo and then

n'2(Bs(1—68) —B) = (1 - 6)‘1@;1n—1/2§nj:cz~e;‘ + 0p(1),

=1

where e} areii.d. with distribution N(0,02) which proves the theorem by compar-
ing with (5.2).
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