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ON THE EXISTENCE OF STRONG SOLUTIONS TO SOME
SEMILINEAR ELLIPTIC PROBLEMS

Tsang-Hai Kuo* and Chiung-Chiou Tsa *

Abstract. We study the following semilinear dliptic problem:

i=

a 0%u ol ou
! Z a;(z,u) + bi(m,u)8 + oz, u)u= f(z) inB,
1

0x;0x; T;
ij=1 v ¢

Lu:O on 0B,

where B isabal in RN, N > 3, a;; = a;j(z,7) € C*Y(B x R), a;,
aaij/asci, 6aij/8r, b, ce LOO(B X ]R), with 1,] = 1,2,--- N and ¢ 0,
and f € L?(B). For each p, p > N, there exists a strong solution u €
W2»(B) N Wy* (B) provided the oscillations of a;; with respect to r are
sufficiently small. Moreover, for N/2 < p < N, if ||f||.» is small enough,
then the existence result remains hold.

1. INTRODUCTION

Let Q2 beanopensatinRY, N > 3. WmP(Q) = {u € LP(2)| weak derivatives
Dy e Lr(Q) fordl |of  m}, Wi"P(Q) istheclosure of C§°(Q) in W™2(Q2) and
WP () isthespace cons sing of functions belonging to W™ (') for dl ' C €.
H™(Q) = Wm2(Q), H(Q) = W™%(Q). Br(y) istheopenbal in RY of radius
R centered at y. B} (y) = Br(y) N\RY = {z = (z1,--+ ,2n) € Br(y)|zy > 0}.

We investigate the following semilinear dliptic problem in a C*! domain Q2 C
RN N >3
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N N
0%u ou .
(1.1) Lu = Z aij(m,u)m—f— Zlbi(a:, u)a—xZ + c(z,u)u = f(z) ing,

i,j=1 i=
u=0 on 05},

where f € LP(Q2).
Define the mapping F' in W22(Q)NW,*(£2) by letting u = F(v) bethe unique
olution in W2P(Q) N Wy P(€) to the linear dliptic problem:

N N
*u ou :
(12) Lyu= igz:l a;;(z, v)m + E:lbi(x,v)a—xi + c(x,v)u= f(z) inQ,

u=~0 on of2.

The unique solvability of problem (1.2) is guaranteed by the linear existence result
[4, Theorem 9.15] under appropriate coefficients conditions. We notice here tha
F is wel-defined for p > N/2 and is continuous in the topology of H'(Q) [3J].
Onethen intends to find a fixed point of F. Observethat the well-known regularity
theorem of Agmon-Douglis-Nirenberg [1] asserts that

(1.3 [ullwer@  Cllullzr(o) + [[Loullr(q)),

where C' is a constant depending on the moduli of continuity of the coefficients
aij(xz,v(x)) on Q, eéc. If a;j(z,v) = a;5(x), then the constant C' in (1.3) is
independent of v; furthermore, there exi gs a constant C' independent of v such that

(1.4) [ullw2eiq)  CliLyullr )

Applying the Schauder fixed point theorem, one can readily obtain a solution to
problem (1.1). However, for the case that a;; depends on both 2 and v, the condtant
C in (1.3) varies with v.

Our main ideais to make the constant in (1.3) be independent of v. When €2 is
aball BinRY, aglobal W27 egimate for u € W2P(B) W, (B) is established
in Section 2 under stronger coefficients conditions on a;; with a;; = ai;(x,r) €
CY%(B x R) and sufficiently smal oscillations with respect to . In Section 3, the
global W2 estimate together with the maximum principle [2] for the solution of
problem (1.2),

swplul - Clfllzv o),

leads directly to the exigence of solutions to problem (1.1) in B provided p > N.
Moreover, for p < N, if ||f||z» iS Small enough, then the existence result can be
dso asserted. Besdes, existence of solutions in some other specific domainsis dso
consdered in this paper.
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2. W?2P ESTIMATES

Recdl that an operator L in (1.1) issaid to beelliptic in €2 if there exists A > 0
such that

N
2.1) > ai(z,r)6ig; = NEP for (r,6) e RxRY and ae z € Q.
=1

For a fixed point z € RY, we denote osc a;;(x, r) the oscillation of a;; with
regpect to r in R, that is, o aij(ar, 7‘) = sup{a,ij(zv, 7“1) — aij(w,rg)]n, Tro € R},
and let

osC a(z,r) = ) II;?XN 0SC a;j(x, r).

