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ROBUST TYPE GAUSS-MARKOV THEOREM AND RAO0S FIRST
ORDER EFFICIENCY FOR THE SYMMETRIC TRIMMED MEAN

Peter Thompson, Eugene K. Yang and Lin-An Chen

Abstract. In Chen and Chiang [2] and Chen, Thompson and Hung [3], the
symmetric trimmed mean has been shown, for various linear models, to have
the efficiency of having asymptotic covariance matrices close to the Crámer-
Rao lower bounds for some heavy tail error distributions. In this paper, we
investigate some further theoretical results for this symmetric trimmed mean
for the linear regression model. From the nonparametric point of view, we
develop a robust version of the Gauss-Markov theorem for the problem of
estimating regression parameter vector ¯ and parametric vector function C¯
where the best estimators are this trimmed mean and C multiplied by it,
respectively. In addition, we show that these best estimators are the best
Mallows-type bounded influence linear symmetric trimmed means. Finally,
from the parametric aspect, we show that the symmetric trimmed mean is
Rao0s first order efficient for a heavy tail error distribution.

1. INTRODUCTION

Consider the linear regression model

y = X¯ + ²(1.1)

where y is a vector of observations for the dependent variable, X is an n£ p matrix
of observations of independent variables with 10s in the first column, and ² is a
vector of independent and identically distributed error variables. We consider the
problem of estimating the parameter vector ¯ and the parametric vector function
C¯ of ¯ , where C is a q £ p constant matrix of rank q.

Received August 1, 2000.
Communicated by Y.-J. Lee.
2000 Mathematics Subject Classification: 62G35, 62J05.
Key words and phrases: Gauss-Markov theorem; Linear regression; Linear symmetric trimmed mean;
Mallows-type bounded influence; Rao0s first order efficiency.

355



356 Peter Thompson, Eugene K. Yang and Lin-An Chen

The most popular technique in estimating ¯ and C¯ is the least squares esti-
mation. Its popularity mainly reflects its advantages in the theoretical property of
using this technique. First, from the parametric point of view, besides the fact that
it is a uniformly minimum variance unbiased estimator, it is Rao0s first order effi-
cient ([10], p348) when the error variable follows a normal distribution. Secondly,
from the nonparametric point of view, Gauss-Markov theorem states that it has the
smallest covariance matrix in the class of unbiased linear estimators. However, the
least squares estimators of ¯ and C¯ are sensitive to departures from normality and
to the presence of outliers. Hence, we need to consider robust estimators.

Among the hundreds or more robust estimators for location and regression pa-
rameters investigated in the last three decades, the L-estimators, defined in terms of
ordinary quantile or the regression quantile of Koenker and Bassett [7], have been
an important estimator class (See Ruppert and Carroll [11], Koenker and Portnoy
[8], and De Jong et. al. [4]). In terms of efficiency, L-estimators can be asymptot-
ically efficient when the p.d.f. of the error distribution is exponentially decreasing
on two tails (see Jurecková and Sen [6]). However, when the error variable fol-
lows a heavy tail distribution, the efficiency of these L-estimators no longer exist.
Chen and Chiang [2] investigated the symmetric trimmed mean, constructed by a
so-called symmetric regression quantile, and show that it has the efficiency of as-
ymptotic covariance matrices close to the Cramer-Rao lower bounds for some heavy
tail distributions. Results similar to this have also been obtained in Chen [1]. With
this efficiency for heavy tail error distribution, a question raised is whether there
are other optimal properties from either the nonparametric or parametric aspect for
the symmetric trimmed mean. The aim of this paper it to answer this question.

From the nonparametric point of view, we will introduce classes of linear sym-
metric trimmed means for the estimation of ¯ and C¯ . We then show that the
estimators based on the symmetric trimmed mean are the best in terms of asymp-
totic covariance matrices. From this, we establish a robust version of the Gauss-
Markov theorem. For describing these estimator classes, we will introduce a set
of Mallows-type bounded influence symmetric trimmed means and show that this
set forms a subclass of the linear symmetric trimmed means. On the other hand,
from the parametric point of view, we will show that the symmetric trimmed mean
satisfies the Rao0s first order efficiency when the error variable follows an extreme
contaminated normal distribution.

