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ON THE EXISTENCE OF STRONG SOLUTIONS TO SOME
SEMILINEAR ELLIPTIC PROBLEMS

Tsang-Hai Kuo¤ and Chiung-Chiou Tsai¤

Abstract. We study the following semilinear elliptic problem:

8
><
>:

NX

i;j=1

aij (x; u)
@2u

@xi@xj
+

NX

i=1

bi(x; u)
@u

@xi
+ c(x; u)u = f (x) in B;

u = 0 on @B;

where B is a ball in RN , N ¸ 3, aij = aij (x; r) 2 C0;1( ¹B £ R), aij,
@aij=@xi, @aij=@r , bi , c 2 L1(B £ R), with i;j = 1; 2;¢¢¢ ; N and c · 0,
and f 2 Lp(B). For each p, p ¸ N , there exists a strong solution u 2
W 2;p(B) \ W 1;p

0 (B) provided the oscillations of aij with respect to r are
sufficiently small. Moreover, for N=2 < p < N , if kfkLp is small enough,
then the existence result remains hold.

1. INTRODUCTION

Let ­ be an open set in RN , N ¸ 3. Wm;p(­ ) = fu 2 Lp(­ )j weak derivatives
D®u 2 Lp(­ ) for all j® j · mg, Wm;p

0 (­ ) is the closure of C1
0 (­ ) in Wm;p(­ ) and

Wm;p
loc (­ ) is the space consisting of functions belonging toWm;p(­ 0) for all ­ 0 ½ ­ .

Hm(­ ) = Wm;2(­ ), Hm
0 (­ ) = Wm;2

0 (­ ). BR(y) is the open ball in RN of radius
R centered at y. B+

R(y) = BR(y) \RN
+ = fx = (x1; ¢¢¢ ; xN) 2BR(y)jxN > 0g.

We investigate the following semilinear elliptic problem in a C1;1 domain ­ ½
RN , N ¸ 3:
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(1.1)

8
><
>:
Lu =

NX

i;j=1

aij(x;u)
@2u

@xi@xj
+

NX

i=1

bi(x; u)
@u

@xi
+ c(x; u)u = f(x) in ­ ;

u = 0 on @­ ;

where f 2Lp(­ ).
Define the mapping F in W 2;p(­ )\W 1;p

0 (­ ) by letting u = F(v) be the unique
solution in W 2;p(­ ) \W 1;p

0 (­ ) to the linear elliptic problem:

(1.2)

8
><
>:
Lvu =

NX

i;j=1

aij(x; v)
@2u

@xi@xj
+

NX

i=1

bi(x;v)
@u

@xi
+ c(x; v)u = f(x) in ­ ;

u = 0 on @­ :

The unique solvability of problem (1.2) is guaranteed by the linear existence result
[4, Theorem 9.15] under appropriate coefficients conditions. We notice here that
F is well-defined for p > N=2 and is continuous in the topology of H1(­ ) [3].
One then intends to find a fixed point of F . Observe that the well-known regularity
theorem of Agmon-Douglis-Nirenberg [1] asserts that

kukW2;p(­ ) · C(kukLp(­ ) + kLvukLp(­ ));(1.3)

where C is a constant depending on the moduli of continuity of the coefficients
aij(x; v(x)) on ¹­ , etc. If aij(x; v) = aij(x), then the constant C in (1.3) is
independent of v; furthermore, there exists a constant C independent of v such that

kukW2;p(­ ) · CkLvukLp(­ ):(1.4)

Applying the Schauder fixed point theorem, one can readily obtain a solution to
problem (1.1). However, for the case that aij depends on both x and v, the constant
C in (1.3) varies with v.

Our main idea is to make the constant in (1.3) be independent of v. When ­ is
a ball B in RN, a global W 2;p estimate for u 2W 2;p(B)\W 1;p

0 (B) is established
in Section 2 under stronger coefficients conditions on aij with aij = aij(x;r) 2
C0;1( ¹B £ R) and sufficiently small oscillations with respect to r. In Section 3, the
global W 2;p estimate together with the maximum principle [2] for the solution of
problem (1.2),

sup
­
juj · CkfkLN(­ );

leads directly to the existence of solutions to problem (1.1) in B provided p ¸ N.
Moreover, for p < N, if kfkLp is small enough, then the existence result can be
also asserted. Besides, existence of solutions in some other specific domains is also
considered in this paper.
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2. W 2;p ESTIMATES