For v € W2P(Q) N W, (), let L,u be given by (1.2). We start this section
by observing an interior 1W2P estimate in an open set © ¢ RN for u € WEP(Q) N
IP(2), with Lyu € LP(£2), which will then be applied to derive a global W2p
egimete for u € W2?(B) N Wy?(B), with L,u € L?(B), in abal B ¢ RY in
Proposition 2.2.

Notice that the interior W2 egtimate for the linear case formulated in Theorem
9.11 [4, p. 235] is derived by a uniform perturbation of the coefficients a;;(x) in
the neighborhoods of finite pointsin €2. In the present case that a;; = a;;(x,u),
an interior W2» estimate can be established dong the same line provided the os-
dllations of a;; with respect to r are sufficiently smdl. Therefore, we have the
following lemma in which K is a constant depending only on N, p, and satisying

22) I1D*w| o) Kl Aw]| (g,
where w € W3P(Q) [4].

Lemma 2.1. Let Q) be an open set in RN and the coefficients of L satisfy, for
a positive constant A,

23)  a; €CU QX R), b, c € L®(Q xR), |agl, |bil, |d A,

where i, =1,--- ,N. Suppose that

A
24) 0sC a(x,r) 1K Vr €Q,

where K is given by (2.2). Then if u € VV%’?(Q) N LP(QY) and Lyu € LP(S2), with
1 < p < oo, we have for any domain Y C § the estimate

25) ullwer@y  Cllullr@) + [Loullze @),



346 Tsang-Hai Kuo and Chiung-Chiou Tsai

where C is a constant (independent of v) depending on N, p, A\, A, S, with respect
tox on (Y. [ ]

To smplify the boundary esimate, we refrain  to be abal in RV. Thus, we
can further derive alocal boundary estimate which together with Lemma 2.1 enables
us to egablish the following globd estimate.

Proposition 2.2. Let B be a ball in RN and the operator L satisfy (2.3) with
aij(z,r) € C%Y(B x R). Suppose that

A

(2.6) o a(x, r) 1K Vx € B,
(2.7 o a(z,r) < A Vx € OB
’ 8N2K ’

where K is given by (2.2). Then if u € W2P(B) N\ Wy ?(B) and Lyu € LP(B),
with 1 < p < oo, we have the estimate

(28) [ullwarsy  Cllullees) + [ LoullLe ),

where C' is a constant (independent of v) depending on N, p, A, A, 0B, B and
the moduli of continuity of the coefficients a;;j(x,r) with respect to x on B.

Proof. For simplicity, let B be the unit ball B;(0) with its boundary S:

N
Sz&B:{x:(m‘l,---,xN)E]RN‘Zx?:l}.
=1

Now we clam tha S € CLL For any 20 = (29,--- ,2%) € S, there exists an
integer k, 1 kN, suchthat 2y € S or zy € S, where
S,j:{xES]Z#kx? %,xk>0},

for otherwise we would have Zf\i 1 xf > 1, acontradiction. Without loss of gener-
dity, we can assume xp € Sy;. Write

xg = (cosfpsinfs---sinfy_1, sinfisinfby---sinOn_1,
cos o sinf3 -+ -sinOy_1, cosfssinfy---sinOy_1,
cos Oy sinfs - - -sinfn_1,- -, cosOn_2sinOny_1, cosOn_1)
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forsome;, 0 On_y tan'V/N—-1,0 6;<2mi=1,---,N—2, where
On—1 isthe angle from the positive x y-axis to x(. Rotate the coordinae axes, the
rotated axes being denoted as the z)-, ---, z/y-axis, by the mapping R, defined
by 2/ = 2O, where

cos 0 cosfy —sinf; cosbsin by
O;=| sinfjcosfy cos#; sinbysinby |,
—sinfy 0 cos by
Ix o 0 0
Oy = 016_1 ?} 0---0 cosOx—1 sinbg_q |, k=4,---,N,
0---0 —sinfr_1 cosb_1

here I,_» being the (k — 2) x (k — 2) identity matrix, such that x¢ is converted
into the point (0,---,0,1). Define a mepping ¥ = 1, = 1 (q,.. 01) © Ry ina
neighborhood N = Nz, = Ry H(Np.... 0,1)) € RY, where