In Section 2, we introduce a class of linear symmetric trimmed means. In
Section 3, we derive their large sample properties and show that the symmetric
trimmed mean is the best among the estimators in this trimmed mean class. In
Section 4, we introduce a class of Mallows-type linear symmetric trimmed means
and show that the symmetric trimmed mean is also the best among them. The
Rao0s first order efficiency for the symmetric trimmed mean is shown in Section 5.
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Finally, the proofs of the theorems are given in Section 6.

2. LINEAR SYMMETRIC TRIMMED MEANS

For 0 < ¸ < 1, we call parameter vectors ¯¡ (¸) and ¯+(¸) the population
symmetric quantiles if, for observation model y0 = x00¯ + ²0, they satisfy

x00¯
¡ (¸) = x00¯ ¡ ~F¡ 1(¸) and x00¯

+(¸) = x00¯ + ~F ¡ 1(¸)

where ~F¡ 1(¸) = inffa : P(j²0j · a) ¸ ¸g. If F is a continuous distribution
function, then ~F¡ 1(¸) is the value satisfying P(¡ ~F ¡ 1(¸) · ²0 · ~F ¡ 1(¸)) = ¸
which further implies that P(x00¯

¡ (¸) · y0 · x00¯
+(¸)) = ¸. Moreover, if

we further assume that F is symmetric at 0, then ~F¡ 1(1 ¡ 2® ) = F¡ 1(1 ¡ ®)
for 0 < ® < 0:5 where F is the population quantile in the usual sense of F . This
links the population symmetric quantile with the population regression quantile ¯(¸)
subjected to x00¯(¸) = x00¯ + F¡ 1(¸). Koenker and Bassett [7] proposed the so-
called regression quantile to estimate the population regression quantile. Chen and
Chiang [2] considered an initial-estimator-based method to estimate the population
symmetric quantile. Let ^̄

0 be an initial estimator of ¯ . Then ~F¡ 1(¸) is estimated
by

â(¸) = argmina>0

nX

i=1

(jyi ¡ x0i ^̄0j ¡ a)(¸ ¡ I(jyi ¡ x0i ^̄0j · a))

and the symmetric quantile is defined as ^̄¡ (¸) = ^̄
0 ¡

µ
â(¸)
0p¡ 1

¶
and ^̄+(¸) =

^̄
0 +

µ
â(¸)
0p¡ 1

¶
, where yi is the i-th element of y and x0i is the i-th row of X for

i = 1; :::; n. The following theorem, developed by Chen and Chiang [2], provides
a representation of â(¸).

Theorem 2.1. Let F have the probability density function f . If f is symmetric
at 0, then

n1=2(â(1 ¡ 2®) ¡ F¡ 1(1 ¡ ®)) =(2f(F ¡ 1(1 ¡ ® )))¡ 1n¡ 1=2
nX

i=1

[1 ¡ 2® ¡ I(j²ij · F ¡ 1(1 ¡ ®))] + op(1):

With symmetric quantiles, ^̄¡ (¸) and ^̄+(¸), we then define the trimming matrix
A = faij ; i; j = 1; :::; n and aij = I(i = j and x0i ^̄

¡ (¸) · yi · x0i ^̄
+(¸))g. After

outliers are trimmed by the symmetric quantiles, we have the following submodel

Ay = AX¯ +A²:(2.1)
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Since A is random, the error vector A² is now not a set of independent variables.
Any linear unbiased estimator has the form My with M being a p £ n non-

stochastic matrix satisfying MX = Ip . Since M is a full-rank matrix, there exist
matrices H and H0 such that M = HH0

0. Thus, an estimator is a linear unbiased
estimator if there exists a p£ p nonsingular matrix H and an n£ p full-rank matrix
H0 such that the estimator can be written as

HH0
0y:(2.2)

We generalize linear unbiased estimators defined on the observation vector y to
estimators defined on Ay by requiring them to be of the form MAy with M = HH0

0.