Recall that an operator L in (1.1) is said to be elliptic in ­ if there exists ¸ > 0
such that

NX

i;j=1

aij(x; r)»i»j ¸ ¸j»j2 for (r;») 2 R£ RN and a.e. x 2 ­ :(2.1)

For a fixed point x 2 RN , we denote osc aij(x; r) the oscillation of aij with
respect to r in R, that is, osc aij(x; r) = supfaij(x; r1) ¡ aij(x;r2)jr1; r2 2 Rg,
and let

osc a(x;r) = max
1· i;j·N

osc aij(x; r):

For v 2W 2;p(­ ) \W1;p
0 (­ ), let Lvu be given by (1.2). We start this section

by observing an interior W 2;p estimate in an open set ­ ½ RN for u 2W 2;p
loc (­ ) \

Lp(­ ), with Lvu 2 Lp(­ ), which will then be applied to derive a global W 2;p

estimate for u 2 W2;p(B) \W 1;p
0 (B), with Lvu 2 Lp(B), in a ball B ½ RN in

Proposition 2.2.
Notice that the interior W 2;p estimate for the linear case formulated in Theorem

9.11 [4, p. 235] is derived by a uniform perturbation of the coefficients aij(x) in
the neighborhoods of finite points in ­ . In the present case that aij = aij(x;u),
an interior W2;p estimate can be established along the same line provided the os-
cillations of aij with respect to r are sufficiently small. Therefore, we have the
following lemma in which K is a constant depending only on N, p, and satisfying

kD2wkLp(­ ) · Kk¢ wkLp(­ );(2.2)

where w 2W 2;p
0 (­ ) [4].

Lemma 2.1. Let ­ be an open set in RN and the coefficients of L satisfy, for
a positive constant ¤ ;

aij 2C0;1(­ £ R); bi; c 2 L1(­ £ R); jaij j; jbij; jcj · ¤ ;(2.3)

where i; j = 1; ¢¢¢ ;N. Suppose that

osc a(x;r) · ¸

4K
8x 2 ­ ;(2.4)

where K is given by (2.2). Then if u 2W 2;p
loc (­ ) \Lp(­ ) and Lvu 2 Lp(­ ); with

1 < p <1; we have for any domain ­ 0 ½ ­ the estimate

kukW2;p(­ 0) · C(kukLp(­ ) + kLvukLp(­ ));(2.5)
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where C is a constant (independent of v) depending on N; p; ¸; ¤ ; ­ 0; with respect
to x on ­ 0.

To simplify the boundary estimate, we refrain ­ to be a ball in RN . Thus, we
can further derive a local boundary estimate which together with Lemma 2.1 enables
us to establish the following global estimate.

Proposition 2.2. Let B be a ball in RN and the operator L satisfy (2.3) with
aij(x; r) 2 C0;1( ¹B £ R). Suppose that

osc a(x; r) · ¸

4K
8x 2 B;(2.6)

osc a(x; r)<
¸

8N2K
8x 2 @B;(2.7)

where K is given by (2.2). Then if u 2 W 2;p(B) \W1;p
0 (B) and Lvu 2 Lp(B);

with 1 < p <1; we have the estimate

kukW 2;p(B) · C(kukLp(B) + kLvukLp(B));(2.8)

where C is a constant (independent of v) depending on N; p; ¸; ¤ ; @B; B and
the moduli of continuity of the coefficients aij(x; r) with respect to x on ¹B.

Proof. For simplicity, let B be the unit ball B1(0) with its boundary S:

S = @B =

(
x = (x1; ¢¢¢ ;xN) 2 RN

¯̄
¯

NX

i=1

x2
i = 1

)
:

Now we claim that S 2 C1;1. For any x0 = (x0
1;¢¢¢ ;x0

N) 2 S, there exists an
integer k, 1 · k · N, such that x0 2 S+

k or x0 2 S¡k , where

S+
k =

n
x 2 SjPi6=k x

2
i · N¡ 1

N ; xk > 0
o
;