1 / N -1
"1[)(0"" 0,1) = % (:Ella e 7:17?\/'717 1- Z x/% - $9v), 0<ro Ta
#N

and
N on) = {x RYY e, oy dio [goy o
iZN i#N iZN
<zy < I—Zx’?—k 7’3—22:’1-2}.
i#N i#N

Then 4 is a diffeomorphism from A onto the unit bal B;(0) in RY such that
YNNB) C RY, p(N'NIB) C dRY, 4 € CHYN), ¢! € CH1(B1(0)). Under
the mapping y = ¢(z) = (¢u(x), -+, (), let uly) = u(z), 1(y) = v(z) and
Liu(y) = Lyu(x), where

oi= ) Ui, 3W) 5 oy Z&(y, W), T 0@)E) in B{(0)

&y, 1(y)) = (=, v(z)),
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s that L satisfies conditions similar to (2.1) and (2.3) with constants A, A depending
on )\, A and v. Furthermore, & € W2P(B;(0)), @ = 0 on B;1(0) NORY in the
sense of WhP(B;(0)).

Notice thet Dy = D q.... o.1)DRy, and @ = (Dap)a(Dep)", where

_ 6"‘!’@ albi
by = ax]] Dy, [ax;]
o, . ., ..
DRzo - 890]}’ a_[aij]7 Z?]_L" ,N.
We can obtain from a further computation of a that
N2
(2.9 o a(0,7) < - 0SC a(zo, 7).

7“0

Now we will choose X > 0 properly. For dl &€ = (¢£1,--- ,&x) € RY,

N
> a6ty = cag” = (E(DY))a(E(D))T > ME(D)|?

i, j=1
= % (Z &+ (1 +>° XZ?) & —2 Z&'SNXZ)
"o \iZyv iAN i#A<N
%(1—6 252 —%)ZXf)fJZV)
i#EN i#=N

for any € > 0, where X; = z}/,/1 -y, i = 1,---,N — 1. Choose
0<e<lsuchthat 1+(1—(1/€) Y n X7 >1—cie, Yy X7 <€/(1—¢)
andso X = A(1 —e)/rg. Since Y-,y X7 < 75/(1 —r5) InNq,... 0,1, We can take
e2/(1—¢) =7r2/(1 —r3) to obtain

~ 2 2 4
(2.10) D W VL k=

- 2r3(1—13)

In view of the proof of Theorem 9.13 [4, p. 239], the oscillaions of a;;(0, ) with
respect to » € R, corregponding to condition (2.4), must be less than A /8K, tha

is
LY

(21) osc @(0,7) e
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In view of (2.9) and (2.10), inequality (2.11) holds provided

2 g2 9.4
(212 0sC a(xg,r) A 2= 47 3TO.
16 N2K 1—13

Since the right-hand side of (2.12) increasesto A/8 N?K asry — 0, there exists g
small enough such that, under hypothesis (2.7), inequality (2.12) holds Thus, usng
the same deduction as in the proof of Lemma 2.1, we obtain, on returning to our
origind coordinates, a locad boundary estimate in a neighborhood, say A/. For an
arbitrary ball B inRY, by means of alinear transformation from B onto the unit ball
and following the arguments as Sated above we can dso arive at such an etimate.
Findly, by covering 9B with afinite number of such neighborhoods A and using
dso the interi or edimate (2.5), the desired edimate (2.8) follows immediady. m

Corollary 2.3. Under the hypotheses of Proposition 2.2 with B replaced by
the ellipsoid

N
&= {w:(wl,--- ) eRN|Z(‘“;C")2 < 1},
i=1 v

and with (2.7) replaced by

minr; A

(2.13) o a(x,r) < maxr;  8N2K

Vr € 0F,

the same conclusion (2.8) remains valid.