Definition 2.1. A statistic ^̄
lm is called a linear symmetric trimmed mean if

^̄
lm = MAy;(2.3)

and there are H, a p£ p stochastic or nonstochastic matrix, H0, an n£ p nonstochastic
matrix with decomposition M = HH0

0; and an initial estimator ^̄
0 such that the

following two conditions are satisfied:

(a1) MAX = Ip where Ip is the p £ p identity matrix.

(a2) n1=2( ^̄
0 ¡ ¯) = Q¡ 1

hxn
¡ 1=2

Pn
i=1 hiÃ (²i)+ op(1) where h0i represents the i-th

row of matrix H0, and Ã (²) has zero mean and finite varinace.

This is similar to the usual requirements for unbiased estimation except that we
have introduced a trimmed observation vector to allow for robustness and considered
asymptotic property instead of unbiasedness.

For estimating the parametric vector function C¯ , we define a class of estimators
analogously.

Definition 2.2. A linear function NAy is called a linear symmetric trimmed
mean for a vector parametric function C¯ if (1) the matrix N can be decomposed
as N = GH0

0 with a q £ p-matrix G being stochastic or nonstochastic and H0,
an n £ p nonstochastic matrix, and (2) conditions (a2) and the following one are
satisfied:

(a1*) NAX = C .
Suppose that MAy is a linear symmetric trimmed mean for the parameter vector
¯ . Then clearly NAy with N = CM is a linear symmetric trimmed mean for the
vector parametric functionC¯ . This means that the results on the optimal estimation
of C¯ can be derived from the estimation of ¯ .

Two questions arise for the class of linear symmetric means. First, does this class
of means contain estimators that have already appeared in the literature? The answer



Gauss-Markov Theorem and Rao0s First Order Efficiency 359

is affirmative because the class of linear symmetric means defined in this paper
contains the symmetric trimmed mean of Chen and Chiang [2] (H = (X0AX)¡ 1

and H0 = X), and the set of Mallows-type bounded influence symmetric trimmed
means (H = (X0WAX)¡ 1 and H0

0 = X0W with W, a diagonal matrix of weights;
see Section 4). Second, is there a best estimator in this class of means and can we
find it if it exists? This question will be answered in the next section.

3. LARGE SAMPLE PROPERTIES OF THE LINEAR SYMMETRIC TRIMMED MEAN

Denote by h0i the i-th row of H0. Let zi represent either the vector xi or hi
and zij be its j-th element. The following conditions are similar to the standard
ones for linear regression models given in Chen and Chiang [2] and Koenker and
Portnoy [8]:
(a3) n¡ 1

Pn
i=1 z

4
ij = O(1) for z = x or h and all j,

(a4) n¡ 1X0X = Qx+o(1); n¡ 1H0
0X = Qhx+o(1) and n¡ 1H0

0H0 = Qh +o(1)
where Qx and Qh are positive definite matrices and Qhx is a full rank matrix.

(a5) The probability density function f is symmetric at zero. f and its derivative
are both bounded and bounded away from 0 in a neighborhood of F¡ 1(®)
for ® 2 (0;1).

Throughout this paper we let ¸ = 1¡ 2® ;0 < ® < 0:5, for the convenient setting
of the quantile function of F . The following theorem gives a Bahadur representation
of the linear symmetric trimmed mean.

Theorem 3.1. Under conditions (a1)-(a5), we have

n1=2( ^̄
lm ¡ ¯) = (1 ¡ 2®)¡ 1Q¡ 1

hxn
¡ 1=2

nX

i=1

hiÁÃ (²i) + op(1)

where ÁÃ (²) = 2F ¡ 1(1 ¡ ® )f(F¡ 1(1 ¡ ®))Ã (²) + ²I(j²j · F¡ 1(1 ¡ ® )).