S¡k =
n
x 2 SjPi6=k x

2
i · N¡ 1

N ; xk < 0
o

;

for otherwise we would have
PN

i=1x
2
i > 1, a contradiction. Without loss of gener-

ality, we can assume x0 2 S+
N . Write

x0 = (cosµ1 sinµ2 ¢¢¢sinµN¡ 1; sin µ1 sin µ2¢¢¢sin µN¡ 1;
cos µ2 sinµ3 ¢¢¢sin µN ¡ 1; cosµ3 sin µ4¢¢¢sin µN¡ 1;
cos µ4 sinµ5 ¢¢¢sin µN ¡ 1;¢¢¢ ; cosµN¡ 2 sin µN¡ 1; cosµN¡ 1)
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for some µi, 0 · µN¡ 1 · tan¡ 1
p
N ¡ 1, 0 · µi < 2¼, i = 1; ¢¢¢; N ¡ 2, where

µN¡ 1 is the angle from the positive xN-axis to x0. Rotate the coordinate axes, the
rotated axes being denoted as the x01-, ¢¢¢, x0N-axis, by the mapping Rx0 defined
by x0 = xON , where

O3 =

2
4

cos µ1 cosµ2 ¡ sinµ1 cosµ1 sin µ2
sin µ1 cosµ2 cosµ1 sin µ1 sin µ2

¡ sinµ2 0 cos µ2

3
5 ;

Ok =

·
Ok¡ 1 0

0 1

¸2
4

Ik¡ 2 0 0
0¢¢¢0 cosµk¡ 1 sin µk¡ 1

0¢¢¢0 ¡ sinµk¡ 1 cos µk¡ 1

3
5 ; k = 4; ¢¢¢; N;

here Ik¡ 2 being the (k ¡ 2) £ (k ¡ 2) identity matrix, such that x0 is converted
into the point (0;¢¢¢ ; 0;1). Define a mapping Ã = Ã x0

= Ã (0;¢¢¢;0;1) ± Rx0 in a
neighborhood N = Nx0 = R¡ 1

x0
(N(0;¢¢¢;0;1)) ½ RN , where

Ã (0;¢¢¢;0;1) =
1

r0

Ã
x01; ¢¢¢; x0N¡ 1;

s
1 ¡

X

i6=N

x02i ¡ x0N

!
; 0 < r0 ·

r
N ¡ 1

N
;

and

N(0;¢¢¢;0;1) =

(
x0 2RN

¯̄
¯
X

i 6=N

x02i < r2
0;

s
1 ¡

X

i 6=N

x02i ¡
s
r2
0 ¡

X

i 6=N
x02i

< xN <

s
1 ¡

X

i 6=N
x02i +

s
r2
0 ¡

X

i 6=N
x02i

)
:

Then Ã is a diffeomorphism from N onto the unit ball B1(0) in RN such that
Ã (N \B) ½ RN

+ , Ã (N \@B) ½ @RN
+ , Ã 2 C1;1(N), Ã ¡ 1 2 C1;1(B1(0)). Under

the mapping y = Ã (x) = (Ã1(x); ¢¢¢; ÃN(x)), let eu(y) = u(x), ~v(y) = v(x) and
~L~v ~u(y) = Lvu(x), where

~L~v ~u =
NX

i;j=1

~aij(y; ~v(y))
@2~u

@yi@yj
+

NX

i=1

~bi(y; ~v(y))
@~u

@yi
+ ~c(y; ~v(y))~u(y) in B+

1 (0)

and
~aij(y; ~v(y))=

X

r;s

@Ã i
@xr

@Ã j

@xs
ars(x; v(x));

~bi(y; ~v(y))=
X

r;s

@2Ã i

@xr@xs
ars(x;v(x)) +

X

r

@Ã i
@xr

br(x;v(x));

~c(y; ~v(y)) = c(x; v(x));
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so that ~L satisfies conditions similar to (2.1) and (2.3) with constants ~̧, ~¤ depending
on ¸, ¤ and Ã . Furthermore, ~u 2 W 2;p(B+

1 (0)), ~u = 0 on B1(0) \ @RN
+ in the

sense of W1;p(B+
1 (0)).