Proof. Let T : RN — RY be given by

T(z) = (xl_cl,... ,“/’N_CN)

1 N

Then T is a diffeomorphism from £ onto the unit bal B;(0) in RY. For any
0= (29, ,2%) € O, there exits aninteger k, 1 kN, such that zp € I}
orzg € I'y, whereI' =T-1(S;"), I, =T-1(S;). Thus, thereisaneighborhood
U = Uy, = T (Np(y,)) and a diffeomorphism ¢ = ¢, = Pp(y,) o T fromU
onto the unit bal By(0) in RY such that ¢(U N E) C RY, ¢ N IE) c ORY,
¢ € CYYU), o7t € CH(B1(0)). The desired estimate (2.8) can be smilarly
derived by following the proof in Proposition 2.2. [ ]

Remark 2.4. Proposition 2.2 remains vaid with B replaced by an ovaloid in
RN, (An ovaloid in RY isarectangle in R™V with rounded comers) [
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3. EXISTENCE OF STRONG SOLUTIONS

Thereaults of the precedi ng section will now be gpplied to establish the existence
of solutions of the following semilinear elliptic problem:

Lu = N a;i(x u)ﬂ—k N bi(x u)a—u—l—c(a: wu=f(x) inB
(31) _ijz':l A 61‘18.%] ; w 81’1 ’ N ’

u=0 on 0B,

where f € LP(B).

For the moment, we suppose a;; € C%(B x R), a;;, da;j/0z;, da;;/0r, by,
c are bounded Carathédory functions, withc¢ 0, and f € LP(B), withp > N/2.
Consider the mapping F which assigns to v € W2?(B) NW,*(B) the solution
u € W2P(B) N WyP(B) to the equetion

2

0u al ou .
Da:0; + ;bi(m,v)axi + c(x,v)u= f(x) in B.

N
(32) Lyu = Z G,L'j($,1))
3,j=1
(F iswél-defined provided p > N/2.)

Since W2P(B)NW,"*(B) is continuoudy imbedded in H' (B), by the dlipticity
of L, the mapping F : W2P(B) NW,P(B) — W2P(B) "W, ?(B) is continuous
in the topology of H'(B) [3]. Together with esimate (2.8) and the maximum
principle for equation (3.2):

(3.3 S%P|u| M| fllLv By,

where M is a condant depending on N, diam B, A and A [2], (the maximum
principle is only vaid for p > N), we have the following exigence reault.

Theorem 3.1. Let B be a ball in RN and suppose a;; € COY(B x R), a;,
da;;/0x;, Oa;;/Or, b;, ¢ € L®(B x R), withi,j = 1,--- ,N and ¢ 0. Then,
for p > N, there exists a solution u € W>P(B) N VVO1 "P(B) to problem (3.1) under
hypotheses (2.6) and (2.7).

Proof. Consider the solution v = F(v) for v € W?P(B) N W, ?(B). Since
f € LP(B) withp > N, it follows from (2.8) and (3.3) that there exists a congtant
k > 0 such that

[ullyer &k foralu=F(v), ve W*P(B)NW,”(B).

Let
K={ve W*B) nWyP(B)| |vlw=» k}.
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Then F is a continuous mapping from K into K in the topology of H*(B). More-
over, since W2P(B) is a reflexive space and WP(B) is continuously imbedded in
HY(B), K is weakly compact in H!(B) and henceit is dosed in H'(B). Also,
dnce W2P(B) — WP(B) isa compact imbedding, K is acompect setin H'(B).
We conclude from the Schauder fixed point theorem that there exists a solution to
problem (3.1) in . [ ]

In the seque, we shall show tha if || f||» issufficiently smdl, thenthe existence
result of problem (3.1) gill holds.

Lemma 32. Leta;j € C%Y(B x R), a;j, 0aij/0z;, Oa;j/Or, b, c € L®(B x
R), with 4,5 = 1,--- ,N and ¢ 0. Then, under hypotheses (2.6) and (2.7),

there exists a constant C' independent of u and v such that, for all v € K = {v €
W22(B)NWoP(B) | |vlwzs K},

(34) lullwzr  CllLou]Le
for all w € W2P2(B) N Wy?(B).