The limiting distribution of the linear symmetric trimmed mean follows from
the central limit theorem (see, e.g. Serfling [12], p. 30).

Corollary 3.2. Under the conditions of Theorem 3:1; the normalized linear
symmetric trimmed mean n1=2( ^̄

lm ¡ ¯) has an asymptotic normal distribution
with zero mean vector and asymptotic covariance matrix :

¾2(® )Q¡ 1
hxQhQ

¡ 1
hx

0

where
¾2(®) = (1 ¡ 2® )¡ 2E(Á2

Ã (²)):
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Next we consider the question of optimal linear symmetric trimmed estimation.
For any two positive definite p £ p matrices Q1 and Q2 , we say that Q1 is smaller
than or equal to Q2 if Q2 ¡ Q1 is positive semidefinite. An estimator is said to
be the best in an estimator-class if it is in this class and its asymptotic covariance
matrix is smaller than or equal to that of any estimator in this class. The following
lemma implies that any linear symmetric trimmed mean with asymptotic covariance
matrix

¾2(®)Q¡ 1
x(3.1)

is the best estimator in this class.

Lemma 3.3. For any matrices Qhx and Qh induced from conditions (a1) and
(a4), the difference

Q¡ 1
hxQhQ

¡ 1
hx

0 ¡ Q¡ 1
x ;

is positive semidefinite.

The symmetric trimmed mean proposed by Chen and Chiang [2] is defined by

^̄
s = (X 0AX)¡ 1X0Ay:(3.2)

Put H = (X0AX)¡ 1, and H0 = X which implies that (a1) holds. If we further let
^̄
0 satisfy condition (a2), then the symmetric trimmed mean is a linear symmetric

trimmed mean. Moreover, Chen and Chiang [2] proved that n1=2( ^̄
s ¡ ¯) has an

asymptotic normal distribution with zero mean and covariance matrix of the form
(3.1). Then Lemma 3.3 implies the optimal property of ^̄

s.

Theorem 3.4. Under conditions (a1)-(a5), the symmetric trimmed mean ^̄
s

defined in (3.2) is a best linear symmetric trimmed mean.

For estimating the parametric vector function C¯ , we have the following theo-
rem.

Theorem 3.5. Under conditions (a1*) and (a2)-(a5), we have
(a) n1=2(NAy ¡ C¯)) = n¡ 1=2(1 ¡ 2®)¡ 1CQ¡ 1

hx

Pn
i=1hiÁÃ (²i) + op(1), and

(b) the normalized linear symmetric trimmed mean n1=2(NAy ¡ C¯) has an
asymptotic normal distribution with zero mean and asymptotic covariance
matrix

¾2(® )CQ¡ 1
hxQhQ

¡ 1
hx

0
C 0:

Lemma 3.3. also implies that the product of C and the symmetric trimmed
mean is asymptotically best in a class of linear functions of the trimmed observation
vector Ay.
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Theorem 3.6. Under the conditions of Theorem 3.5, a best linear symmetric
trimmed mean for estimating C¯ is

C ^̄
s;

where ^̄
s is a symmetric trimmed mean.

In the class of linear estimators based on the trimmed observation vector Ay,
we have shown that for estimating the parameter vector ¯ and the vector parametric
function C¯ , the symmetric trimmed mean and its product with C are both best
linear symmetric trimmed means. This establishes a robust version of the Gauss-
Markov theorem.

4. MALLOWS-TYPE BOUNDED INFLUENCE SYMMETRIC TRIMMED MEANS

Like most robust estimators, the symmetric trimmed mean has a Bahadur rep-
resentation with influence function of the form

Q¡ 1
x xi°(²i)

with function ° bounded in the domain of error variable ² if the initial estimator ^̄
0

also has influence function bounded in error variable. Then the influence function
of the symmetric trimmed mean is bounded in the error space but not bounded in the
space of explanatory variables. In statistical literature, the Mallows-type bounded
influence technique has been applied by De Jongh et. al. [4] on the trimmed least
squares estimator of Koenker and Bassett [7] and a trimmed mean proposed by Welsh
[13]. Here we use the Mallows-type bounded influence technique to construct some
bounded influence linear symmetric trimmed means.