Notice that DÃ = DÃ (0;¢¢¢;0;1)DRx0 and ~a = (DÃ )a(DÃ )T , where

DÃ =

·
@Ã i
@xj

¸
; DÃ (0;¢¢¢;0;1) =

"
@Ã i
@x0j

#
;

DRx0 =

·
@x0i
@xj

¸
; ~a= [~aij ]; i; j = 1; ¢¢¢ ;N:

We can obtain from a further computation of ~a that

osc ~a(0; r)<
N 2

r2
0

¢osc a(x0; r):(2.9)

Now we will choose ~̧ > 0 properly. For all » = (»1;¢¢¢ ; »N) 2RN ,

NX

i;j=1

~aij»i»j = »~a»T = (»(DÃ ))a(»(DÃ ))T ¸ ¸ j»(DÃ )j2

=
¸

r2
0

Ã X

i 6=N

»2
i +

³
1 +

X

i 6=N

X2
i

´
»2
N ¡ 2

X

i 6=N

»i»NXi

!

¸ ¸

r2
0

Ã
(1 ¡ ²)

X

i 6=N

»2
i +(1 + (1 ¡ 1

²
)
X

i 6=N

X2
i )»2

N

!

for any ² > 0, where Xi = x0i=
q

1 ¡ P
i 6=N x02i , i = 1;¢¢¢ ; N ¡ 1. Choose

0 < ²< 1 such that 1+(1¡ (1=²))
P

i6=N X2
i > 1¡ ², i.e.,

P
i 6=N X2

i < ²2=(1¡ ²)

and so ~̧ = ¸(1 ¡ ²)=r2
0 . Since

P
i 6=N X2

i < r2
0=(1 ¡ r2

0) in N(0;¢¢¢;0;1), we can take
²2=(1 ¡ ²) = r2

0=(1 ¡ r2
0) to obtain

~̧ = ¸ ¢2 ¡ r2
0 ¡

p
4r2

0 ¡ 3r4
0

2r2
0(1 ¡ r2

0)
:(2.10)

In view of the proof of Theorem 9.13 [4, p. 239], the oscillations of ~aij(0; r) with
respect to r 2 R, corresponding to condition (2.4), must be less than ~̧=8K , that
is,

osc ~a(0; r) ·
~̧

8K
:(2.11)



On the Existence of Strong Solutions to Some Semilinear Elliptic Problems 349

In view of (2.9) and (2.10), inequality (2.11) holds provided

osc a(x0; r) ·
¸

16N2K
¢2 ¡ r2

0 ¡
p

4r2
0 ¡ 3r40

1 ¡ r2
0

:(2.12)

Since the right-hand side of (2.12) increases to ¸=8N2K as r0 ! 0, there exists r0

small enough such that, under hypothesis (2.7), inequality (2.12) holds. Thus, using
the same deduction as in the proof of Lemma 2.1, we obtain, on returning to our
original coordinates, a local boundary estimate in a neighborhood, say ~N . For an
arbitrary ballB in RN , by means of a linear transformation fromB onto the unit ball
and following the arguments as stated above we can also arrive at such an estimate.
Finally, by covering @B with a finite number of such neighborhoods ~N and using
also the interior estimate (2.5), the desired estimate (2.8) follows immediately.

Corollary 2.3. Under the hypotheses of Proposition 2.2 with B replaced by
the ellipsoid

E =

(
x = (x1;¢¢¢ ;xN) 2 RN j

NX

i=1

³xi ¡ ci
ri

´2
< 1

)
;

and with (2.7) replaced by

osc a(x; r)<
minri
max ri

¢ ¸

8N2K
8x 2 @E;(2.13)

the same conclusion (2.8) remains valid.

Proof. Let T : RN ! RN be given by

T (x) =

µ
x1 ¡ c1
r1

;¢¢¢ ; xN ¡ cN
rN

¶
:

Then T is a diffeomorphism from E onto the unit ball B1(0) in RN . For any
x0 = (x0

1;¢¢¢ ; x0
N) 2 @E, there exists an integer k, 1 · k · N, such that x0 2 ¡+

k
or x0 2 ¡¡k , where ¡+

k = T ¡ 1(S+
k ), ¡¡k = T ¡ 1(S¡k ). Thus, there is a neighborhood

U = Ux0 = T ¡ 1(NT(x0)) and a diffeomorphism Á = Á x0 = Ã T(x0) ± T from U
onto the unit ball B1(0) in RN such that Á (U \ E) ½ RN

+ , Á (U \ @E) ½ @RN
+ ,

Á 2 C1;1(U), Á ¡ 1 2 C1;1(B1(0)). The desired estimate (2.8) can be similarly
derived by following the proof in Proposition 2.2.