Proof. \We argue by contradiction. If (3.4) is not true, then for dl m > 0 there
exist sequences (w,,) € W*P(B) N W, ?(B) and (vn,) C K satisfying

W llw2s = M| Le,, Wl o -
We will claim that there exists a sequence (u.,) C W22(B) N W,*(B) sdisfying
(3.5) [uml|ze = 1; || Loy, tim||r — 0.
Let 2, = wm/ ||wm|lw2r. Then ||zm|lw2, = 1 and

[ Lo, wmllLr 1 [wmllwer 1
HLvmzmHLP = — =—.
||meW27p m ||wm||W2m m

Thus
| Loy zmllLe — 0 @& m — 0.

From Proposition 2.2, there exists M > 0 independent of (v,,) such that

lzmllwzr  M(|zmllLr + [ Loy 2ml| 2o)-
Hence, for any € > 0, we have

lzmllwzr  Me+ M| zm| » am — 0o.
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It follows that

1

zmllLe > MHZmHWZP_e: —€  am—oo.

<[ -

Since € iS arbitrary, we Ilave
Zm || Lp M m 0.

Let wm = 2m/||2m||Lp- Then

[umlr =1; || Lo, uml » — 0.
Thus we get a sequence (u,,) C W2P(B) NW,*(B) saisfying (3.5) and
(36) [umllwze  M(|luml|Le + || Lo, tml|r)-

Combining (3.5) with (3.6), we know tha (u,,) is bounded in W?2P(B) and thus
there exists a subseguence, denoted again by (u,,,), converging weakly to a function
u € W2P(B) N Wy (B). Moreover, snce W2#(B) — W»(B) is a compact
imbedding, (u,,) convergesto u in LP(B) saisfying ||u||z» = 1. Similarly, since
(v is bounded in V2P (B), we can extract a subsequence, denoted ad o by (vyy,),
such that v, — v ae and v, — v in WHP(B) for ome v € W2P(B)NW,*(B).
Also, since a;j, Oaij/0x;, Oa;j/0r, b; and ¢ are bounded Carathédory functions, by
L ebesgue’ s dominated convergence theorem, we have

ou,, 0 Oaj; Oaji OV, Oy,
[t G5l B( 5 <vm>+%<vm>a—%—bi<vm>) g
() 2w 99 9aji (o, 985\ OV
+ [ etwnuns > [asrgg® s [ (G + G5
0
_bi(v)) a;m /9 (—c(v))ug

for all ¢ € C5°(B). Hence Lyu =0 and u = 0 by the uniqueness assertion, which
contradicts the condition |ju|lz» = 1. [ |

Theorem 33. Let B be a ball in RN and suppose a;j € CO'(B x R), a;;,
Oaij/0xi, Dai;/0r, bi, ¢ € L>®(B x R), with i,j = 1,--- ,N and ¢ 0. Then,
for p > N/2, there exists a positive constant C such that if

| fllry  Co,

there exists a solution w € W2P(B) "Wy (B) to problem (3.1) under hypotheses
(2.6) and (2.7).
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Proof. Consider the set
K= {v e W2P(Q) N WEP(Q)] [[v]l2 k}

It follows from Lemma 3.2 tha there exists a constant C' > 0 independent of v € K
such that
llullzr  C|f|lLe fordl u= F(v), v e K.

Choose a constant Cp > 0 such that CCy k. Henceif ||f||z»  Ch, we have
|lull2» k. It follows readily from the Schauder fixed point theorem that there
exists a solution of problem (3.1) in K. [ ]

Remark 34. Forp > N, since W2?(Q) isimbedded in C*(2) for a bounded
CH1 domain €, the constant C' in estimate (1.3) can be chosen to be independent
of v with v restricted to some bounded set in W2P((2). Then, together with the
maximum principle, Theorem 3.3 remains valid with B replaced by 2 provided
p > N without any restrictions on the oscillations of a,; with respect to r.

Remark 3.5. Theorems 3.1 and 3.2 reman vdid with B replaced by the
dlipsoid £ in Corallary 2.3 and with (2.7) replaced by (2.13).

Remark 3.6. Theorems 3.1 and 3.2 remain valid with B replaced by an ovdoid
in RV,

Remark 3.7. For any bounded domain €2 with a suffi ciently smooth boundary,
dthough the diffeormorphism ) in Proposition 2.2 is not explicitly observed, it
seems that the existence of strong solutions u € W22(Q) N W, ?() to problem
(3.1) in © remains vdid provided the oscillations of a;; with respect to r are
aufficiently smal.
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