Let wi; i = 1; :::;n; be real numbers and denote the n £ n matrix W by the
diagonal matrix of the set fwi; i = 1; :::;ng. The Mallows-type bounded influence
symmetric trimmed mean is defined as

^̄
w = (X0WAX)¡ 1X 0WAy:

Here trimming matrix A is for bounding the influence of error variable and the
weighted matrix W is for bounding the influence of explanatory variables (For con-
struction of weights, see De Jongh et. al. [4]). In addition, the following assumption
is valid.
(a6) limn!1 n¡ 1

Pn
i=1 wixix0i = Qw, limn!1n¡ 1

Pn
i=1 w

2
ixix

0
i = Qww, where

Qw and Qww are p £ p positive definite matrices.

By letting H = (X0WAX)¡ 1 and H0
0 = X0W , we see from the following

lemma that the Mallows-type bounded influence symmetric trimmed mean is a linear
symmetric trimmed mean.
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Lemma 4.1. Under conditions (a1)-(a6),

n¡ 1X0WAX = (1 ¡ 2®)Qw + op(1):

From condition (a2), ^̄
0 is required to have the following representation

n1=2( ^̄
0 ¡ ¯) = Q¡ 1

w n¡ 1=2
nX

i=1

wixiÃ (²i)+ op(1):

Theorem 4.2. The Mallows-type bounded influence symmetric trimmed means
form a subclass of linear symmetric trimmed means.

The following theorem states a representation for this bounded influence sym-
metric trimmed mean.

Theorem 4.3.

n1=2( ^̄
w ¡ ¯) = (1 ¡ 2®)¡ 1Q¡ 1

w n¡ 1=2
nX

i=1

wixiÁÃ (²i)+ op(1);

and
n1=2( ^̄

w ¡ ¯) !N (0; ¾2(®)Q¡ 1
w QwwQ

¡ 1
w ):

As the fact that the symmetric trimmed mean is a Mallows-type bounded influence
trimmed mean (W = In), we then can state the following theorem.

Theorem 4.4. The symmetric trimmed mean is the best Mallows-type bounded
influence symmetric trimmed mean.

The Mallows-type bounded influence symmetric trimmed mean for vector para-
metric function C¯ is defined as

C ^̄
w;

indexed in weight matrix W. Let G= C(X0WAX)¡ 1. It is seen that

G! (1 ¡ 2®)¡ 1CQ¡ 1
w in probability.

Moreover, by letting H0 = WX,

GH0AX = C:

Condition (a1¤) holds and then we have the following theorem.

Theorem 4.5. The Mallows-type bounded influence symmetric trimmed means
C ^̄

w are also linear symmetric trimmed means.

Their large sample properties are easily obtained from Theorem 4.3.
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Theorem 4.6.
(a) A representation of the Mallows-type bounded influence symmetric trimmed

means C ^̄
w is

n1=2(C ^̄
w ¡ C¯) = (1 ¡ 2®)¡ 1CQ¡ 1

w n¡ 1=2
nX

i=1

wixiÁÃ (²i) + op(1):

(b) The normalized Mallows-type bounded influence symmetric trimmed mean
n1=2(C ^̄

w¡ C¯) has an asymptotic normal distribution with zero mean vector
and asymptotic covariance matrix :

¾2(®)CQ¡ 1
w QwwQ

¡ 1
w C 0:

The symmetric trimmed mean C ^̄
s for estimating vector parametric function C¯ is

also a Mallows-type bounded influence symmetric trimmed mean (W = In).

Theorem 4.7. The symmetric trimmed mean C ^̄
s is the best Mallows-type

bounded influence symmetric trimmed mean.

These results are based solely on considerations of the asymptotic variances and
ignore the fact that symmetric trimmed mean does not have bounded influence in
the space of explanatory variables. It confirms that bounded influence is achieved
at the cost of efficiency.