Remark 2.4. Proposition 2.2 remains valid with B replaced by an ovaloid in
RN . (An ovaloid in RN is a rectangle in RN with rounded corners.)
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3. EXISTENCE OF STRONG SOLUTIONS

The results of the preceding section will now be applied to establish the existence
of solutions of the following semilinear elliptic problem:

(3.1)

8
><
>:

Lu =
NX

i;j=1

aij(x; u)
@2u

@xi@xj
+

NX

i=1

bi(x; u)
@u

@xi
+ c(x; u)u = f(x) in B;

u = 0 on @B;

where f 2Lp(B).
For the moment, we suppose aij 2 C0;1( ¹B £ R), aij , @aij=@xi, @aij=@r, bi,

c are bounded Carathédory functions, with c · 0, and f 2 Lp(B), with p > N=2.
Consider the mapping F which assigns to v 2 W 2;p(B) \W 1;p

0 (B) the solution
u 2W 2;p(B) \W 1;p

0 (B) to the equation

Lvu =
NX

i;j=1

aij(x;v)
@2u

@xi@xj
+

NX

i=1

bi(x;v)
@u

@xi
+ c(x; v)u = f(x) in B:(3.2)

(F is well-defined provided p > N=2.)
Since W 2;p(B)\W 1;p

0 (B) is continuously imbedded in H1(B), by the ellipticity
of L, the mapping F : W 2;p(B)\W 1;p

0 (B) ¡!W2;p(B)\W 1;p
0 (B) is continuous

in the topology of H1(B) [3]. Together with estimate (2.8) and the maximum
principle for equation (3.2):

sup
B

juj · MkfkLN(B);(3.3)

where M is a constant depending on N, diam B, ¸ and ¤ [2], (the maximum
principle is only valid for p ¸ N), we have the following existence result.

Theorem 3.1. Let B be a ball in RN and suppose aij 2 C0;1( ¹B £ R); aij ;
@aij=@xi; @aij=@r; bi; c 2 L1(B £ R); with i; j = 1;¢¢¢ ;N and c · 0. Then;
for p ¸ N; there exists a solution u 2W 2;p(B) \W 1;p

0 (B) to problem (3.1) under
hypotheses (2.6) and (2.7).

Proof. Consider the solution u = F(v) for v 2 W 2;p(B) \W 1;p
0 (B). Since

f 2Lp(B) with p ¸ N, it follows from (2.8) and (3.3) that there exists a constant
k > 0 such that

kukW 2;p · k for all u = F (v); v 2W 2;p(B) \W 1;p
0 (B):

Let
K = fv 2W 2;p(B) \W 1;p

0 (B)j kvkW2;p · kg:
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Then F is a continuous mapping from K into K in the topology of H1(B). More-
over, since W 2;p(B) is a reflexive space and W 1;p(B) is continuously imbedded in
H1(B), K is weakly compact in H1(B) and hence it is closed in H1(B). Also,
since W 2;p(B) ,!W1;p(B) is a compact imbedding, K is a compact set in H1(B).
We conclude from the Schauder fixed point theorem that there exists a solution to
problem (3.1) in K.

In the sequel, we shall show that if kfkLp is sufficiently small, then the existence
result of problem (3.1) still holds.

Lemma 3.2. Let aij 2C0;1( ¹B £ R); aij ; @aij=@xi; @aij=@r; bi; c 2 L1(B £
R); with i; j = 1;¢¢¢ ;N and c · 0. Then; under hypotheses (2.6) and (2.7),
there exists a constant C independent of u and v such that; for all v 2 K = fv 2
W2;p(B) \W1;p

0 (B) j kvkW 2;p · kg;

kukW2;p · CkLvukLp(3.4)

for all u 2W2;p(B) \W 1;p
0 (B).

Proof. We argue by contradiction. If (3.4) is not true, then for all m > 0 there
exist sequences (wm) ½ W 2;p(B) \W1;p

0 (B) and (vm) ½ K satisfying

kwmkW2;p ¸ mkLvmwmkLp :

We will claim that there exists a sequence (um) ½ W 2;p(B)\W1;p
0 (B) satisfying

kumkLp = 1; kLvmumkLp ! 0:(3.5)

Let zm = wm=kwmkW 2;p . Then kzmkW2;p = 1 and

kLvmzmkLp =
kLvmwmkLp

kwmkW2;p
· 1

m

kwmkW 2;p

kwmkW 2;p
=

1

m
:

Thus
kLvmzmkLp ! 0 as m!1:

From Proposition 2.2, there exists M > 0 independent of (vm) such that

kzmkW2;p · M(kzmkLp + kLvmzmkLp ):

Hence, for any ²> 0, we have

kzmkW2;p · M²+ MkzmkLp as m!1:
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It follows that

kzmkLp ¸ 1

M
kzmkW2;p ¡ ²=

1

M
¡ ² as m!1:

Since ² is arbitrary, we have

kzmkLp ¸ 1

M
as m!1:

Let um = zm=kzmkLp. Then

kumkLp = 1; kLvmumkLp ! 0:

Thus we get a sequence (um) ½ W 2;p(B) \W 1;p
0 (B) satisfying (3.5) and

kumkW 2;p · M(kumkLp + kLvmumkLp):(3.6)

Combining (3.5) with (3.6), we know that (um) is bounded in W 2;p(B) and thus
there exists a subsequence, denoted again by (um), converging weakly to a function
u 2 W 2;p(B) \W 1;p

0 (B). Moreover, since W 2;p(B) ,! W 1;p(B) is a compact
imbedding, (um) converges to u in Lp(B) satisfying kukLp = 1. Similarly, since
(vm) is bounded in W 2;p(B), we can extract a subsequence, denoted also by (vm),
such that vm! v a.e. and vm ! v in W1;p(B) for some v 2W 2;p(B)\W1;p

0 (B).
Also, since aij , @aij=@xi, @aij=@r, bi and c are bounded Carathédory functions, by
Lebesgue’s dominated convergence theorem, we have

Z

B
aij(vm)

@um
@xj

@Á

@xi
+

Z

B

µ
@aji
@xj

(vm) +
@aji
@r

(vm)
@vm
@xj

¡ bi(vm)

¶
@um
@xi

Á

+

Z

B
(¡ c(vm))umÁ !

Z

B
aij(v)

@u

@xj

@Á

@xi
+

Z

B

µ
@aji
@xj

(v) +
@aji
@r

(v)
@v

@xj

¡ bi(v)
¶
@u

@xi
Á +

Z

B
(¡ c(v))uÁ

for all Á 2 C1
0 (B). Hence Lvu = 0 and u = 0 by the uniqueness assertion, which

contradicts the condition kukLp = 1.

Theorem 3.3. Let B be a ball in RN and suppose aij 2 C0;1( ¹B £ R); aij ;
@aij=@xi; @aij=@r; bi; c 2 L1(B £ R); with i; j = 1;¢¢¢ ; N and c · 0. Then,
for p > N=2; there exists a positive constant C0 such that if

kfkLp(B) · C0;

there exists a solution u 2W 2;p(B) \W 1;p
0 (B) to problem (3.1) under hypotheses

(2.6) and (2.7).
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Proof. Consider the set

K =
n
v 2W2;p(­ ) \W1;p

0 (­ )j kvkW2;p · k
o
:

It follows from Lemma 3.2 that there exists a constant C > 0 independent of v 2 K
such that

kukW2;p · CkfkLp for all u = F(v); v 2 K:
Choose a constant C0 > 0 such that CC0 · k. Hence if kfkLp · C0 , we have
kukW 2;p · k. It follows readily from the Schauder fixed point theorem that there
exists a solution of problem (3.1) in K.

Remark 3.4. For p ¸ N, since W2;p(­ ) is imbedded in C1( ¹­ ) for a bounded
C1;1 domain ­ , the constant C in estimate (1.3) can be chosen to be independent
of v with v restricted to some bounded set in W 2;p(­ ). Then, together with the
maximum principle, Theorem 3.3 remains valid with B replaced by ­ provided
p ¸ N without any restrictions on the oscillations of aij with respect to r.

Remark 3.5. Theorems 3.1 and 3.2 remain valid with B replaced by the
ellipsoid E in Corollary 2.3 and with (2.7) replaced by (2.13).

Remark 3.6. Theorems 3.1 and 3.2 remain valid with B replaced by an ovaloid
in RN .

Remark 3.7. For any bounded domain ­ with a sufficiently smooth boundary,
although the diffeormorphism Ã in Proposition 2.2 is not explicitly observed, it
seems that the existence of strong solutions u 2 W 2;p(­ ) \W1;p

0 (­ ) to problem
(3.1) in ­ remains valid provided the oscillations of aij with respect to r are
sufficiently small.
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