5. RAO0S FIRST ORDER EFFICIENCY FOR THE SYMMETRIC TRIMMED MEAN

Let z be an observation vector with joint probability density function fz having
unknown parameter vector µ. Rao ([10], p348) defined an estimator µ̂ with first
order efficiency for estimating parameter vector µ if there is a constant matrix B
such that

n1=2jj(µ̂ ¡ µ) ¡ B
@ ln fz(z;µ)

@µ
jj = op(1);

where jj jj is the Euclidean norm in Rn.
Now, let y follow regression model (1.1) and redenote the symmetric trimmed

mean of (3.2) by ^̄
s(1¡ 2® ) where 1¡ 2® is the percentage of observations retained

for estimator computing. Suppose that error variable ² has a contaminated normal
distribution as

(1 ¡ ±)N(0; ¾2) + ±N(0; °¾2);(5.1)

where 0 < ± < 1, ° > 0. The contaminated normal distribution of (5.1) satisfies
²f(²) ! 0 as ²!1 and as ° !1; F¡ 1

² (1 ¡ ±=2) !1. Then as ° !1; we
have

@ lnf(y; µ)

@µ
= ¡ ¾¡ 2

nX

i=1

xi²
¤
i ;(5.2)
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asymptotically, where ²¤i are i.i.d. with distribution N (0; ¾2). Only an estimator
which has a representation proportional to (5.2) is Rao0s first order efficient. We
now state that the symmetric trimmed mean is first order efficient in this extreme
heavy tail error distribution.

Theorem 5.1. We assume that initial estimator ^̄
0 has a representation with

bounded influence function. Then, as ° !1, ^̄
s(1 ¡ ±) is first order efficient with

matrix B = ¡ (1 ¡ ±)¡ 1¾2n¡ 1=2Q¡ 1.

It says that the symmetric trimmed mean with percentage of observations being
removed exactly equal to that of the outliers in model (5.1) is first order efficient.
This is the first result which bears an estimator with Rao0s first order efficiency in
a heavy tail error distribution. It also further implies that the symmetric trimmed
mean is one that can completely remove all outliers and retain all good observations.

6. CONCLUDING REMARKS

In this paper we have shown that the symmetric trimmed mean has several
properties. (a) It is asymptotically the best among the class of linear symmetric
trimmed means. This extends the property of being a best linear unbised estimation
for the least squares estimator to robust estimation. (b) It is asymptotically the best
among the class of Mallows-type bounded influence symmetric trimmed means. (c)
It satisfies Rao0s first order efficiency. An interesting question raised from the above
results is whether there is another trimmed mean or M-estimator that satisfies all or
some of these properties. Moreover, since L¶eger and Romano [9] claimed that the
adaptive trimmed mean of Welsh [13] can asymptotically achieve optimal trimming
percentage, it would also be interesting to see if this property also holds for the
symmetric trimmed mean.

7. APPENDIX

Proof of Theorem 3.1. Inserting (2.1) in equation (2.3), we have

n1=2( ^̄
lw ¡ ¯) = n1=2HH0

0A²;

and from condition (a4) and Lemmas 3.2 of Jureçková [5] or Chen and Chiang [2],
we have

n¡ 1
nX

i=1

hix
0
iI(jyi ¡ x0i ^̄0j · â(1 ¡ 2®)) = (1 ¡ 2®)Qhx + op(1);
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which implies that

nH = (1 ¡ 2® )¡ 1Qhx + op(1):(7.1)

Moreover, from Lemma 3.1 of Jurecková [5], we have the following that develop a
representation of n¡ 1=2H0

0A²

n¡ 1=2
nX

i=1

hi²i[I(j²i ¡ n¡ 1=2x0iTnj

· n¡ 1=2T0 +F ¡ 1(1 ¡ ®))¡ I(j²ij · F¡ 1(1 ¡ ® ))]

= 2f(F ¡ 1(1 ¡ ®))F ¡ 1(1 ¡ ® )n¡ 1
nX

i=1

hix
0
iTn + op(1);

(7.2)

for any sequences T0 and Tn satisfying T0 = Op(1) and Tn = Op(1). Equation
(7.2) can be applied to obtain the following extension:

n¡ 1=2
nX

i=1

hi²iI(j²i ¡ n¡ 1=2x0iTnj · n¡ 1=2T0 +F ¡ 1(1 ¡ ®))

= n¡ 1=2
nX

i=1

hi²i[I(j²i ¡ n¡ 1=2x0iTnj · n¡ 1=2T0 + F¡ 1(1 ¡ ®))

¡ I(j²ij · F¡ 1(1 ¡ ® ))] + n¡ 1=2
nX

i=1

hi²iI(j²ij · F¡ 1(1 ¡ ® )) + op(1):

(7.3)

The theorem is followed from (7.1) and the result of (7.3) with replacing Tn by
n¡ 1=2(^̄0 ¡ ¯) and T0 by n1=2(â(1 ¡ 2® )¡ F¡ 1(1 ¡ ® )).

Proof of Lemma 3.3. Write plim(Bn) = B if Bn converges to B in probability.
Let

P = HH0 ¡ (X0AX)¡ 1X0:

Now PAX = HH0
0AX ¡ (X0AX)¡ 1X0AX = 0. Hence

Q¡ 1
hxQhQ

¡ 1
hx

0
= (1 ¡ 2®)¡ 1plim(HH0

0A(HH0
0A)0)

= (1 ¡ 2® )¡ 1plim((PA+(X0AX)¡ 1X0A)(PA+ (X0AX)¡ 1X 0A)0);

= (1 ¡ 2® )¡ 1[plim(PAP 0) + plim((X0AX)¡ 1X0AX(X0AX)¡ 1)];

= (1 ¡ 2® )¡ 1plim(PAP 0) + (1 ¡ 2® )¡ 2Q¡ 1
x ;

¸ (1 ¡ 2® )¡ 2Q¡ 1
x :

Proofs of Theorem 3.5, Lemma 4.1, Theorem 4.3 and Theorem 4.6 can all be
analogously derived through the line for Theorem 3.1 and are then skipped.
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Proof of Theorem 5.1. A representation of the symmetric trimmed mean in Chen
and Chiang [2] is

n1=2( ^̄
s(1 ¡ 2® )¡ ¯)

= ¸¡ 1Q¡ 1
x [2F¡ 1(1 ¡ ®)f(F ¡ 1(1 ¡ ®))Qxn

1=2( ^̄
0 ¡ ¯)

+n¡ 1=2
nX

i=1

xi²iI(j²ij · F¡ 1(1 ¡ ®))] + op(1):

However, as ° !1; F¡ 1(1 ¡ ±=2) !1 and then

n1=2(^̄s(1 ¡ ±) ¡ ¯) = (1 ¡ ±)¡ 1Q¡ 1
x n¡ 1=2

nX

i=1

xi²
¤
i + op(1);

where ²¤i are i.i.d. with distribution N(0; ¾2) which proves the theorem by compar-
ing with (5.2).
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9. C. Léger and J. P. Romano, Bootstrap adaptive estimation: the trimmed-mean exam-
ple. The Canadian Journal of Statistics 18 (1990), 297-314.

10. C. R. Rao, Linear statistical inference and its applications. Wiley, New York, 1973.

11. D. Ruppert, and R. J. Carroll, Trimmed least squares estimation in the linear model.
Journal of the American Statistical Association 75 (1980), 828-838.

12. R. J. Serfling, Approximation theorems of mathematical Statistics. Wiley, New York
1980.

13. A. H. Welsh, The trimmed mean in the linear model. Annals of Statistics 15 (1987),
20-36.

Peter Thompson
Mathematics Department
Wabash College
Crawfordsville, IN 47933
U.S.A.

Eugene K. Yang
Institute of Applied Mathematics
National Tsing Hua University
Hsinchu, Taiwan

Lin-An Chen
Institute of Statistics
National Chiao Tung University
Hsinchu, Taiwan


